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Feature information transmission analysis (FITA) estimates information transmitted by an acoustic

feature by assigning tokens to categories according to the feature under investigation and

comparing within-category to between-category confusions. FITA was initially developed for

categorical features (e.g., voicing) for which the category assignments arise from the feature

definition. When used with continuous features (e.g., formants), it may happen that pairs of tokens

in different categories are more similar than pairs of tokens in the same category. The estimated

transmitted information may be sensitive to category boundary location and the selected number of

categories. This paper proposes a fuzzy approach to FITA that provides a smoother transition

between categories and compares its sensitivity to grouping parameters with that of the traditional

approach. The fuzzy FITA was found to be sufficiently robust to boundary location to allow

automation of category boundary selection. Traditional and fuzzy FITA were found to be sensitive

to the number of categories. This is inherent to the mechanism of isolating a feature by dividing

tokens into categories, so that transmitted information values calculated using different numbers of

categories should not be compared. Four categories are recommended for continuous features when

twelve tokens are used. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4916198]

[JL] Pages: 1983–1994

I. INTRODUCTION

Quantitative estimates of the amount of information

transmitted by individual acoustic features are useful for the

investigation of speech perception and the development of

hearing prostheses. For example, with quantitative techni-

ques, it is possible to estimate the degree to which informa-

tion about important features are preserved by a hearing

prosthesis. Shannon (1948) developed a mathematical model

with which the information transmitted over a noisy commu-

nication channel can be calculated based on error probabil-

ities. This model was employed by Miller and Nicely (1955)

to develop a technique to estimate the information transmit-

ted in a typical closed set listening experiment. This was

achieved by collecting the results from such an experiment

in a confusion matrix and estimating the pairwise error prob-

abilities from this confusion matrix using the frequency

approach to probability.

Miller and Nicely also developed a technique to isolate

an individual acoustic feature and estimate the amount of

information transmitted by that feature. This was achieved

by assigning the tokens presented in an experiment to differ-

ent categories according to the feature of interest. For exam-

ple, to estimate the information transmitted by the place of

articulation feature in a consonant identification experiment,

three categories could be defined to contain the front, mid-

dle, and back consonants, respectively. In this way, the token

confusion matrix is converted to a smaller category

confusion matrix showing only within-category and

between-category confusions. This category confusion ma-

trix is then used to estimate the pairwise error probabilities

for the computation of transmitted information. This tech-

nique is referred to as feature information transmission anal-

ysis (FITA). The present study proposes an expansion to the

FITA technique.

Originally, the FITA technique was used to characterize

categorical features of speech, e.g., voicing, nasality, affrica-

tion, and place of articulation. For these features, the assign-

ment of tokens to categories is simple because it is usually

dictated by the definition of the feature. For example, every

consonant is either voiced or unvoiced.

As the FITA technique became a standard approach to

the estimation of feature information, researchers started

using it to characterize continuous features, such as formant

frequencies (Blamey et al., 1989; Van Wieringen and

Wouters, 1999). Unlike a categorical feature, a continuous

feature can assume an infinite number of different values

within the typical range. If tokens are grouped according to a

continuous feature, some tokens will be closer to the edge of

the category and some will be closer to the center. Distances

between tokens in the same category are, however, ignored

by the FITA technique and distances between tokens close

to, but on different sides of, a category boundary are exag-

gerated (more detail is provided in Sec. II A). These effects

limit the resolution with which a FITA can estimate trans-

mitted information and may cause the technique to be sensi-

tive to the boundary locations.

No standard procedure or guidelines are available for

the assignment of tokens to categories when performing a
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FITA and researchers differ in their approach to this task.

This is seen clearly in Figs. 1(a)–1(c), where different stud-

ies employed the FITA technique using recorded vowels

from the same study (Hillenbrand et al., 1995). Both the

boundary locations and the number of categories per feature

differ substantially between these three studies. Another

study performed a FITA on the consonants recorded by

Hillenbrand et al. but did not perform a FITA on the vowels

because they could not determine reasonable ways to group

the stimuli (Apoux and Healy, 2012).

From the category assignments found in literature,

although seldom explicitly stated, it appears researchers con-

sider three factors when assigning tokens to categories. First,

some researchers seem to avoid splitting natural clusters

formed by tokens (Donaldson et al., 2011). Second, the dis-

tribution of tokens is considered by assigning approximately

the same number of tokens to each category (Van Wieringen

and Wouters, 1999). Finally, some consider the theoretical

origin of features, such as the relationship between formants

and vowel height and backness (Yoon et al., 2012).

The factors that direct the choice of category boundaries

may often be in conflict. For example, in Fig. 1(e), an

approach based on natural clusters formed along the F2 fea-

ture dimension would result in the /A/ and /u/ tokens being

included in the middle category. However, interpreting the

F2 frequency as a consequence of the place of articulation

suggests the category assignments indicated on the figure.

These categories also agree with other literature on

Afrikaans vowels (Taylor and Uys, 1988; Van der Merwe

et al., 1993; Botha, 1996).

The process of manual category assignment introduces a

human effect the magnitude of which has not yet been deter-

mined. This human effect may enter either as systematic

bias or as random noise, both of which are unwanted. For

example, when comparing the information transmitted by

different features, a bias may exist in favor of features that

fall naturally into distinct categories if the effect is system-

atic. If the effect is random, it can be averaged out by

collecting enough data, but this would require the collection

of more data than what would have been necessary in the

absence of the effect.

If the process of token grouping could be automated

in a thoughtful manner, this automation may be advanta-

geous. The human effect is removed, which should

increase the comparability of FITA outputs between stud-

ies by different authors. Also this would relieve research-

ers of the time and effort involved in the selection of

boundaries, especially in cases where no obvious divisions

exist between tokens.

To achieve a method for automated grouping, the work

presented here investigated the sensitivity of the FITA tech-

nique to the grouping parameters1 and an adaptation to the

technique, which reduces this sensitivity by incorporating

the theory of fuzzy sets (Zadeh, 1965), is suggested.2 The

concept of fuzzy sets and how this applies to FITA should

become clear in Sec. II B.

II. THEORY

A. The crisp FITA

The traditional FITA technique developed by Miller and

Nicely (1955) will be referred to as the crisp FITA3 in this

paper to distinguish it from the fuzzy FITA. The difference

between these two techniques is that the first has sharp boun-

daries between categories, whereas the second has gentle

transitions between categories as will be explained in the

next subsection. The mathematical representation of the

FITA technique in the following text uses matrix notation to

demonstrate the effect of the grouping parameters and to

develop the fuzzy FITA as a general case of the crisp FITA.

The transmitted information T over a discrete memory-

less channel can be expressed as (Shannon, 1948; Miller and

Nicely, 1955)

T x; yð Þ ¼ �
X
x;y

pxy log
pxpy

pxy

� �
; (1)

FIG. 1. Examples of category assignments from different studies. Panels (a)

to (c) show how different researchers divided the English vowels recorded

by Hillenbrand et al. (1995) into categories. Donaldson et al. (2011) [(a)]

and Sheffield and Zeng (2012) [(b)] used only recordings from male speak-

ers, whereas Yoon et al. (2012) [(c)] used both male and female speakers.

These three studies do not report the actual boundary locations, but the loca-

tions were inferred from their reported category assignments and the vowel

spaces reported by Hillenbrand et al. Arrows clarify the assignments of vow-

els near category boundaries. Where studies used only a subset of the vowels

recorded by Hillenbrand et al., only the subset is shown in the relevant

panel. Instances where a boundary appears to pass through a vowel location

or where a vowel appears to have been assigned to a category that does not

correspond to its location may be due to the fact that individual speakers

were used in the studies the FITAs were performed in, whereas Hillenbrand

et al. report vowel spaces as averaged across speakers of the same gender.

Panel (d) shows the vowel space for the Dutch vowels recorded by Van

Wieringen and Wouters (1999) and their own category assignments. Panel

(e) shows the vowel space for the Afrikaans vowels recorded for the pur-

poses of the present study and the manual category assignments used.
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where px is the a priori probability at the source of producing

a certain message x from a closed set of possible messages,

py is the probability at the destination of identifying any

received signal as a certain message y, and pxy is the joint

probability of producing message x and identifying it as mes-

sage y. The transmitted information can be divided by the

entropy H(x) of the source to compute the relative informa-

tion transmitted,

Trel x; yð Þ ¼
T x; yð Þ
H xð Þ

¼
�
X
x;y

pxy log
pxpy

pxy

� �
�
X

x

px log pxð Þ
: (2)

The relative information transmitted is a normalized measure

of the covariance of the output with the input (Miller and

Nicely, 1955). A value of zero is obtained if the source and

the destination are statistically independent (pxy¼ pxpy),

indicating that no information about the source has reached

the destination. A value of one is obtained if all messages

are received correctly (pxy¼ px if x¼ y and 0 otherwise),

indicating that all information available at the source has

reached the destination.

Equations (1) and (2) can be used in the context of a

closed set phoneme identification experiment by setting px to

the a priori probability of presenting token x, py to the proba-

bility of observing token y, and pxy to the joint probability of

observing token y when token x is being presented. These

probabilities are unknown but can be estimated from the

results of the experiment. Experiment results are typically

represented in a confusion matrix C, such that each entry cij

represents the number of times token i was presented and

recognized as token j. Estimating the probabilities from the

confusion matrix yields the following estimates for the trans-

mitted information measures:

T̂ðx; yÞ ¼ TMðCÞ ; (3)

cTrel x; yð Þ ¼
TM Cð Þ
HM Cð Þ

; (4)

where TM and HM are functions that operate on matrices and

return scalars. These are defined as

TM Mð Þ ¼ �
X

i;j

mij

NM

� �
log

mimj

NMmij

� �" #
; (5)

HM Mð Þ ¼ �
X

i

mi

NM

� �
log

mi

NM

� �� �
; (6)

mi ¼
X

j

mij;

mj ¼
X

i

mij;

NM ¼
X

i;j

mij ¼
X

i

mi ¼
X

j

mj:

mi is the number of times token i was presented (the sum of

the entries in row i in matrix M), mj is the number of times

token j was observed (the sum of the entries in column j in

matrix M), and NM is the total number of stimuli (the sum of

all entries in matrix M). Normalization by NM is used to esti-

mate probabilities according to the frequency approach to

probability.

The transmitted information measures in Eqs. (3) and

(4) represent the combined information available in all

features transmitted. If the probabilities are calculated for a

scenario where only one feature is transmitted, T(x;y) and

Trel(x;y) represent the information transmitted about that

particular feature. A feature is typically isolated by grouping

the tokens according to the feature being evaluated, so that

tokens that are similar in that feature fall into the same cate-

gory, whereas tokens that differ substantially in that feature

fall into different categories (see Fig. 1). A category confu-

sion matrix A is then computed, so that each entry aij repre-

sents the number of times a token in category i was

presented and recognized as a token in category j. The infor-

mation transmitted about this feature is then estimated as

follows:

T̂ðx; yÞ ¼ TMðAÞ ; (7)

cTrel x; yð Þ ¼
TM Að Þ
HM Að Þ

: (8)

We can define a category membership matrix G such that

each entry Gij is equal to one if token i is in category j and

zero otherwise. The category confusion matrix A can then be

calculated from the token confusion matrix C as follows:

A ¼ GTCG: (9)

The transmitted information measures for a specific feature

can now be estimated as a function of the token confusion

matrix C and the category membership matrix G as follows:

T̂ðx; yÞ ¼ TMðGTCGÞ; (10)

cTrel x; yð Þ ¼
TM GTCGð Þ
HM GTCGð Þ ¼

TM GTCGð Þ
TM GTGð Þ : (11)

Equations (10) and (11) are mathematically equivalent to the

FITA described by Miller and Nicely (1955). The source en-

tropy HM(GTCG) simplifies to the expression TM(GTG) if all

tokens were presented the same number of times (the row

sums of C are equal). This indicates that the entropy (infor-

mation content) of the source is characterized completely by

the number of categories and the number of tokens in each

category. This may be expected because the category mem-

bership matrix is the only variable that changes as different

features are selected. Equation (11) can also be used to

illustrate mathematically that in the case where all tokens

are identified correctly, the relative information transmitted

is equal to one (C becomes an identity matrix).

From a mathematical perspective, the crisp FITA

presents three problems. First, discontinuities exist near cate-

gory boundaries; this may cause the technique to be sensitive

to the boundary locations. Consider what happens when one
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boundary is modified while all feature values and all other

boundaries remain constant. If the boundary is shifted in

such a way that no tokens are reassigned to new categories

because of the shift, the estimated information transmitted

does not change. However, if a token is reassigned to a dif-

ferent category, this estimate changes. It may happen that a

large shift in boundary position may cause no tokens to be

reassigned, whereas a small shift may cause one or more

tokens to be reassigned.

The second and third problems concern the resolution

and accuracy with which token feature values are repre-

sented. In a similar scenario as in the preceding text, if all

boundaries remain constant and the feature value of one to-

ken is changed, this change will only be detected by the

FITA if the token transcends a boundary. Small changes

would therefore not be detected; this equates to a low resolu-

tion representation. This low resolution has a direct effect on

the accuracy of the representation of distances between

tokens. The distance between two closely spaced tokens that

are on opposite sides of a boundary is represented in the

same way as the distance between any two tokens in differ-

ent categories, whereas the distance between any two tokens

in the same category is represented as zero. For example, if

the boundaries in Fig. 1(c) were used to estimate the infor-

mation transmitted by the F1 feature using a crisp FITA,

confusions between /I/ and /e/ would be treated as between-

category confusions, whereas confusions between /e/ and /E/

would be treated as within-category confusions in spite of

the fact that the former pair is more similar in F1 than the

latter pair.

The fuzzy FITA discussed in Sec. II B aims to address

all three of these problems. Note that none of these problems

exist for categorical features for which the FITA technique

was originally invented (Miller and Nicely, 1955).

B. The fuzzy FITA

The theory of fuzzy sets provides a framework for

addressing problems where imprecision arises due to the ab-

sence of sharply defined criteria for category membership

(Zadeh, 1965). An often quoted example problem in the lit-

erature of fuzzy sets is the classification of humans by height

into two categories: Short and tall. Because the boundary

between short and tall is not clearly defined, some humans

will be difficult to classify. Furthermore, if a large, represen-

tative sample is used, it is inevitable that two humans on op-

posite sides of, but near the boundary height, will be more

similar in height than two humans near different extremes

within one category. This is analogous to the problem of

classifying speech tokens by their formant frequencies.

The discontinuities at token category boundaries may be

removed by using fuzzy categories.4 A fuzzy category has

no sharp, clearly defined boundary and may contain elements

with a partial degree of membership. This partial degree of

membership is denoted by a real number that ranges from

zero (meaning no membership) to one (meaning complete

membership). A membership function is usually defined to

map the input space of a variable to a degree of membership

for a particular fuzzy category. For example, if tokens were

grouped into fuzzy categories according to their first formant

frequency values, each category will be characterized by a

membership function that takes a frequency value as input

and returns a degree of membership for that category. This

way, each token can belong to more than one category with

different degrees of membership for each category. Fuzzy

categories are a generalization of normal (crisp) categories

and reduce to the latter when the membership functions are

rectangular functions.

For the proposed fuzzy FITA, adjacent categories like

those in the crisp FITA are used, but the membership func-

tions are triangular (Fig. 2). The membership function of a

particular category ranges linearly from zero at the center of

the previous category to one at the center of the category

under consideration to zero at the center of the next category.

Exceptions are made for the first and last categories, where

the membership functions are set to unity over the sections

of the input space that do not overlap with other categories.

This has the effect that the membership functions add up to

unity at every point in the input space. This is to ensure that

a token’s degrees of membership of different categories add

up to one, and each token therefore has the same amount of

influence on the resulting estimate. Unless otherwise speci-

fied, equal-sized categories are used.

Mathematically, this fuzzy FITA is a generalization of

the FITA described in Sec. II A. Equations (10) and (11)

remain the same, but the contents of the category member-

ship matrix G changes. Instead of containing only ones and

zeros, gij now contains the degree of membership of token i
to category j. To ensure that each token has the same amount

of influence on the resulting estimate, the rows of G are

scaled to add to one.

With this new way of calculating G, the two expressions

on the right hand side of Eq. (11) are no longer equivalent

because the new source entropy HM(GTCG) is no longer

identical to the new optimal information transmitted

TM(GTG). This is because the result of Eq. (9) has off-

diagonal elements even if matrix C is an identity matrix. To

FIG. 2. Example of membership functions for a fuzzy FITA with four cate-

gories. Vertical lines indicate category boundaries.
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use a fuzzy FITA, one of the preceding expressions (source

entropy or optimal information transmitted) must therefore

be selected as a norm for calculating the relative information

transmitted. The optimal information transmitted is preferred

because this yields a measure that ranges from zero to one

and is therefore suitable for the comparison of different fea-

tures. If the source entropy was used as a norm, the resulting

estimate would never reach a value of one and would depend

on grouping parameters even if the token confusion matrix is

an identity matrix. The fuzzy FITA equations then become

T̂ðx; yÞ ¼ TMðGTCGÞ; (12)

cTrel x; yð Þ ¼
TM GTCGð Þ
TM GTGð Þ ; (13)

with G calculated as described in this section and the other

parameters defined in Sec. II A.

Mathematically, the fuzzy FITA appears to address the

three problems identified earlier. The discontinuities at cate-

gory boundaries have been removed because if a boundary is

shifted slightly to cross over a token, the token’s degree of

membership for the new category increases by a small

amount and its degree of membership for its previous cate-

gory decreases by a small amount (see Fig. 2). The resolu-

tion with which token feature values are represented is also

improved because a slight change in one token feature value

causes a slight change in its degrees of membership to two

categories, causing a slight change in the FITA output.

Finally, the accuracy with which inter-token distances are

represented is improved, as tokens on opposite sides of the

same boundary belong to both categories with similar

degrees of membership and tokens that are far apart but in

the same category differ considerably in their degrees of

membership to that category and the bordering categories.

Although a mathematical analysis is effective at identi-

fying problems in the internal structure of the FITA tech-

nique and in adapting the technique to address these

problems, the effect of these problems in actual applications

and the effect of the proposed adaptation are best investi-

gated experimentally.

III. EXPERIMENT: METHOD

Two experiments were performed to evaluate the two

FITA techniques. Because FITAs calculate information con-

tent at the perceptual level, their outputs are by definition

estimates, and no true values are available to compare the

estimates against. Therefore it is not possible to determine

which of the two FITA techniques provide the most accurate

estimate of the actual information transmitted. Instead the

experiments focused on the ability of each technique to

report consistent results if the grouping parameters are var-

ied. The two experiments investigated the effects of two

grouping parameters. In the first experiment, the number of

categories was held constant, and the location of a boundary

was varied. In the second experiment, equal-sized and ran-

domly generated categories were used, and the number of

categories was varied.

The two FITA techniques were evaluated using data

taken from literature as well as data recorded in our lab. The

latter consisted of confusion matrices that were measured in

a closed set vowel identification test and acoustic features

that were extracted from these recordings. The experiments

in our lab were performed at four signal-to-noise ratios

(SNRs) to investigate the effects of grouping parameters and

the ability of the fuzzy FITA to compensate for these effects

over a range of listener performance levels. The subsections

in the following text provide detail on the collection of data,

the implementation of the FITA, and the analysis of results.

A. Data from literature

A crisp FITA requires two inputs, namely, a confusion

matrix and a table of category assignments. The category

assignments can be calculated from extracted feature values

and category boundary locations if both of these are avail-

able. A fuzzy FITA requires three inputs, namely, a confu-

sion matrix, extracted feature values, and category boundary

locations. Because the boundary locations were manipulated

in these experiments, the minimum data required were con-

fusion matrices and extracted feature values. Most studies

report only confusion matrices and category assignments

(Donaldson et al., 2011; Sheffield and Zeng, 2012; Yoon

et al., 2012). However, two studies that report both measured

confusion matrices and extracted feature values are

Hillenbrand et al. (1995) and Van Wieringen and Wouters

(1999). In addition, the latter also report category assign-

ments and boundary locations.

Data from Van Wieringen and Wouters were used both

in the first experiment, where the boundary location was

modified, and the second experiment, where the number of

categories was modified. Data from Hillenbrand and co-

workers were used in the second experiment only.

B. Stimuli, equipment, and recording procedure

In addition to the data taken from literature, a closed-set

vowel identification test was performed. Twelve vowel

tokens (/A/, /æ/, /E/, /E:/, /O:/, /y:/, /i/, /@/, /u/, /O/, /œ/ and /y/)

were recorded in a “pVt” context from an Afrikaans-

speaking female speaker. The tokens were selected to be rep-

resentative of the entire set of Afrikaans vowels in terms of

the distribution of their F1, F2, and duration values. Tokens

were recorded in an Acoustic Systems RE242 double-walled

sound booth using a Sennheiser ME62 microphone. The

microphone output was sampled at 44.1 kHz by an M-Audio

FastTrack Pro external sound card and stored on a computer

in .wav format.

The speaker was instructed to speak clearly and produce

each utterance at the same pitch. From 45 recorded utteran-

ces of each token, the best 15 were selected. Utterances con-

taining glottal fry, aspiration of the start consonant, where

the speaker did not speak clearly, or where other sounds

(e.g., due to movement of feet) were audible were rejected.

Sound files were normalized so that the average power of the

vowel part of the waveform was the same for all tokens.

Speech-weighted noise was generated based on the

average speech spectrum of the speaker. This was added to
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tokens to achieve SNRs from �10 to �13 dB in 1 dB incre-

ments. This SNR range was chosen, because pilot experi-

ments revealed that it corresponded to a 30%–70% success

rate for vowel identification. This range ensured that enough

confusions occurred (needed to gain information about the

utilization of acoustic features), while limiting the number of

confusions due to random guessing (i.e., not based on acous-

tic features).

Vowel stimuli were padded at the start and end of each

vowel so that each stimulus contained three intervals: A

700 ms noise-only interval followed by a noise-and-vowel

interval followed by another 700 ms noise-only interval.

This was done so that the listener could adapt to the noise

before the vowel was presented. The 700 ms interval was

chosen because pilot experiments revealed that listeners con-

centrated more easily and performed more consistently with

a 700 ms interval than with a 400 ms interval. Concentration

is important because confusions made due to a lapse in con-

centration do not characterize the utilization of acoustic fea-

tures and therefore add noise to the measured confusion

matrices.

C. Listeners and listening procedure

Twelve Afrikaans-speaking listeners between the ages

of 19 and 23 participated in the listening tests. All listeners

had normal hearing [pure tone thresholds smaller than or

equal to 20 dB hearing level (HL) at octave frequencies

ranging from 250 Hz to 8 kHz].

Listening tests were performed in the same sound booth

used for recordings. The same sound card was used to pres-

ent stimuli through a single KEF Q30 loudspeaker at 65 dB

sound pressure level (SPL). Listeners were seated facing the

loudspeaker. A user interface, developed in MATLAB, was

used to present stimuli, facilitate identification by selecting

buttons and store results.

Separate training protocols were developed for initial

training, retraining after a short break and retraining after a

long break. These training protocols were designed to ensure

consistent performance and were tested in pilot experiments.

During training, feedback was always given for tokens pre-

sented in quiet but never for tokens presented in noise. This

was done to ensure that a listener is familiar with the token

set and the task but did not use accidental features when

listening in noise.

Tests were divided into four sessions, completed on two

separate days. During each session, one set was completed at

each of the four SNRs. A set consisted of 12 repetitions of

the 12 vowels, resulting in a total of 144 presentations.

SNRs were counter-balanced between sessions. In total, each

listener spent approximately 8 h and listened to 12 presenta-

tions of each of 12 vowels at each of four SNRs for each of

four sessions, a total of 2304 presentations.

D. Extraction of acoustic features

The transmitted information of three features, namely,

the first two formant frequencies (F1 and F2) and vowel seg-

ment duration (D), was used to evaluate the two FITA tech-

niques because these three features were all available in the

data obtained from literature. For the vowels recorded in

Sec. III B, feature values were extracted as follows. The

starting and ending times of the vowel segments of each

utterance were identified manually based on a visual inspec-

tion of the waveform and auditory inspection of different

time segments. Vowel duration was extracted from these.

Formant frequencies were extracted using the PRAAT software

package (Boersma and Weenink, 2001), which uses an LPC-

based algorithm. Default algorithm parameters for female

speakers were used, including an LPC order of 10, a maxi-

mum formant frequency of 5500 Hz and reference frequen-

cies of 550 and 1650 Hz for the first two formants,

respectively.

E. Assignment of tokens to categories and FITA
calculation

The category definitions for the data collected in our lab

are summarized in Fig. 3. For the first experiment, only two

categories were used, and the boundary between the two cat-

egories was varied in 5% increments between the two most

extreme tokens for each feature (arrows on the left hand side

of Fig. 3). Using only two categories simplified the experi-

ment by restricting the number of parameters and also

allowed a greater range for varying the boundary location.

The second experiment was divided into two parts. For the

first part, the range between the two most extreme tokens for

each feature was divided into equal-sized categories, and the

number of categories was increased in unit steps from 2 to

12 (arrows on the right hand side of Fig. 3). For the second

part, the number of categories was varied, and for each

FIG. 3. Category assignments for the two experiments. The arrows on the

left hand side indicate the category assignments for the first experiment,

where the boundary location was varied. The arrows on the right indicate

the category assignments for the first part of the second experiment, where

the number of categories was varied. Due to practical limitations, only sub-

sets of the category assignments for each experiment are displayed on the

figure. Refer to the text for the complete sets.
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number of categories, boundary locations were randomly

generated.

Data from Van Wieringen and Wouters (1999) were

included in the first the experiment. Here the number of cate-

gories was fixed to that used in their study (three categories

for formants and two categories for duration). For the dura-

tion feature, the boundary location was varied in the same

manner as indicated in Fig. 3. For the formant features, one

boundary at a time was modified, while the other boundary

was fixed at the value used by Van Wieringen and Wouters.

The range over which each boundary was varied was the

center 80% of the range containing that boundary and was

bounded on either side by either a neighboring boundary line

or an extreme token (the token that had the highest or lowest

value among all tokens for the feature of interest).

Data from both Van Wieringen and Wouters (1999) and

Hillenbrand et al. (1995) were included in both parts of the

second experiment. In the first part, categories were equal-

spaced and the number of categories was varied in the same

manner as in Fig. 3. In the second part, boundary locations

were randomly generated.

The relative information transmitted was calculated for

each data set, feature, listener (where applicable), SNR

(where applicable), and grouping method. This relative

measure was selected because this measure is normalized

and therefore more suitable for comparison across different

conditions. Equations (11) and (13) were used for the crisp

and fuzzy FITA, respectively. Note that these equations are

identical except that the category membership matrix G is

calculated differently (see Sec. II B). As an example, the

category membership matrices for a selected feature and

grouping method are shown in Fig. 4.

The techniques were then tested for their sensitivity to

the two grouping parameters (boundary location and number

of categories). The crisp and fuzzy FITA outputs were plot-

ted as a function of each grouping parameter to examine the

effect of discontinuities at the crisp FITA boundaries (see

Sec. II A) and visually evaluate the sensitivity of the two

techniques to the two parameters. Linear regression analyses

were performed on the data obtained in our lab with the

transmitted information reported by the FITA as output vari-

able and the listener, SNR, and grouping parameter (either

boundary location or number of categories) as predictor

variables. The regression analyses were used to calculate the

portions of the variance in the FITA outputs accounted for

by the grouping parameter, the SNR, and the listener, respec-

tively. All predictors were treated as categorical for this

purpose. The regression analyses were repeated for each

feature and each FITA technique separately.

Finally, a Monte Carlo simulation was performed to

measure the variance of each technique when using random

boundary locations. The simulation was repeated for each

FITA technique, feature, SNR, listener, and number of

categories separately. In each case, the required number of

boundary locations was generated from a uniform distribu-

tion ranging between the two extreme tokens in the feature

value of interest. Such a set of boundary locations was

accepted if no categories were empty or narrower than

one-fifth of the average category width (10% of the feature

range for two categories or 2.5% for eight categories). If a

set of boundary locations was rejected, all boundaries in the

set were regenerated from the same distribution. The process

was repeated until 1000 FITAs were performed for each

combination of FITA technique, feature, SNR, listener, and

number of categories after which the mean and standard

deviation of the outputs were computed for each combina-

tion separately. This process was also repeated with the data

from Van Wieringen and Wouters (1999) and Hillenbrand

et al. (1995), where the SNR and listener were not varied.

IV. EXPERIMENT: RESULTS

A. The effect of boundary location

The relative information transmitted as reported by the

two FITA techniques is shown as a function of the boundary

location in Fig. 5.

Discontinuities are evident in the crisp FITA outputs in

Fig. 5, as predicted by the theory presented in Sec. II A. The

fuzzy FITA has effectively removed these discontinuities as

discussed in Sec. II B. In addition to the discontinuities, the

crisp FITA outputs appear more sensitive to the boundary

location than the fuzzy FITA outputs as judged by the

extents of the y values of the traces in Fig. 5.

The crisp estimation of the information transmitted by

the duration feature seems to fail close to the left extreme for

the data recorded in our lab and close to the right extreme for

the data from Van Wieringen and Wouters. This can happen

when either short or long vowels are clustered and the bound-

ary line enters the cluster, causing the FITA to interpret

confusions between tokens within the cluster as a loss of in-

formation. This is not a problem because researchers would

FIG. 4. Category membership matrices for the F1 feature for category

assignments that divide the token space into three equal-sized categories.

The matrices were calculated as discussed in Sec. II A for the crisp FITA

and as discussed in Sec. II B for the fuzzy FITA.
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not typically choose such extreme values for the duration fea-

ture. It is notable, however, that the fuzzy FITA is shielded

from this effect.

The crisp estimates of the information transmitted by

the F1 feature for the data recorded in our lab have a large

discontinuity near the middle of the range. A crisp FITA was

performed with manually selected boundaries to determine

which side of this discontinuity is erroneous. Boundaries

were selected to reflect the typical distribution of Afrikaans

vowels (Taylor and Uys, 1988; Van der Merwe et al., 1993;

Botha, 1996) (see Fig. 1). Results agreed with the estimates

to the right of the discontinuity, suggesting an error to the

left of the discontinuity. Again the fuzzy FITA is shielded

from this effect, agreeing with the estimates obtained with

the manually selected boundaries.

For the data from the study by Van Wieringen and

Wouters, the fuzzy FITA consistently reports higher values

for the relative information transmitted than the crisp FITA.

Because we do not have access to “true” values, it is not pos-

sible to determine which of the techniques are correct here.

It is of interest, however, that this difference is consistent

across features and boundary locations and therefore does

not influence relative comparisons between features. It

should also be noted that the fuzzy FITA traces are smoother

and have smaller extents of their y values than the crisp

FITA traces.

Both FITA techniques seem to report the effect of SNR

consistently at any particular choice of boundary location.

For the purpose of comparison between features, the ratios

between the relative information transmitted as reported for

different features are more consistent for the fuzzy FITA

than for the crisp FITA. The fuzzy FITA traces resemble the

ideal trace (a constant function with a zero slope) more

closely than their crisp counterparts.

The portions of the variance in the FITA outputs

explained by the listener, SNR, and boundary location as

obtained from the linear regression analysis (see Sec. III E)

are shown in Table I. Boundary locations below 0.2 and

above 0.8 were discarded because even when choosing care-

lessly, researchers would typically not choose a boundary

location outside this range.

Table I shows that this linear regression model with

these three categorical predictors is a good model of the rela-

tive information transmitted as reported by the two FITA

techniques for the three features considered. In all cases,

approximately 90% of the total variance was accounted for

by the combination of the three predictors. The SNR

accounts for the largest portion of the variance; this is rea-

sonable as less information can be transmitted at lower

SNRs. A large portion of the variance is accounted for by

the listener; this indicates that the listeners chosen for this

experiment differ in their ability to use the information trans-

mitted by the three features considered. The boundary loca-

tion accounts for less than 1% of the variance in the FITA

outputs when a fuzzy FITA is used. If this was true in

general, a researcher would not need to invest effort in

selecting boundary locations. For the crisp FITA, however,

the boundary location accounts for approximately 10% of

the variance in the FITA outputs for two features. Because

this parameter plays a larger role here, more effort is

required to choose it correctly. When using a FITA to com-

pare the information transmitted by different features, a

fuzzy FITA may also be preferred because the risk of

FIG. 5. (Color online) Relative information transmitted as reported by the

crisp (solid lines) and fuzzy (dotted lines) FITA techniques as a function of

boundary location. Panels (a) to (d) show FITAs performed on data recorded

in our lab at four SNRs, decreasing linearly from �10 dB in (a) to �13 dB

in (d). Here two categories were used and the boundary location variable

was normalized between the extreme values of each feature. Panels (e) and

(f) show FITAs performed on the data recorded by van Wieringen and

Wouters (1999). Here three categories were used for formants and two cate-

gories for duration as was done in their study. The first and second bounda-

ries were varied in (e) and (f), respectively. The duration feature is absent

from (f) because it has only one boundary. Each boundary location variable

was normalized between either the extreme feature value or the neighboring

boundary on either side. Where data from multiple listeners were available,

these data were averaged across listeners in the final step before drawing to

the graph.

TABLE I. Variance accounted for by the listener, SNR and boundary loca-

tion in a linear regression model of the relative information transmitted as

estimated by two FITA techniques for three features. The linear regression

model was fit to the data presented in the Figs. 5(a)–5(d).

Crisp FITA Fuzzy FITA

Factor F1 F2 D F1 F2 D

Listener 23.38 13.75 33.04 24.84 19.62 35.19

SNR 57.95 63.04 59.70 68.52 69.71 58.66

Boundary location 9.54 11.06 1.86 0.13 0.72 0.56

Total 90.67 87.85 94.61 93.49 90.04 94.41
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introducing bias due to the effect of the boundary location is

smaller for a fuzzy FITA.

B. The effect of the number of categories

The relative information transmitted as reported by the

two FITA techniques is shown as a function of the number

of categories in Fig. 6.

The difference between the two FITA techniques is less

pronounced for this parameter than for the boundary location

parameter. In most cases, the traces resemble the shape of a

funnel with the open end on the left, so that differences in

the transmitted information between features are emphasized

(possibly even exaggerated) when using a small number of

categories and masked when using a large number of catego-

ries. This behavior is probably inherent to the mechanism of

isolating a feature by grouping similar tokens according to

that feature. When the number of categories is small, the cat-

egories themselves are large, and tokens that are large dis-

tances apart could end up in the same category. When this

happens, some of the information transmitted by the feature

under evaluation is not reflected in the FITA outputs. When

the number of categories is large, some tokens that are not

actually distinguished by the feature under evaluation end up

in different categories and some information transmitted by

other features is included in the FITA outputs.

This funnel shape is especially prominent in the F2

traces for the data measured in our lab and the fuzzy F1 and

D traces for the data measured by Van Wieringen and

Wouters (1999). The effect suggests that researchers should

refrain from using different numbers of categories for differ-

ent features when comparing features with one another.

Small oscillations were observed in many of the crisp

FITA traces. This may be due to the sensitivity of the crisp

FITA to the boundary location parameter and the fact that

some boundaries exhibit oscillatory behavior if equal-sized

categories are used and the number of categories is varied.

For example, a boundary exists in the center of the token

space for every second number of categories and a boundary

exists at a normalized location of 0.33 for every third num-

ber of categories.

The data from Hillenbrand et al. (1995) do not provide

much information about the transmission of individual fea-

tures; this is understandable, because this was not part of the

aim of their study. The overall percentage of correct

responses in their study was 95.4%, which suggests that all

features were transmitted effectively. When investigating the

transmission of individual features, it is important to control

the difficulty of the listening task.

The portions of the variance in the FITA outputs

explained by the listener, SNR, and number of categories are

shown in Table II. The number of categories was varied

from two to eight for this analysis. Considering more catego-

ries would not make sense because of the inclusion of

unwanted features in the FITA estimates as discussed in the

preceding text (see Fig. 6).

Again this linear regression model is a good model of

the relative information transmitted as reported by the

FITAs, accounting for more than 90% of the variance in the

FITA outputs for all combinations of acoustic feature and

FITA technique. As before, the SNR accounts for the largest

portion of the variance and the listener for another large por-

tion. For both FITA techniques, the variance accounted for

by the number of categories is small for the F1 and duration

features but larger for the F2 feature. This result reinforces

the interpretation that the number of categories has an actual

effect on the output for both FITA techniques. Note that the

funnel shape in Fig. 6 is most prominent for the F2 feature

for the data measured in our lab. If this analysis was repeated

for the data measured by Van Wieringen and Wouters

FIG. 6. (Color online) Relative information transmitted as reported by the

crisp (solid lines) and fuzzy (dotted lines) FITA techniques as a function of

the number of categories. Panels (a) to (d) show FITAs performed on data

recorded in our lab at four SNRs, decreasing linearly from �10 dB in (a) to

�13 dB in (d). Panels (e) and (f) show FITAs performed on the data

recorded by Van Wieringen and Wouters (1999) and Hillenbrand et al.
(1995), respectively. Where data from multiple listeners were available,

these data were averaged across listeners in the final step before drawing to

the graph.

TABLE II. Variance accounted for by the listener, SNR, and number of cat-

egories in a linear regression model of the information transmitted as esti-

mated by two FITA techniques for three features. The linear regression

model was fit to the data presented in Figs. 6(a)–6(d).

Crisp FITA Fuzzy FITA

Factor F1 F2 D F1 F2 D

Listener 27.56 17.55 29.19 28.01 15.74 32.59

SNR 65.47 63.55 61.91 65.63 68.62 62.78

Number of categories 1.48 12.98 4.39 0.52 7.96 0.30

Total 94.52 94.07 95.49 94.16 92.32 95.67
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(1999), more variance might have been accounted for by the

number of categories for the F1 feature.

The means and standard deviations of the relative infor-

mation transmitted as estimated in the Monte Carlo simula-

tion are shown in Figs. 7 and 8, respectively. As in Fig. 6,

the traces in Fig. 7 resemble the shape of a funnel, reinforc-

ing the interpretation that the effect of the number of catego-

ries on the FITA output is inherent in the mechanism of

feature isolation by means of token grouping.

An important observation from Fig. 8 is that the stand-

ard deviation across boundary locations is smaller for the

fuzzy FITA than for the crisp FITA in almost all cases, high-

lighting the effectiveness of the fuzzy grouping strategy in

reducing the sensitivity of the FITA technique to manually

selected parameters.

V. DISCUSSION

A. General observations and conclusions

The fuzzy FITA technique was designed to reduce the

effect of grouping parameters on the transmitted information

reported by a FITA. It appears to have succeeded for the first

grouping parameter, namely, the boundary location.

Although the linear regression model in Sec. IV A explained

almost all of the variance in the data for all of the features

considered, less than 1% of this variance was explained by

the boundary location when using a fuzzy FITA as opposed

to approximately 10% for two features when using a crisp

FITA. When random boundary locations were selected in

the Monte Carlo simulation, the standard deviation in

reported relative information transmitted was less than 0.04

for all combinations of variables and close to 0.02 for most

combinations when a fuzzy FITA with four of five categories

were used. This result confirms the ability of the fuzzy FITA

to reduce the effect of the boundary location across a range

of listener performance levels.

The effect of the second grouping parameter, namely,

the number of categories, appears inherent to the mechanism

used to isolate individual features, namely, by grouping

tokens according to the feature of interest. When using a

small number of categories, not all information transmitted

by a feature is characterized, and differences between fea-

tures are often exaggerated. When using a large number of

categories, information transmitted by other features enters

the equation, and differences between features are attenu-

ated. No technique based on this mechanism of feature isola-

tion is exempt from this effect.

FIG. 7. (Color online) Mean relative information transmitted as reported by

the crisp (solid lines) and fuzzy (dotted lines) FITA techniques for 1000 ran-

domly selected sets of boundary locations. Panels (a) to (d) show FITAs per-

formed on data recorded in our lab at four SNRs, decreasing linearly from

�10 dB in (a) to �13 dB in (d). Panels (e) and (f) show FITAs performed on

the data recorded by Van Wieringen and Wouters (1999) and Hillenbrand

et al. (1995), respectively. Where data from multiple listeners were avail-

able, these data were averaged across listeners in the final step before draw-

ing to the graph.

FIG. 8. (Color online) Standard deviation (r) of the relative information

transmitted as reported by the crisp (solid lines) and fuzzy (dotted lines)

FITA techniques for 1000 randomly selected sets of boundary locations.

Panels (a) to (d) show FITAs performed on data recorded in our lab at four

SNRs, decreasing linearly from �10 dB in (a) to �13 dB in (d). Panels (e)

and (f) show FITAs performed on the data recorded by Van Wieringen and

Wouters (1999) and Hillenbrand et al. (1995), respectively. Where data

from multiple listeners were available, these data were averaged across lis-

teners in the final step before drawing to the graph.
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Because no independent reference is available, deter-

mining which number of categories represents the most

accurate estimation of transmitted information is not

straightforward. For a fuzzy FITA, the standard deviation is

close to its minimum when four or five categories are used

(see Fig. 8). The effect of boundary location is therefore

small for four or five categories, and in the opinion of the

authors, four categories would normally be a good choice for

12 tokens. A number of categories slightly larger than the

square root of the number of tokens would be a good initial

choice in the opinion of the authors, but this warrants further

investigation for cases where the number of tokens differs

substantially from the 12 used in the present study.

B. Applicability of the fuzzy FITA

The fuzzy FITA is applicable to a broad range of

feature-based classification problems, including classifica-

tion tasks performed by humans and computational classifi-

cation algorithms. For human classifiers, the fuzzy FITA

may be used as an exploratory tool to determine the degree

to which different features are being used as elucidated by

the experiments in the present study. For classification algo-

rithms, the fuzzy FITA may be used as a confirmatory tool

to verify that the intended features have been used effec-

tively. It may be used to analyze the effect of noise on differ-

ent features for both types of classifiers. The fuzzy FITA

may also be used to identify the features used by humans as

a starting point toward developing an automatic classifica-

tion algorithm.

The applicability of the fuzzy FITA to a particular prob-

lem depends on the type of features used, the number of

classes and the typical performance of the classifier.

Features should be scalar values defined over a continuous

interval. Examples of non-scalar features include formant

frequency contours (Neel, 2004) and spectral shape tem-

plates (Hillenbrand and Houde, 2003). These may still be

used in a fuzzy FITA if they are sampled at a few discrete

points. For example, a formant frequency contour may be

represented by the frequencies at the start, middle, and end

of the time segment (Neel, 2004). These samples are then

interpreted as three separate scalar features when used in a

fuzzy FITA. Alternatively, scalar features may be defined to

describe non-scalar features in terms of their mean, variance,

maximum slope, or other descriptive parameter (Chen and

Maher, 2006). The requirement that features should be

defined over a continuous interval excludes categorical fea-

tures, which are handled effectively by the existing crisp

FITA. Umapathy and co-workers (2007) list mel-frequency

cepstral coefficients, timbral texture, band periodicity, linear

prediction coefficient derived cepstral coefficients, zero-

crossing rate, and MPEG-7 descriptors as typical features

used in audio classification, all of which satisfy the two

requirements in the preceding text.

For the fuzzy FITA to apply to a classification problem,

the number of classes should be finite, but not too small. If

the number of classes is infinite, a confusion matrix cannot

be constructed. However, if the number is smaller than

around six, it is unlikely that the confusion matrix will

contain meaningful information about the use of specific fea-

tures. Similarly, the performance of the classifier must be

above chance but not too good. It is impossible to determine

whether any features were used if performance is below

chance. If performance is almost perfect, however, the fuzzy

FITA does not have access to the information required to

analyze feature transmission, which resides in the observed

confusions. For classifiers that perform too well in quiet

conditions, the fuzzy FITA becomes useful when the classifi-

cation task is performed in noise.

Examples of acoustic classification problems apart from

vowel recognition that satisfy the requirements for the

applicability of the fuzzy FITA include automatic emotion

classification (Ooi et al., 2014), animal vocalization classifi-

cation (Clemins et al., 2005; Chen and Maher, 2006; Binder

and Hines, 2014), aircraft classification (S�anchez Fern�andez

et al., 2013), and musical genre classification (Tzanetakis

and Cook, 2002). Where some of these studies do not exactly

satisfy all the applicability requirements, they can be

adjusted to fit the requirements by adding background noise

or increasing the number of classes.

One shortcoming of the fuzzy FITA is that it does not

consider how consistently a feature is produced. For exam-

ple, if the same speaker repeats the same token and features

are extracted from every utterance, features that have a low

standard deviation presumably contain more information

than features that have a high standard deviation. This factor

is not accounted for by either the crisp or the fuzzy FITA

because neither of these techniques accepts repeated utteran-

ces as inputs. The problem of accounting for the repeatabil-

ity of features therefore remains to be solved.

For problems that satisfy the preceding applicability

requirements and that are not severely affected by the pre-

ceding shortcoming, the fuzzy FITA is appropriate for use

with automatically selected boundaries. Even if a flawless

way of defining boundaries was available, the fuzzy FITA is

still preferred over the crisp FITA for continuous features

because it constitutes a more accurate representation of

distances between tokens (see Sec. II B). In addition, because

the fuzzy FITA is less sensitive to human parameters, its use

promotes comparability between studies by different

researchers, and it reduces the risk of bias or noise added

due to human error.

C. Recommendations

Several recommendations can be made based on results

from the present study. The first is to use a fuzzy FITA when

working with continuous features and a crisp FITA when

working with categorical features, because of the advantages

outlined in the preceding text and because this would corre-

spond to the context in which both techniques were

designed. Second, the same number of categories should be

used for each feature when comparing different features

because the number of categories has a measureable effect

on the output. The third recommendation is to use a number

of categories slightly larger than the square root of the num-

ber of tokens when working with continuous features (unless

a good reason exists to do otherwise, such as well-defined
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clusters in the token space). For categorical features, the

number of categories should be guided by the nature of the

categories. A final recommendation is to use automatically

selected, equal-spaced categories because this will promote

comparability between studies if similar speech material is

used. Furthermore automating the grouping process will ena-

ble researchers to process larger datasets, for example, more

listeners, more SNRs, and a wider variety of features.

1The term “grouping parameter” is used in this document as a collective

noun describing all manually adjustable parameters that affect the assign-

ment of tokens to categories, including the two that are investigated in the

present study, namely, the number of categories and the boundary

locations.
2This new technique, hereinafter referred to as the fuzzy FITA, was imple-

mented using MATLAB, a product of The Mathworks (www.mathworks.com).

The implementation is available online on the website of the research group

(www.up.ac.za/bioengineering).
3The adjective “crisp” in the term “crisp FITA” is borrowed from fuzzy set

theory, where ordinary sets are referred to as “crisp sets” to distinguish

them from fuzzy sets.
4The term “categories” is retained for uniformity. In fuzzy set theory, this

entity is known as a “fuzzy set.”
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