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Abstract

Mathematical modeling of transport phenomena in food processes is vital to understand the
process dynamics. In this work, we study the process of double sided cooking of meat by de-
veloping a mathematical model for the simultaneous heat andmass transfer. The constitutive
equations for the heat and mass transport are based on Fourier conduction, and the Flory-
Huggin’s theory respectively, formulated for a two-phase transport inside a porous medium.
We investigate a reduced one-dimensional case to verify themodel, by applying appropriate
boundary conditions. The results of the simulation agree well with experimental findings re-
ported in literature. Finally, we comment upon the sensitivity of the model to the porosity of
meat.
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1 Introduction

Since antiquity, thermal processing has remained the technology of choice to improve the eating
quality and safety of food products, and to extend their shelf-life. Although within recent years
research in food science has largely focused on developmentof nonthermal technologies [1], ther-
mal processing still remains the most widely used method in the food industries [2]. Of special
importance in thermal processing of foods are the meat and meat products. This is because these
almost invariably undergo thermal processing at some stagebefore consumption (with some ex-
ceptions). In addition, meat is eaten on a daily basis in manycountries. The composition and
high moisture content of meat creates an ideal environment for the growth and proliferation of
pathogenic and spoilage microorganisms [3]. The major objective of thermal processing and cook-
ing is to guarantee food safety by killing bacteria (for example Escherichia coli O157:H7 and
Listeria monocytogenes) and inactivating their enzymes or other metabolites in foods. The U.S.
Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) comparative risk as-
sessment of nonintact and intact beef steaks indicated thatoven broiling to an internal temperature
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of more than 60◦C would result in safe blade-tenderized beef steaks [4, 5]. A common household
method for cooking meat (example beef, hamburger or patties) involves simultaneous application
of heat from both sides (double sided cooking).

The purpose of a mathematical model of the heat and mass transfer in a food production process
is to describe the physical processes as accurately as possible for the given food production process
[6]. In order to be able to optimise the cooking of meat, in general, and a beef steak in particular
(which is at focus in this study), it is important to develop awell-posed representative mathemat-
ical model. In recent past, the importance of mathematical modelling in cooking/roasting process
of meat and meat products has been well-emphasised by many researchers [7, 8, 9, 10, 11]. The
mathematical models encountered in food science literature often are either empirical or mecha-
nistic (physics-based) [12]. Empirical models are generally obtained from simple mathematical
correlation of experimental data, and therefore are data driven. On the other hand, the elemen-
tary processes of heat and mass transfer are considered in mechanistic models. The advantage
of physics-based mechanistic models is that these provide insight into the physical processes in a
manner that is more precise [13].

Many foods, in general, are described as porous matrices by virtue of their structural/cellular
arrangement [14, 15]. Meat is composed of bundles of muscle fibers, which are largely protein.
The intercellular space within muscle tissues is primarilyfilled with blood plasma which renders
a pressure in the pores when driven by external forces. The plasma can be considered as a new-
tonian liquid. On the other hand, within the intracellular region the water is bound to the muscle
proteins. The water distribution and porous structure of meat can be appreciated from the details
provided by van der Sman [16], Dhall et al. [11] and Sun and Hu [17]. Based on the above dis-
cussion, it does not come as a surprise that the moisture movement within meat could be dealt
with a continuum approach despite the porous structure. Flow in a porous medium is classically
described by Darcy’s equation for the liquid velocity; nevertheless, appropriate problem-specific
couplings and amendments to the equation are also common (for example [18]). The flow under
this scenario is driven by a pressure gradient. Extending the porous description of muscle, and
drawing analogies from soft condensed matter physics, van der Sman [8, 19] deduced a model for
heat and mass transport during cooking of meat. This approach considers that meat is composed
of a polymer matrix made of protein and that the Flory-Rehnertheory holds true. Under these as-
sumptions, the moisture driving entity when cooking would be the swelling pressure which can be
substituted into Darcy’s equation. This approach providesfar more accurate predictions than the
lumped Fickian diffusion considered hitherto [20] and also agrees well with the capillary pressure
driven flow description for moisture transport in meat [21]. Inspired by van der Sman’s pioneering
works, in conjunction with experiments conducted by Shen etal. [22], we focus upon the devel-
opment of a two-phase, soft condensed matter physics based mechanistic model to simulate the
transport phenomena within a beef steak when simultaneously heated from both sides. The pre-
sented work differs from [8, 19] in several ways. While van der Sman studied the convective oven
cooking of meat using the Flory-Rehner theory, the present work aims at numerically simulating
the double sided conductive pan cooking of beef using the simplified Flory-Huggins theory. In ad-
dition, we formulate the conservation equations for a two phase mixture (as opposed to the Darcy’s
porous medium transport alone in [8, 19]) of a polymer and a solvent, both of which are dealt with
a continuum approach. Our approach in dealing the protein and solvent phases separately via a
two phase model allowed assessing the effect of porosity of meat on cooking time, which has not
been studied hitherto. This dynamics of porous structure isof particular importance when heating
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smaller pieces of meat, as identified earlier [8]. Furthermore, the model now has sufficient physics
to capture the details of the underlying processes, giving better results for thin steaks, even with a
one dimensional geometry. We wish to point that the model derived herein has some similarities
to, and is based on the polymer-solvent models derived elsewhere in the literature in the context of
biofilms; see for example, Winstanley et al. [23] and Cogan and Keener [24].

The structure of the present paper is the following. In the next section, we derive the model
based on conservation laws, introduce the polymer-solventassumption based on Flory-Huggins
theory and define the boundary conditions. We then non-dimensionalise, and proceed further by
reducing the model to a simpler form. We then study the reduced model in one dimension, and
compare with experimental results reported by Shen et al. [22]. Finally, we evaluate the sensitivity
of the model to model parameters and discuss the consequences.

2 Model derivation

In Figure1, a pictorial presentation of the problem in consideration and the geometry is provided
for the case where meat is subjected to double sided heating.The lean beef sample (<4% fat) is
heated from top and bottom using hot plates maintained at a constant temperature. It is assumed
that the surface of meat is completely in contact with the hotplate. Under this scenario, the heat
flows from either end towards the centre (0 < z < L). As mentioned earlier, the pores are ideally
filled with plasma and ions and other soluble proteins. For the present study, we assume that the
pores are saturated with water (incompressible fluid) and the solid matrix does not undergo global
deformation. We now defineρs to be the density of the protein matrix, whose volume fraction is
φ. Satisfying the criteria of saturation, we have (1 − φ), the volume fraction of the liquid, whose
density, we define asρℓ. Effectively, the model assumes that the pores are completely filled with
the liquid phase and therefore,(1− φ) is also the medium porosity.

In the following sections, we use a multidimensional approach to outline the mathematical
model under investigation.

Figure 1: Geometry of the problem for double sided heating
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2.1 Conservation of Mass

In the absence of mass exchange, the local law of conservation of mass of the two components
governed by the continuity equation reduces to

(φρs)t +∇.[φρsv] = 0, (2.1)

([1− φ]ρℓ)t +∇.[(1− φ)ρℓw] = 0, (2.2)

wherew is the average fluid velocity, andv is an analogous average solid velocity, cf. McGuin-
ness et al. [25]. This essentially accounts for the rate of displacement ofthe material points of the
polymer phase with respect to the corresponding initial coordinates in a Lagrangian frame of refer-
ence. The equations also signify that there are no source andsink terms (except at the boundaries);
i.e. there is no internal heat generation or chemical reactions within the meat matrix. Assuming
incompressibility in equations (2.1) and (2.2) we obtain the local mass balance of the system-

φt +∇.[φv] = 0, (2.3)

−φt +∇.[(1− φ)w] = 0. (2.4)

2.2 Conservation of Momentum

Considering the assumptions stated earlier, the momentum balance for the system based on Darcy’s
flow in porous medium reduces to, cf. [23]

0 = −f0φ(1− φ)(v − w)−∇Ψ− φ∇p, (2.5)

0 = f0φ(1− φ)(v − w)− (1− φ)∇p, (2.6)

where,f0 (Pa s m−2) is the microscale interfacial friction term,p is the fluid pressure andΨ is the
osmotic pressure, gradients of which create the force on thepolymer (meat proteins). This term has
also been referred to as the ‘inter-phase pressure’ in two-phase fluid models [26]. The equations
take into account the fact that the protein matrix acts like asponge, which loses a significant amount
of liquid water when receiving some stimuli (e.g. stress-strain due to protein denaturation) [10,
27]. Moving further, summation of equation (2.5) and equation (2.6) yields the local momentum
balance of the system

∇Ψ = −∇p. (2.7)

Based on Flory Rehner theory, van der Sman [16] has shown that the swelling pressure (so termed
after the swelling of polymers) can be replaced into the Darcy’s equation as the driving pressure.
In the context of cooking of meat, this pressure gradient arises from the water potential difference
due to the deformation of meat proteins, as they undergo denaturation. Following the same school
of thought, we introduce the osmotic pressureΨ, which is a direct outcome of the Flory-Huggins
theory, expressed as

Ψ = −E

[

ln(1− φ) +

(

1−
1

n

)

φ+ χ(T, φ)φ2

]

, (2.8)

whereE = RT0/V > 0 is the lattice energy density,χ(T, φ) is the temperature and moisture
dependent Flory-Huggins interaction parameter,n is the ratio of molar volumes of solute (pro-
tein) and solvent (water),R [J mol−1 K−1] is the gas constant,T0 [K] is the temperature andV
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[m3 mol−1] is the molar volume of water. The underpinning principles of the theory are based
on balancing the chemical potentials of the system. Proceeding further, ifn is sufficiently large
(n → ∞), which is a valid assumption for the case of lean beef (rich in protein- a biopolymer),
equation (2.8) can be simplified to

Ψ = −E
[

ln(1− φ) + φ+ χ(T, φ)φ2
]

. (2.9)

Following [16], we takeχ(T, φ) in the form

χ(T, φ) = χp(T )− (χp(T )− χ0)(1− φ)2, (2.10)

whereχ0 = 0.5 is the interaction parameter for fully hydrated polymer (meaning that the poly-
mer/proteins are distributed in a way such that they are in maximum contact with water) andχp(T )
is the temperature dependent interaction parameter.

The physical significance for the temperature dependency arises from the fact that proteins
undergo denaturation to various degrees depending on the temperature. The termχp(T ) is given
by a Logistic type of sigmoidal function

χp(T ) = χpn −
χpd − χpn

1 + A exp(−γ[T − Te])
, (2.11)

where,χpn is the interaction parameter of dry,native meat protein,χpd is the interaction parameter
for the denatured protein,γ (K−1), Te(K), andA are parameters of the equation obtained by
nonlinear least squares fitting to the data for WHC versus temperature (K). In Figure2 we show
the functional relationships (2.10) and (2.11) for the temperature range under investigation.
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Figure 2: The relation between the variables in equation (2.10) – (a), and equation (2.11) – (b), for
the parameter values in Table1.

2.3 Conservation of Energy

Heat is transported within the meat primarily by conductionwith the latent heat related to chemical
changes within the meat being negligible. Accordingly, theenergy balance equation for the system
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Symbol Definition Value Units Source
1− φ0 Initial porosity 0.0128 [28]
To Initial meat temperature 277.15 K
kℓ Liquid thermal conductivity 0.57 W/mK [29]
ks Matrix thermal conductivity 0.18 W/mK [29]
L Meat thickness 0.025 m [22]
cs Matrix heat capacity 2008 J/kgK [29]
cℓ Heat capacity of water 4178 J/kgK [29]
ρs Matrix density 1330 kg/m3 [29]
ρℓ Density of water 997.2 kg/m3 [29]
E Lattice energy density 1.25× 108 N/m2

f0 Interfacial friction term 6.26× 1015 Pa s m−2

∆T + T0 Temperature of hot plate 449 K [22]
χpn Sigmoid curve Parameter 0.74 [8]

χpd − χpn Sigmoid curve Parameter 0.345 [8]
A Sigmoid curve Parameter 30 [8]
γ Sigmoid curve Parameter 0.25 [8]
Te Centre of sigmoidal fit 325 K [8]

Table 1: Typical values of the parameters used in the model.

is given by a nonlinear form of the Fourier’s second law in theporous medium

(cT )t +∇.[ρℓcℓw(1− φ)T ] = ∇.(k∇T ), (2.12)

wherec andk are the weighted specific heat capacity and thermal conductivity respectively (c.f.
[30, p. 233]) given by,

c = φρscs + (1− φ)ρℓcℓ, (2.13)

k = φks + (1− φ)kℓ. (2.14)

The subscriptsℓ ands denote the liquid (solvent) and the solid (polymer) proteinmatrix respec-
tively. It is well-recognised that the thermal conductivity and heat capacity of meat change with
temperature. This is taken into account via equations (2.13) and (2.14) asc andkm are dependent
onφ, which itself is a function of temperature and space. Using equations (2.1), (2.2) and (2.13),
the energy equation (2.12) may be reduced to

cTt + ρscsTφt + ρℓcℓ(1− φ)w.∇T = ∇.(k∇T ). (2.15)

2.4 Boundary and initial conditions

To close the system, we have to specify the boundary and initial conditions. In the case of double
sided heating, a certain temperature is kept constant during processing. Initially, the meat is as-
sumed to have porosity1 − φ0 at a temperatureT = T0. At the boundary in contact with the hot
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plates (atz = 0 andz = L) we have

T = T0 +∆T, (2.16)

w = 0, (2.17)
∂φ

∂n
=

∂Ψ

∂n
= 0, (2.18)

where∆T is the prescribed temperature drop.

2.5 Parameter estimation

The values of parameters used in this work are summarised in Table1. As highlighted in [14, 31],
many of the parameter values required for mathematical modelling of food processes are nonex-
istent in the food science literature. Therefore, for the present model the value of the interfacial

friction term, f0 is estimated fromf0 ∼
µ(1− φ0)

Kφ0

, cf. [23], whereµ is the viscosity of water

andK is the permeability. Withµ ∼ 998 [Pa s] andK ∼ 2.047 × 10−15 [m2] [11, 14], we have
f0 ∼ 6.26 × 1015 [Pa s m−2]. The value of the lattice energy density depends on the temperature
and ranges between1.25×108 to 1.58×108 [N/m2] for 273.15 K and 343.15 K respectively. Here,
for simplification, we assume it is constant and estimate atT0 = 273.15 K.

3 Non-dimensionalisation

We choose the following explicit scales for non-dimensionalisation by suitable balance of equa-
tions. Specifically, we balance

t ∼ t0 =
cℓρℓd

2

kℓ
=

d2

κℓ
, Ψ, p ∼ p0 = f0κℓ, v,w ∼ v0 =

κℓ

d
, x ∼ d, T − To ∼ ∆T,

whereκℓ = kℓ/(cℓρℓ) is the thermal diffusivity of the liquid. We now have the following scaled
equations

φt +∇.[φv] = 0, (3.1)

−φt +∇.[(1− φ)w] = 0, (3.2)

0 = −φ(1− φ)(v − w)−∇Ψ− φ∇p, (3.3)

0 = φ(1− φ)(v − w)− (1− φ)∇p, (3.4)

cTt + (α + νT )φt = −(1 − φ)w.∇+∇.(k∇T ), (3.5)

Ψ = −β
[

ln(1− φ) + φ+ χ(T, φ)φ2
]

, (3.6)

where
c = 1− φ(1− ν), k = 1− φ(1− ω),

and
χ(T, φ) = χp(T )− (χp(T )− χ0)(1− φ)2, χp(T ) = χpn −

χpd − χpn

1 + θ exp(−ΓT )
,
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with θ = A exp(−γ[T0 − Te]) = 4.7 × 106, andΓ = γ∆T = 44.0. The nondimensional form of
the equations accommodates various products as well as cooking parameters. The dimensionless
parameters are defined as follows

ν =
ρscs
ρℓcℓ

, ω =
ks
kℓ
, β =

E

f0κℓ
, α =

νTo

∆T
,

and their typical values are given in Table2. In these equationsν is the effective volumetric
heat capacity,ω is the effective conductivity andβ measures the ability of the moisture to flow
through the matrix. The advantage of the proposed dimensional analysis is that the two estimated
parameters are now defined by a single parameterβ whose significance will be investigated further
under the numerical section.

Parameter Value
ν 0.8218
ω 0.3158
β 0.1140
α 1.295

Table 2: Typical values of the dimensionless parameters.

Equations (3.1) and (3.3) can be combined to give

∇.[φ(v − w)] +∇.w = 0. (3.7)

On the other hand, substituting (2.7) into (3.6) we have

φ(v − w) = −∇Ψ,

or

v = w −
1

φ
∇Ψ. (3.8)

Combining (3.7) and (3.8) we have

∇. [w −∇Ψ] = 0. (3.9)

We now have a system of four equations in four unknowns, namely φ, T, w, Ψ, i.e.,

φt = ∇.[(1− φ)w],

cTt + (α + νT )φt = −(1− φ)w.∇T +∇.(k∇T ),

0 = ∇. [w −∇Ψ] ,

Ψ = −β
[

ln(1− φ) + φ+ χ(T, φ)φ2
]

.

We highlight that all the parameters, exceptβ, areO(1). The model will be solved numerically.
It is worth mentioning that in the limitβ = 0, the model reduces to a heat conduction problem.

This is becauseβ relates the moisture transport to that of the heat transport. While such models do
exist in the literature (see for example [7, 9]), they have limitations in that they completely ignore
the transport of moisture.
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3.1 Reduced Model

Aligning with our previously stated objective of development of a mechanistic model based on
Flory-Huggins theory, we now focus upon reducing the model to a one-dimensional case. For the
sake of simplicity, we assume the meat block to extend to infinite length, such that any boundary
effects are ruled out. For a one dimensional model taken along directionz, we summarise the
equations as follows

φt = [(1− φ)w]z,

cTt + (α + νT )φt = −(1− φ)wTz + (kTz)z,

w = Ψz,

Ψ = −β
[

ln(1− φ) + φ+ χ(T, φ)φ2
]

.

Or simply

φt = [(1− φ)Ψz]z, (3.10)

cTt + (α + νT )φt = −(1− φ)ΨzTz + (kTz)z, (3.11)

where
c = 1− φ(1− ν), k = 1− φ(1− ω),

andΨ = Ψ(T, φ). This one dimensional reduction is based the assumption that there is no normal
flow at the heated surface (z = 0), and∂Ψ/∂n = w = 0. We see that the volume fraction of
the protein satisfies a nonlinear diffusion equation and from a mathematical point of view, one
can check the well-posedness of this equation. As originally proposed by Flory [32, 33], we may
assume thatχ is independent of the composition (φ) and temperature (T ) so that

φt = (Λφz)z,

cTt + (α + νT )φt = −ΛφzTz + (kTz)z.

whereΛ = (1− φ)
dΨ

dφ
, which, under this assumption, can be simplified to

Λ = 2βφ
[(

1

2
− χ

)

+ χφ
]

.

Hence we require thatφ >
χ−

1

2

χ
with χ > 1

2
. At this point a comment on the Flory’s interaction

parameter,χ is appropriate. The critical value ofχ for miscibility of a polymer in a solvent is
approximately 0.5. For values ofχ less than 0.5 the polymer will be soluble in the solvent, hence
the choiceχ0 = 0.5 in equation (2.10). However, the analogous polymer-solvent theory for meat
requires that the polymeric proteins be insoluble in the solvent, water. Therefore, our assumption
of χ > 1

2
is physically valid, for only with this constraint the polymer will not be soluble in the

solvent [32].
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3.2 Numerical Simulations

Our numerical strategy for solving the equations forφ andT involves the use of a finite difference
scheme by dividing the problem domain intoN equidistant nodes. We have∆z = 1/N , the cell
width with cell centreszi = (i − 1

2
)∆z for i = 1, 2, 3, · · · , N . Using this notation, we discretise

the set of partial differential equations using the method of lines as follows.

(φi)t =
1

∆z

[

Θi+1/2
φi+1 − φi

∆z
−Θi−1/2

φi − φi−1

∆z

]

+
1

∆z

[

Ωi+1/2
Ti+1 − Ti

∆z
− Ωi−1/2

Ti − Ti−1

∆z

]

(3.12)

ci (Ti)t + [α + νTi] (φi)t = −

[

Θi

φi+1/2 − φi−1/2

∆z
+ Ωi

Ti+1/2 − Ti−1/2

∆z

]

Ti+1/2 − Ti−1/2

∆z
+

1

∆z

[

ki+1/2
Ti+1 − Ti

∆z
− ki−1/2

Ti − Ti−1

∆z

]

(3.13)

for equations (3.10) and (3.11) respectively. Here we have defined

Θ = (1− φ)
∂Ψ

∂φ
,

and

Ω = (1− φ)
∂Ψ

∂T
.

The system of nonlinear ODEs are then integrated with Matlab’s standard stiff solver ODE15s,
whose resolution algorithm is based on the numerical differentiation formula method (improved
version of the implicit Backward Differentiation Formula method). The solution code written in
MATLAB (The MathWorks, MA, USA) was run on a 3.0 GHz Intel Corei7 processor. For all the
simulations presented in this paper, we useN = 201 and we found no visible change in results to
the naked eye upon rerunning the simulations with increasednumber of nodes.

4 Results and Discussion

In this section we present computational results for the different steaks (1.5 cm, 2.5 cm and 4.0 cm
thick steak) and we end by presenting a sensitivity analysisfor both the choice of initial porosity
and parameterβ. In each case, the computations are stopped once the centre temperature of the
steak reaches 65oC to give the simulated cooking time. The model performance will be based on
the comparison between cooking time obtained from the modeland the experiments.

4.1 Temperature and Moisture Evolution

Figure3 (a) shows the simulated temperature profile in the beefsteakduring double sided heating
at equally spaced time intervals. The parameters were chosen based on the 1.5 cm steak, see [22].
We observe that as the heat flows by conduction described by the Fourier equation in our model,
the interior temperature rises slowly at both heating ends.Also, we note that the temperature
equilibrates in the interior of the meat as time proceeds. Itmay be noted that this typical profile
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of the heat transfer will be obtained irrespective of a 1-D or2-D approach, given the temperature
profile is evaluated at the central axis of the steak [7]. However, when considering the spatial
temperature profile, the edges of the meat sample are open to the ambient environment which
causes a heat loss. This distinct temperature profile at edges can easily be captured with a 2-D
approach by employing a convective cooling boundary condition. Finally, we also observe from
figure3 (a) that the temperature at the core/geometric centre of themeat of thickness 1.5 cm reaches
a temperature of 65◦C in 4.24 min. This is in agreement with the experimental results reported by
Shen et al. [22].
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Figure 3: Simulated (a) temperature and (b) moisture profiles inside a 1.5 cm thick beefsteak
obtained using the 1-D model for double sided heating.

Figure3 (b) shows the moisture profile inside the beefsteak under simulated conditions. We
note that the evolution of the moisture profile closely resembles travelling waves approaching to-
wards each other. We also observe that the moisture is driventowards the centre, as a consequence
of which, a rise in the local moisture content in the central region of the steak follows. This
phenomenon was reported during previous simulations [8], and was also observed experimentally
[34, 35]. The observed effect is due to the internal changes in the volume fraction of the two phases
driven by the changing osmotic pressure. While we recognisethat the mechanism of water diffu-
sion within a porous solid is complex [36], we attempt to explain the aforementioned observation
as the following. Around 80% of the water in the muscle is heldwithin the myofibrils in the spaces
between the thick and the thin filaments and this water redistributes only following changes in this
spacing [27]. Upon heating, the muscle fibres (connective tissue) undergo shrinkage which exerts
a positive pressure and expels the water towards the extracellular porous zone. We wish to point
to the fact that the shrinkage and swelling of myofibrils is a crucial factor in raw beef, whereas
the ability of meat proteins to form different types of gel dominates in comminuted meat products
(e.g. beef patties) [27].

Recently, Tom et al. [37] employed Kelvin equation and Halsey equation to determinethe
average pore size of beef. The authors report that the pores enlarge with increase in moisture levels
and sorption temperature. It should be noted that the porosity in [37] refers to volume fraction
of solvent(1 − φ) in our case. We now observe from Figure3 (b) that the porosity and moisture
follow this relation and also support the observations madeby Tom et al. [37].
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4.2 Model Validation
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Figure 4: Evolution of the experimental [22] (open symbols) and simulated temperatures (solid
line) at the geometric centre.

In order to validate the model, we set-up the parameters for numerical simulations as per those
reported in Shen et al. [22] and use material property values mentioned in Table1, unless otherwise
explicitly stated. Figure4 (a) presents the evolution of both experimental [22] and simulated
beefsteak temperature profiles for double sided cooking. Firstly, we observe that the temperature
of the geometric centre of the steak shows a continuous increase. Secondly, the time to reach a
core temperature for satisfying the microbial safety criteria increases with increase in thickness of
the beef steak. For evaluating the accuracy of the models, weemploy the statistical criterion of the
Root Mean Squared Error (RMSE).

We find the RMSE for the 1.5 cm, 2.5 cm and 4.0 cm thick steak to be4.8 oC, 4.4 oC and
11.5oC respectively. We note that when the sample becomes very thick, the discrepancy in model
prediction for core temperature compared to the experimental data significantly increases. We
suspect this to be a combined outcome of an increased anisotropy in material properties due to
inclusion of fat, and crust formation during cooking of meatin the experimental conditions, which
admittedly is not captured by the present model. Further work is needed to improve predictions for
thick steaks. Thus, we conclude that the results of our 1-D simulation are in good agreement with
the experimentally observed values for steaks of small thickness.

4.3 Sensitivity analysis

We wish to highlight the difficulty that we encountered in selection of appropriate initial porosity
value for beef from those reported in literature (see Table3). The said issue stems from the different
estimation methods, together with the variation in food composition and physical structure [12].
In order to address this issue, we performed sensitivity analysis to evaluate the effect of initial
porosity on the model estimates.

During heating of meat (or porous foods in general), dynamics of the porous structure becomes
important for the analysis of transport processes. The timetaken for the geometric centre tempera-
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Figure 5: Time for centre temperature to reach 65oC for a 1.5 cm thick beefsteak as a function of
(a) porosity and (b)β.

Description Value Reference
Raw Beef 0.0128 [28]
Beef 0 – 0.5 [38]
Beef 0.05 [39]
Beef 0.023 – 0.075 [40]
Cooked Beef 0.02313 [41]
Cooked Beef 0.023 – 0.075 [40]

Table 3: Porosity of Beef

ture of a 1.5 cm thick steak to reach 65oC as a function of the volume fraction of protein is typified
in Figure5(a). We note a quadratically decreasing trend between the two entities. Conversely, with
an increase in porosity by 10%, an decrease in the cooking time by up to 0.8 min can be noticed.
This is also partly explained by the fact that the thermal conductivity of the liquid phase is greater
than that of the polymeric protein matrix (see Table1).

Since there is some uncertainty in the choice of interfacialfriction term, f0, which is also
related to the parameterβ, it is helpful to consider the effects of changes inβ on the cooking time.
Results are presented in Figure5 (b), where we fixed the porosity and variedβ in the range 0.01 to
0.3. The results indicated deviations of up to 6 seconds in cooking time for the considered values
of β. We also notice that the cooking time increases asβ → 0.

5 Conclusion

The proposed model describes a simultaneous heat and mass transfer model to simulate the double-
sided pan cooking of meat. The heat transfer within the matrix of the meat is described using
Fourier’s law and the moisture transfer is described using the polymer-solvent description given
by Flory-Huggin’s theory. The principal novelty of the model is that it combines a two-phase
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fluid flow and functional equations based on Flory-Huggin’s theory that contains microscopically
measurable parameters. The model demonstrated good predictive capabilities for core temperature
of the beefsteak. The model has some issues in predicting temperatures for thicker steaks that
needs to be addressed. Sensitivity analysis indicated thata appropriate selection of initial porosity
of meat is vital to obtaining accurate predictions.

Although we considered the case of double sided heating to demonstrate the validity of the
model, the modification of boundary conditions for other cases of single sided heating with flip-
ping, oven roasting or frying should be straightforward. The shrinkage during cooking of the steak
can be easily incorporated using an appropriate functionalrelationship of the experimentally de-
termined steak width/radii change with time. A similar approach has been used for modeling the
hydration phenomenon in rice by Bakalis et al. [42]. Furthermore, with incorporation of equations
for microbial inactivation, this model could also be used topredict microbial safety.
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