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Abstract
In this paper, we use some numerical methods namely Lax-Wendroff (LW), two-step Lax-
Friedrichs (LF), two variants of composite methods made up of Lax-Wendroff and the two-
step Lax-Friedrichs and Fromm’s scheme to solve a 1D linear advection and 1D diffusionless
Burger’s equation, at some values of the Courant number. We then use two optimisation
techniques based on both dispersion and dissipation and two optimisation techniques based
on only dispersion and obtain the variation of the integrated errors vs the CFL number. It
is seen that out of the five techniques, only one is a good measure of the shock-capturing
of property of numerical methods.
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1 Introduction

One of the common ways of measuring the relative merit of a numerical scheme for advec-
tion is to consider the scheme’s dispersion and dissipation [20]. All linear numerical schemes
are either dispersive or dissipative [24]. The two-step Lax-Friedrichs (LF) scheme is first
order in time and space and is dissipative in regions of discontinuity while MacCormack
(MC) scheme is second-order and therefore dispersive in nature i.e it generates oscillations
in regions of discontinuity. This paper is devoted to the study of some numerical schemes
when used to approximate the 1D linear advection equation and 1D diffusionless Burger’s
equation.
Work on scheme dispersion reduction was first reported by Fromm [10]. Fromm’s scheme
in 1D is made up of a linear combination of Lax-Wendroff (LW) and the Beam-Warming
second-order upwind (BW) schemes as these two dispersive schemes have phase errors in
opposite directions. The Lax-Wendroff scheme in 1D induces lagging phase error mostly
and hence gives rise to pre-shock oscillations while the BW scheme in 1D causes leading
phase error and thus generates post-shock oscillations. The Fromm’s scheme in 1D is an
improved scheme over both LW and BW schemes and is Total Variation Bounded when it
is stable [15].
We can also combine dispersive and dissipative schemes to obtain composite schemes. This
idea as pointed out by Len Margolin was implemented in meteorological codes which com-
pose the oscillatory second order Leap-Frog scheme with the dissipative backward Euler
scheme [13]. Kasahara and Washington [14] use a three-level Leap-Frog scheme for 50
time steps which is inherently unstable followed by one cycle of the Lax-Wendroff scheme.
Liska and Wendroff have obtained a composite scheme which comprises of Lax-Wendroff
or Corrected Lax-Friedrichs (CF) as the dispersive scheme and the two-step Lax-Friedrichs
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(LF) scheme as the dissipative scheme to obtain the composite Lax-Wendroff/Lax-Friedrichs
(LWLF) scheme or Corrected Lax- Friedrichs/Lax-Friedrichs scheme. This approach does
not require a limiter and attains an adequate accuracy by adjusting the number of times
of applying these two schemes i.e LW/CF and LF schemes which have counter remainder
effects. They formulated various forms of the composite LWLF scheme as LWLFn schemes
consisting of (n-1) applications of LW scheme and one application of the LF scheme. In a
similar approach to [13], we have combined the dispersive MacCormack (MC) scheme with
the dissipative 2-step Lax-Friedrichs scheme when used to discretise the 1D linear advection
equation and 2D scalar advection equation to obtain the MCLFn schemes [1].
In a recent work [3], a composite scheme has been constructed by using a linear combina-
tion of MacCormack and the two-step Lax-Friedrichs scheme for the 1D linear advection
equation. For optimal shock-capturing, the ratio of MC:LF has been found to be 0.66 : 0.34.

2 Organisation of paper

The paper is organised as follows. In section 3, we study the damping and dispersive char-
acteristics of some numerical methods approximating the 1D linear advection equation. In
section 4, we show how to quantify the errors from the numerical results into dissipation and
dispersion errors by using a technique devised by Takacs [20]. Section 5 describes the two
numerical experiments considered. In section 6, we consider some standard and composite
schemes when used to discretise the 1D linear advection and 1D diffusionless Burger’s equa-
tion. Sections 7 and 8 describe briefly some techniques of optimisation based on dispersion
or both dispersion and dissipation and we obtain plots of the integrated errors vs the CFL
number. In sections 9 and 10, we present the results when some schemes are used to solve
propagation of the Boxcar function and 1D Burger’s equation and compute some types of
errors. Section 11 highlights the salient features of the paper.

3 Dispersive and Dissipative Characteristics of numerical meth-
ods

Dissipation is defined as the constant decrease with time of the amplitude of plane waves
as they propagate in time. If the modulus of the amplification factor, denoted by AFM is
equal to one, a disturbance neither grows nor damps [12]. The modulus of the amplification
factor is also a measure of the stability of a scheme. If this value is greater than one, this
creates instability while damping is present whenever this value is less then one [16]. When
the modulus of the amplification factor exceeds one, this indicates an unstable mode [7].
The relative phase error (RPE) is a measure of the dispersive character of a scheme. This
quantity is a ratio and measures the velocity of the computed waves to that of the physical
waves.
If the RPE is greater than one, the computed waves appear to move faster than the physical
waves [12] thus causing phase lead. A ratio less than one implies that the computed waves
will move slower than the physical waves, causing phase lag.
We now obtain an expression for the RPE of a numerical scheme approximating the 1D
linear advection equation which is given by

ut + βux = 0. (1)
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A perturbation for u is

u = exp(I (w1 t− θx)), (2)

where t and x are time and space variables, θ is wavenumber and w1 is the dispersion rela-
tion [19].
On using the perturbation for u into (1), we obtain the following equation,

I w1 + β (−I θ) = 0. (3)

Hence the dispersion relation is given by

w1 = β θ. (4)

The exact phase velocity is
ℜ(w1)

θ
which simplifies as β.

We now obtain the numerical phase velocity. We let the amplification factor of the scheme
approximating Eq. (1) be

ξ = A+ I B. (5)

Then, we can write ξ = exp(−b k) [19] where b is the exponential growth rate and k is the
temporal step size and we obtain

b =
1

k
log

(A− I B

A2 +B2

)
. (6)

The numerical phase velocity is computed as
ℑ(b)
θ

and is equal to

− 1

k θ
tan−1

(B
A

)
. (7)

Since k =
r h

β
and w = θh, the numerical phase velocity can be rewritten as

− β

r w
tan−1

(B
A

)
. (8)

The RPE is the ratio of the velocity of the computed waves to the velocity of the exact
waves and is therefore equal to

− 1

r w
tan−1

(B
A

)
. (9)

4 Quantification of errors from numerical results [20, 2, 4]

The Total Mean Square Error is calculated as

1

N

N∑
i=1

(ui − vi)
2,

where ui represents the analytical solution and vi, the numerical (discrete) solution at a
given grid point, i.
The Total Mean Square Error can be expressed as

1

N

N∑
i=1

(ui − vi)
2 =

1

N

N∑
i=1

(ui)
2 +

1

N

N∑
i=1

(vi)
2 − 2

N

N∑
i=1

ui vi. (10)
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Next,

1

N

N∑
i=1

(ui − u)2 =
1

N

N∑
i=1

(
(ui)

2 − 2ui u+ (u)2
)

(11)

and

1

N

N∑
i=1

(vi − v)2 =
1

N

N∑
i=1

(
(vi)

2 − 2vi v + (v)2
)
. (12)

The Total Mean Square Error can be further expressed as

1

N

N∑
i=1

(ui − u)2 +
1

N

N∑
i=1

(vi − v)2 +
2

N

N∑
i=1

ui u+
2

N

N∑
i=1

vi v

− 1

N

N∑
i=1

(u)2 − 1

N

N∑
i=1

(v)2 − 2

N

N∑
i=1

ui vi. (13)

The expression in (13) can be rewritten as

σ2(u) + σ2(v) + 2(ū)2 + 2(v̄)2 − (ū)2 − (v̄)2 − 2

N

N∑
i=1

ui vi, (14)

where σ(u) and σ(v) denote the variance of u and v respectively. u and v represent the
means of u and v respectively.
Thus, the Total Mean Square Error is given by

σ2(u) + σ2(v) +
(
(ū)2 − 2ūv̄ + (v̄)2

)
+

(
2ūv̄ − 2

N

N∑
i=1

ui vi

)
(15)

which on further simplification yields

σ2(u) + σ2(v) + (ū− v̄)2 − 2
( 1

N

N∑
i=1

uivi − u v
)
. (16)

Thus, we have

1

N

N∑
i=1

(ui − vi)
2 = σ2(u) + σ2(v) + (ū− v̄)2 − 2 Cov(u, v). (17)

But, the correlation coefficient, ρ is given by
Cov(u, v)

σ(u) σ(v)
. Hence, the Total Mean Square

Error can be written as

1

N

N∑
i=1

(ui − vi)
2 = σ2(u) + σ2(v) + (ū− v̄)2 − 2 ρ σ(u) σ(v) (18)

which simplifies to

1

N

N∑
i=1

(ui − vi)
2 = (σ(u)− σ(v))2 + (ū− v̄)2 + 2 (1− ρ) σ(u) σ(v). (19)

On putting ρ = 1, we get 2 (1− ρ) σ(u) σ(v) = 0. Thus, we define (2 (1− ρ)σ(u) σ(v)) as
the dispersion error since the correlation coefficient in statistics is analogous with phase lag
or phase lead in Computational Fluid Dynamics.
Consequently, (σ(u)− σ(u))2 + (ū− v̄)2 measures the dissipation error.
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5 Numerical Experiment Considered

5.1 Problem I

The test problem we consider is the propagation of the Boxcar function [18] modelled by
the equation,

ut + ux = 0. (20)

This test problem involves discontinuous initial condition. The initial disturbance can be
written as g(x) = H(x+ 25)−H(x− 25), for −25 ≤ x ≤ 450 where H(x) is the Heaviside
function which is a discontinuous function whose value is zero for negative argument and
one for positive argument. It seldom matters what value is used for H(0), since H(x) is
mostly used as a distribution.
The Fourier transformation of g(x) consists of high frequency components. These need to
be damped so as to avoid spurious high frequency waves. Hence, g(x) can be used to study
the effect of artificial damping [18].

5.2 Problem II

We solve the 1D diffusionless Burger’s equation, ut +
(1
2
u2

)
x
= 0, for x ∈ [−1, 1] at time,

T = 0.32 with initial conditions being
u(x, 0) = 1 for |x| < 1/3,
u(x, 0) = −1 elsewhere.

At time, T = 0.32, the exact solution is given by [6, 17]

u(x, T ) =
1

0.32
(x+ 1/3),

if x ≥ −1/3− 0.32 and x ≤ 0.32− 1/3,

u(x, T ) = 1.0,

if x ≥ 0.32− 1/3 and x ≤ 1/3,
else

u(x, T ) = −1.0.

6 Standard and Composite Schemes for 1D Linear Advection
Equation and 1D Burger’s equation

6.1 Lax-Wendroff Scheme

1D linear advection equation
The Lax-Wendroff scheme (LW) is a two-step second order explicit scheme much used in
hyperbolic problems. The predictor and corrector steps are given by

u
n+1/2
i+1/2 =

1

2
(uni+1 + uni )−

βk

2h
(uni+1 − uni ), (21)

and

un+1
i = uni − βk

h
(u

n+1/2
i+1/2 − u

n+1/2
i−1/2 ). (22)
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However, it causes inevitable oscillations in those regions where shocks occur. A single
expression for the LW scheme when applied to the 1D linear advection equation is given by

un+1
i = uni − r

2
(uni+1 − uni−1) +

r2

2
(uni+1 − 2uni + uni−1). (23)

The MacCormack and Lax-Wendroff schemes are equivalent when used to discretise the
1D linear advection equation.
By using the Von Neumann analysis, we obtain the amplification factor of Lax-Wendroff
scheme as

ξLW = 1− 2 r2 sin2
(w
2

)
− Ir sin(w). (24)

For stability, the requirement is |ξLW | ≤ 1. We obtain the region of stability as 0 < r ≤ 1.
The modified equation is given by

ut + βux +
1

6
(βh2 − β3k2) uxxx +

1

24
(β2 k h2 − β4k3) uxxxx + ... = 0, (25)

which indicates that the leading error terms are dispersive in nature.
The relative phase error is computed as

1

r w
tan−1

( r sin(w)

1− 2r2 sin2(w/2)

)
. (26)

1D Burger’s equation
The predictor and corrector steps of Lax-Wendroff for the Burger’s equation are

u
n+1/2
i+1/2 =

1

2

(
uni+1 + uni

)
− k

4 h

[
(uni+1)

2 − (uni )
2
]
, (27)

and

un+1
i = uni − k

2 h

[
(u

n+1/2
i+1/2 )

2 − (u
n+1/2
i−1/2 )

2
]
, (28)

respectively.

6.2 The Two-step Lax-Friedrichs

1D linear advection equation
The predictor and corrector steps of the two-step Lax-Friedrichs scheme are

u
n+1/2
i+1/2 =

1

2
(uni + uni+1)−

βk

2h
(uni+1 − uni ), (29)

and

un+1
i =

1

2
(u

n+1/2
i−1/2 + u

n+1/2
i+1/2 )−

βk

2h
(u

n+1/2
i+1/2 − u

n+1/2
i−1/2 ). (30)

A single expression for the Lax-Friedrichs scheme is [13]

un+1
i =

(1
2
− r2

2

)
uni +

(1
4
− r

2
+

r2

4

)
uni+1 +

(1
4
+

r

2
+

r2

4

)
uni−1. (31)

The amplification factor is given by

ξLF =
1

2

(
1 + cos(w) + r2(cos(w)− 1)

)
− Ir sin(w). (32)
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The region of stability satisfies the inequality 0 < r ≤ 1.

The relative phase error for the Lax-Friedrichs scheme is

RPELF =
1

rw
tan−1

( 2r sin(w)

1 + cos(w) + r2(cos(w)− 1)

)
. (33)

The modified equation is given by

ut + β ux +
(β2k

4
− h2

4 k

)
uxx +

1

6
(−β3k2 − βh2) uxxx + ... = 0, (34)

and this indicates that the leading error terms are dissipative in nature.

Burger’s equation
The predictor and corrector steps of Lax-Friedrichs scheme for the Burger’s equation are

u
n+1/2
i+1/2 =

1

2
(uni + uni+1)−

k

4h

(
(uni+1)

2 − (uni )
2
)
, (35)

and

un+1
i =

1

2
(u

n+1/2
i−1/2 + u

n+1/2
i+1/2 )−

k

4h

[
(u

n+1/2
i+1/2 )

2 − (u
n+1/2
i−1/2 )

2
]
. (36)

6.3 The Composite Lax-Wendroff/Lax-Friedrichs Scheme (LWLF2)

On combining one application of the Lax-Wendroff scheme with one application of the two-
step Lax-Friedrichs scheme, we obtain the composite Lax-Wendroff/Lax-Friedrichs scheme
(LWLF2) [13].
A single expression for the LWLF2 scheme is [1]

un+2
i = U11 uni−2 + U22 uni−1 + U33 uni + U44 uni+1 + U55 uni+2, (37)

where

U11 =
(1
8
r +

3

8
r2 +

3

8
r3 +

1

8
r4
)
, (38)

U22 =
(1
4
+

3

4
r +

1

4
r2 − 3

4
r3 − 1

2
r4
)
, (39)

U33 =
(1
2
− 5

4
r2 +

3

4
r4
)
, (40)

U44 =
(1
4
− 3

4
r +

1

4
r2 +

3

4
r3 − 1

2
r4
)

(41)

and

U55 =
(
− 1

8
r +

3

8
r2 − 3

8
r3 +

1

8
r4
)
. (42)

The effective amplification factor, EAF of LWLF2 is computed as
(
|ξLW | |ξLF |

) 1
2
which is

equal to

(
(1− 2r2 sin2(

w

2
))2 + (r sin(w))2

)1/4 (1
2
(1 + cos(w) + r2 (cos(w)− 1))2 + (r sin(w))2

)1/4
.

(43)
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The effective amplification factor of the LWLF2 scheme after two time steps is calcu-
lated as

ξ2 =
(
1− 2 r2 sin2

(w
2

)
− I r sin(w)

)
×[1

2
(1 + cos(w) + r2 (cos(w)− 1))− I r sin(w)

]
. (44)

The RPE of the LWLF2 is obtained as − 1
2 rw arg(ξ2).
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Figure 1: Dependence of relative phase error per unit time step on phase angle for LWLF2
scheme in 1D.

The modified equation of the LWLF2 is

ut + βux +
1

8

(
− h2

k
+ β2k

)
uxx +

7

24

(
βh2 − β3k2

)
uxxx + ... = 0, (45)

and we can observe that the leading error terms are dissipative in nature. Also, the coeffi-
cient of the dissipative term is half that of the Lax-Friedrichs scheme.
A plot of the relative phase error vs phase angle is shown in Fig. (1) at 4 different CFL
numbers. At CFL 1, we have null dispersion.

6.4 A linear combination of Lax-Wendroff and the two-step Lax-Friedrichs
scheme

We consider a linear combination of Lax-Wendroff and the two-step Lax-Friedrichs scheme
in the ratio α : 1− α. The Lax-Wendroff and MacCormack schemes are equivalent schemes
when used to discretise the 1D linear advection equation. Consequently, a composite scheme
made up of a linear combination of Lax-Wendroff and Lax-Friedrichs schemes in the ratio
α : 1− α is equivalent to a composite scheme made up of a linear combination of MacCor-
mack and Lax-Friedrichs scheme in the ratio α : 1− α.
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un+1
i = α

(
uni − r

2
(uni+1 − uni−1) +

r2

2
(uni+1 − 2uni + uni−1)

)
+(1− α)

(1
4
(uni−1 + 2uni + uni+1)−

r

2
(uni+1 − uni−1) +

1

4
(uni+1 − 2uni + uni−1)

)
. (46)

This scheme is optimised when α = 0.66 [3]. If we replace α by 0.66, we get the following
method

un+1
i = (0.83−0.83r2)uni +(0.085−0.5r+0.415r2)uni+1+(0.085+0.5r+0.415r2)uni−1. (47)

The method is termed as LW+LF.
Using the Von-Neumann Stability Analysis, we obtain the amplification factor as

ξLW+LF = 0.83− 0.83r2 + (0.17 + 0.83r2)(cos(w)− Ir sin(w)) (48)

The region of stability is 0 < r ≤ 1.
The relative phase error is calculated as

RPELW+LF = − 1

rw
tan−1

(ℑξLW+LF

ℜξLW+LF

)
, (49)

which yields

RPEξLW+LF
=

1

rw
tan−1

( r sin(w)

0.83− 0.83 r2 + (0.17 + 0.83 r2)cos(w)

)
. (50)

A plot of the relative phase error of the composite scheme made up of the linear combination
of LW and LF vs phase angle for some different values of CFL is shown in Fig. (2) and we
observe that at CFL 0.25 and 0.50, the scheme is afflicted by phase lag. At CFL 1, there is
no dispersion error and there is both phase lead and phase lag at CFL 0.75.
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Figure 2: Dependence of relative phase error per unit step on phase angle for LW+LF
scheme in 1D.
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The modified equation of the LW+LF scheme is given by

ut + βux + 0.085
(
− h2

k
+ β2k

)
uxx +

β

6
(h2 − β2k2)uxxx + ... = 0, (51)

and we observe that the coefficient of the dissipative term, uxx is less than that of the
LWLF2 scheme. Also, the coefficient of the dispersive term, uxxx is less than in LWLF2.

6.5 Fromm’s Scheme in 1-D

The Fromm’s scheme of zero-average phase error in 1-D [10] uses an average of Lax-Wendroff
(LW) and the BeamWarming (BW) schemes. The BWmethod has a predominantly leading
phase error for 0 < r ≤ 1 and a predominantly lagging phase error for 1 < r ≤ 2 [23].
We next obtain a single expression for the Fromm’s scheme when applied to the 1D linear
advection equation. We first consider the LW and BW schemes which are given by

un+1
i =

1

2
(r2 − r) uni+1 + (1− r2) uni +

1

2
(r2 + r) uni−1, (52)

and

un+1
i = uni − r

2
(3 uni − 4 uni−1 + uni−2) +

r2

2
(uni − 2 uni−1 + uni−2) (53)

respectively.
Then, the Fromm’s scheme is obtained as

un+1
i =

r

4
(r − 1) uni−2 +

r

4
(5− r) uni−1 +

(
1− 3r

4
− r2

4

)
uni +

1

4
(r2 − r) uni+1. (54)

The amplification factor is given by

ξFromm = 1− r

2
(cos(w)− 1)2 − 1

2
r2 sin2w +

I
(1
2
r2 sin(w)(1− cos(w)) +

r

2
sin(w)(cos(w)− 3)

)
. (55)

The region of stability of Fromm’s scheme is obtained as 0 < r ≤ 1.
The relative phase error of the Fromm’s scheme is given by

RPEFromm′s = − 1

rw
tan−1 ℑ(ξFromm)

ℜ(ξFromm)
. (56)

A plot of the RPE vs phase angle, at some different values of CFL is shown in Fig. (3).
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Figure 3: Dependence of the relative phase error per unit time step on phase angle for the
Fromm’s scheme in 1-D.

The Fromm’s scheme has zero dispersion error for all phase angles, w ∈ [0, π] at CFL
0.5 and 1.0. At CFL 0.25, we have mainly phase lag behaviour while at CFL 0.75, phase
lead behaviour is dominant, especially at large phase angles.

The modified equation is

ut + βux −
(βh2

12
− β2hk

4
+

k2β3

6

)
uxxx + ... = 0, (57)

and we can deduce that the scheme is second order in both time and space.

7 Technique of MIEELDLD

In this section, we describe briefly the techniques of Minimized Integrated Error for Low
Dispersion and Low Dissipation (MIELDLD) and the Minimized Integrated Exponential
Error for Low Dispersion and Low Dissipation (MIEELDLD). These techniques have been
introduced in [2]. We now give a resume of how we have derived these techniques.
The Integrated Error for Low Dispersion and Low Dissipation, IELDLD is given by

IELDLD =

∫ w1

0
eldld dw, (58)

where
eldld = ||1−RPE| − (1−AFM)|+ ||1−RPE|+ (1−AFM)|, (59)

and w1 is a constant.
The Integrated Exponential Error for Low Dispersion and Low Dissipation, IEELDLD is
described by

IEELDLD =

∫ w1

0
eeldld dw, (60)
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where

eeldld = exp
(∣∣∣|1−RPE| − (1−AFM)

∣∣∣)+ exp(|1−RPE|+ (1−AFM))− 2.0, (61)

and w1 is a constant. The measures eldld and eeldld denote the Error for Low Dispersion
and Low Dissipation and Exponential Error for Low Dispersion and Low Dissipation.
For a stable numerical scheme, the dispersion and dissipation errors are calculated as |1−
RPE| and (1−AFM) respectively.
We now explain briefly how we have devised the concept of MIEELDLD as a technique
to control dissipation and dispersion in numerical schemes.
For a scheme to have Low Dispersion and Low Dissipation, we require

|1−RPE|+ (1−AFM) −→ 0.

Also when dissipation neutralises dispersion optimally, we have,∣∣∣|1−RPE| − (1−AFM)
∣∣∣ → 0.

Thus on combining these two conditions, we get the following condition necessary for dis-
sipation to neutralise dispersion and for Low Dispersion and Low Dissipation character to
be satisfied:

eldld =
∣∣∣|1−RPE| − (1−AFM)

∣∣∣+ (|1−RPE|+ (1−AFM)) −→ 0. (62)

Similarly, we expect

eeldld = exp
(∣∣∣|1−RPE|− (1−AFM)

∣∣∣)+exp(|1−RPE|+(1−AFM))− 2 −→ 0, (63)

in order for Low Dispersion and Low Dissipation properties to be achieved.
Figs. (4(a)) and (4(b)) show the plots of the measures of errors namely eldld and eeldld,
both vs RPE vs AFM . It is seen that both MIELDLD and MIEELDLD are reliable
techniques of optimisation to control dispersion and dissipation because when there is null
dissipation error and null dispersion error, both measures of error are equal to zero. We
note that eeldld is comparatively more sensitive to changes in RPE and AFM than el-
dld. Therefore, MIEELDLD is more appropriate to measure the control and balance of
dispersion and dissipation as it is more sensitive to slight perturbations.
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Figure 4: Plot of eldld and eeldld, both with respect to RPE ∈ [0, 2] and with respect to
AFM ∈ [0, 1]
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We next explain how the integration process is performed in order to obtain the optimal
parameter for instance the CFL number.
If the CFL number is the only parameter, we compute∫ 1.1

0
eeldld dw,

and this integral will be a function of r. The optimal CFL is the one at which the integral
quantity is closest to zero.

Considerable and extensive work on the technique of Minimised Integrated Exponential
Error for Low Dispersion and Low Dissipation has been carried out in [2, 3, 4, 5, 6].
In [2], we have obtained the optimal CFL of some explicit methods like Lax-Wendroff,
Beam-Warming and Upwind Leap-Frog when applied to the 1D linear advection equation.
In [3], we use the technique to understand why not all composite methods can be effective
to control numerical dispersion and dissipation in regions of shocks. In [4], we consider the
family of third-order methods proposed by Takacs [20] and we optimize the two parameters
for efficient shock-capturing. In [5], we use the technique to construct high-order low dis-
persion and low dissipation spatial and temporal discretization schemes in Computational
Aeroacoustics. Also, in a recent work [6], we optimize a third order Weighted Essentially
Non-Oscillatory scheme for 1D hyperbolic conservation laws.

8 Other techniques of Optimisation

Tam andWebb [21], Bogey and Bailly [8] and Berland et al. [9] have implemented techniques
which enable coefficients to be determined in numerical schemes specifically designed for
Computational Aeroacoustics. We have developed these techniques into respective equiva-
lent forms to determine the optimal CFL for some known numerical schemes in [3].
We now describe briefly how Tam and Webb, Bogey and Bailly and Berland et al. define
their measures and consequently their technique of optimisation in Computational Aeroa-
coustics.
The Dispersion-Relation-Preserving (DRP) scheme was designed so that the dispersion re-
lation of the finite difference scheme is formally the same as that of the original partial
differential equations. The integrated error is defined as

E =

∫ η

−η
|θ∗h− θh|2 d(θh),

where the quantities θ∗h and θh represent the numerical and exact wavenumbers respec-
tively. The dispersion error and dissipation error are calculated as |ℜ(θ∗h) − θh| and
|Im(θ∗h)| respectively.

Tam and Shen [22] set η as 1.1 and optimise the coefficients in the numerical scheme such
that the integrated error is minimised.
Bogey and Bailly [8] minimise the relative difference between the exact wavenumber, θh
and the effective/numerical wavenumber, θ∗h and define their integrated errors as

E =

∫ (θh)h

(θh)l

|θ∗h− θh|
θh

d(θh), (64)

or

E =

∫ ln (θh)h

ln (θh)l

|θ∗h− θh| d(ln (θh)). (65)
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We next describe how the optimisation has been performed by Berland et al. [9]. To ensure
a minimum order of accuracy, the terms of the Taylor series are cancelled up to fourth order.
The coefficients are determined by minimising the integral error which is computed as∫ π/2

π/16

(
(1− α) |θh−Re(θ∗h)|+ α|Im(θ∗h)|

) d(θh)

θh
.

The value of α chosen where α ∈ (0, 1), depends on the numerical scheme. The bounds

of the integral have been arbitrarily chosen to optimise wavenumbers between θh =
π

16
(32 points/wavelength) and θh =

π

2
(corresponding to 4 points/wavelength). Fourth-order

seven- and eleven-point non-centred finite difference schemes have been designed using this
technique.

In Computational Fluid Dynamics for a particular method under consideration, the dis-
persion error is calculated as

|1−RPE|

while the dissipation error as
(1−AFM).

We have modified the measures used by Tam and Webb, Bogey and Bailly, Berland et
al. in a Computational Aeroacoustics framework to suit them in a Computational Fluid
Dynamics framework such that the optimal CFL of some known numerical methods can
be obtained [3]. Thus, we define the following integrals: Integrated Error from Tam and
Webb, (IETAM), Integrated Error from Bogey and Bailly ((IEBOGEY) and Integrated
Error from Berland et al (IEBERLAND) as follows:

IETAM =

∫ w1

0
ETAM dw, (66)

IEBOGEY =

∫ w1

0
EBOGEY dw, (67)

and

IEBERLAND =

∫ w1

0
EBERLAND dw, (68)

where
ETAM = |1−RPE|2,

EBOGEY = |1−RPE|,

and
EBERLAND = (1− α)|1−RPE|+ α(1−AFM).

The optimal CFL is obtained by plotting the respective integral with respect to the CFL
number and locating the CFL at which the integral is least. The techniques used to ob-
tain the quantities IETAM, IEBOGEY and IEBERLAND are defined as Minimised
Integrated Error from Tam and Webb (MIETAM), Minimised Integrated Error from
Bogey and Bailly (MIEBOGEY) and Minimised Integrated Error from Berland et al.
(MIEBERLAND) respectively [3].

14



Figure 5: Plot of the measures: ETAM and EBOGEY, both with respect to RPE ∈ [0, 2].
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Figure 6: Variation of the quantity, EBERLAND vs AFM ∈ [0, 1] vs RPE ∈ [0, 2] at
different values of α: 0.25, 0.50 and 0.75.

8.1 Variation of Integrated Errors with respect to CFL number

In this section, we compare the variation of the five integrated errors, namely IETAM,
IEBOGEY, IEBERLAND, IELDLD and IEELDLD vs the CFL number for three
schemes namely; LWLF2, LW+LF and Fromm’s schemes when the latter are used to dis-
cretise the 1D linear advection equation.
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(a) (b)

Figure 7: Variation of integrated errors vs CFL number for the LWLF2 scheme.

(a) (b)

Figure 8: Variation of integrated errors vs CFL number for the optimised composite scheme
made up of a linear combination of Lax-Wendroff and Lax-Friedrichs in the ratio 0.66 : 0.34.
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(a) (b)

Figure 9: Variation of integrated errors vs CFL number for the Fromm’s scheme.

Fig. (7) shows the variation of the integrated errors vs the CFL number and in all cases,
we observe from the graphs that the optimal CFL is 1.0. We have also used the NLPSolve
function in Maple and obtain the optimal CFL as 1.0. Indeed the LWLF2 scheme gives
exact results at CFL 1.0.
Fig. (8) shows the variation of the integrated errors vs the CFL number for the optimised
composite scheme made up of a linear combination of MC and LF schemes. The optimal
CFL is 1.0 in all cases. This is seen clearly from the graphs and also on performing a
numerical optimization from Maple, we get the optimal CFL as 1.0.
Fig. (9) shows the variation of the integrated errors vs the CFL number and only the
measures IELDLD and IEELDLD give the correct optimal CFL which is 1.0. The mea-
sures, IETAM and IEBOGEY give two optimal CFL namely 0.5 and 1.0. However, it is
known that the Fromm’s scheme gives exact results only when its CFL is 1.0. On using the
NLPSolve function in Maple we obtain the optimal CFL as 0.500000 and 1.000000 on using
IETAM and IEBOGEY respectively.
Hence, we conclude that optimisation techniques based on dispersion alone might not appro-
priate to compute optimal parameters for efficient shock-capturing based on the 1D linear
advection equation.

9 Numerical results for Boxcar function

The results of Boxcar propagation using Lax-Wendroff scheme at four different values of
CFL at dimensionless time, t = 400 are shown are Fig. (10). Exact results are obtained at
CFL 1.0 but at other CFL numbers, the results are dispersive and we observe phase lag.
The results of the Boxcar propagation using the two-step Lax-Friedrichs scheme at 4 differ-
ent values of CFL at dimensionless time, t = 400 are depicted in Fig. (11). The results are
highly dissipative at CFL 0.25. At CFL 1.0, we get exact results.
Fig. (12) shows the results of the Boxcar propagation using LWLF2 scheme at four different
CFL numbers. At CFL 1.0, we have exact results while at other values of CFL, the results
are slightly dissipative.
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Figure 10: Propagation of boxcar function using the Lax-Wendroff scheme at 4 different
CFL numbers: 0.25, 0.5, 0.75, 1.0 at dimensionless time, t = 400.
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Figure 11: Propagation of boxcar function using the Lax-Friedrichs scheme at 4 different
CFL numbers at dimensionless time, t = 400.
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Figure 12: Propagation of boxcar function using LWLF2 scheme at 4 different CFL numbers
at dimensionless time t = 400.

The results of the Boxcar propagation using the linear combination of the LW and LF
schemes at 4 different values of CFL, at dimensionless time, t = 400 are shown in Figure
(13). The results are dissipative at CFL 0.25, 0.50 and 0.75. Exact results are obtained at
CFL 1.0.

0 50 100 150 200 250 300 350 400 450
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

 

 

cfl=0.25
cfl=0.5
cfl=0.75
cfl=1.0

Figure 13: Propagation of boxcar function using the LW+LF scheme at 4 different CFL
numbers.

We present the results of the boxcar propagation obtained using the Fromm’s scheme in
Fig. (14). We observe that we get exact results at CFL 1.0. At other CFL numbers, there
are some dispersive oscillations.
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Figure 14: Propagation of boxcar function using the Fromm’s scheme at 4 different CFL
numbers.

We now tabulate the dissipation error (Ediss), dispersion error (Edisp), sum of dispersion
and dissipation errors and lastly the measure, eeldld at some different values of CFL for all
the three composite schemes in Tables (1), (2) and (3). These errors are calculated from
the numerical results using the technique of Takacs [20], as described in section 4 of the
paper.
We also plot the sum of the dispersion and dissipation errors and eeldld vs the CFL number
for the three composite methods in Figs. (15), (16) and (17).
Figs. (15) and (16) show the plots of variation of two measures of errors vs the CFL number
for LWLF2 and LW+LF schemes. These two measures are the sum of the dispersion and
dissipation errors and the quantity, eeldld. Both quantities decrease monotonically with
increase in CFL number. Figs. (7), (8) show the variation of the five integrated errors vs
the CFL number which is monotone decreasing.
Fig. (17) shows the variation of the sum of dispersion and dissipation errors and eeldld
vs the CFL number for Fromm’s scheme. In both cases, the measures show a monotone
decreasing behaviour with increase in CFL. Based on Fig. (9), only the integrated error,
IELDLD and IEELDLD show a monotone decreasing behaviour with increase in CFL
number. The variation of the integrated errors namely; IEBOGEY, IEBERLAND and
IETAM does not mimic the same variation as that of the sum of dispersion and dissipation
errors and eeldld vs the CFL number in the case of Fromm’s scheme.
Hence, we conclude that IELDLD and IEELDLD are good measures of the shock-
capturing properties of numerical schemes approximating the 1D linear advection equation.
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Table 1: Errors for the LWLF2 scheme at different CFL numbers for Problem I

CFL Ediss Edisp Sum of errors eeldld

0.1 1.834× 10−2 1.814× 10−2 3.648× 10−2 3.736× 10−2

0.2 9.826× 10−3 1.390× 10−2 2.372× 10−2 2.809× 10−2

1/3 5.459× 10−3 1.111× 10−2 1.656× 10−2 2.236× 10−2

0.4 4.231× 10−3 1.024× 10−2 1.447× 10−2 2.061× 10−2

0.5 2.930× 10−3 9.179× 10−3 1.211× 10−2 1.845× 10−2

0.625 1.818× 10−3 8.053× 10−3 9.871× 10−2 1.617× 10−2

400/574 1.344× 10−3 7.122× 10−3 8.466× 10−3 1.430× 10−2

0.8 7.851× 10−4 5.832× 10−3 6.617× 10−3 1.170× 10−2

400/440 3.153× 10−4 4.023× 10−3 4.338× 10−3 8.061× 10−3
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Figure 15: Plot of sum of dispersion and dissipation errors (∗ ∗ ∗) and eeldld (+ + +) vs
CFL number using the LWLF2 scheme for Problem I.
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Table 2: Errors for the LW + LF scheme at different CFL numbers for Problem I

CFL Ediss Edisp Sum of erors eeldld

0.1 1.266× 10−2 1.636× 10−2 2.901× 10−2 3.315× 10−2

0.2 6.339× 10−3 1.221× 10−2 1.855× 10−2 2.462× 10−2

1/3 3.400× 10−3 9.922× 10−3 1.332× 10−2 1.995× 10−2

0.4 2.622× 10−3 9.153× 10−3 1.118× 10−2 1.840× 10−2

0.5 1.818× 10−3 8.132× 10−3 9.950× 10−3 1.633× 10−2

0.625 1.143× 10−3 6.918× 10−3 8.061× 10−3 1.388× 10−2

400/574 8.495× 10−4 6.202× 10−3 7.052× 10−3 1.244× 10−2

0.8 5.046× 10−4 5.081× 10−3 5.586× 10−3 1.019× 10−2

400/440 2.089× 10−4 3.571× 10−3 3.780× 10−3 7.155× 10−3

1.0 0 0 0 0

0 0.2 0.4 0.6 0.8 1 1.2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CFL

E
rr

or
s

Figure 16: Plot of sum of dispersion and dissipation errors (∗ ∗ ∗) and eeldld (+ + +) vs
CFL number using LW+LF scheme for Problem I.
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Table 3: Errors for the Fromm’s scheme at different CFL numbers for Problem I

CFL Ediss Edisp Sum of errors eeldld

0.1 1.068× 10−4 4.807× 10−3 4.914× 10−3 9.638× 10−3

0.2 9.352× 10−5 4.099× 10−3 1.068× 10−3 8.216× 10−3

1/3 7.799× 10−5 3.287× 10−3 1.068× 10−3 6.585× 10−3

0.4 7.103× 10−5 2.985× 10−3 1.068× 10−3 5.980× 10−3

0.5 6.137× 10−5 2.691× 10−3 1.068× 10−3 5.389× 10−3

0.625 5.012× 10−5 2.529× 10−3 1.068× 10−3 2.579× 10−3

400/574 4.373× 10−5 2.473× 10−3 1.068× 10−3 4.952× 10−3

0.8 3.409× 10−5 2.329× 10−3 1.068× 10−3 4.664× 10−3

400/440 2.171× 10−5 1.917× 10−3 1.068× 10−3 3.837× 10−3
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Figure 17: Plot of sum of dispersion and dissipation errors (∗ ∗ ∗) and eeldld (+ + +) vs
CFL number using Fromm’s scheme for Problem I.
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10 Numerical results for Burger’s equation

The results of Problem II using Lax-Wendroff, Lax-Friedrichs, LWLF2 and a composite
scheme made up of a linear combination of Lax-Wendroff and Lax-Friedrchs are shown in
Figs. (18), (19), (20), (24). The errors are tabulated in Tables (4), (5), (6) and (7). In all
these cases, we use a spatial step of 0.01.
The Lax-Wendroff scheme is not a good method to solve numerically the Burger’s equation.
It gives excessive dispersive oscillations in region of shocks. As the CFL number is increased
from 0.1 to 0.8, the results obtained are less worse but at CFL 1.0, the scheme blows up.
The Lax-Friedrichs scheme cause excessive smearing of the shocks at low CFL numbers.
But as we increase the CFL, the dissipation errors, dispersion errors, sum of dissipation
and dispersion errors and the measure, eeldld all decrease. Fig. (21) shows that the sum of
dispersion and dissipation errors and eeldld all show a monotone decreasing behaviour with
increase in CFL number. Quite good results are obtained at CFL 1.0.
The LWLF2 scheme gives in general better results than Lax-Friedrichs. As the CFL num-
ber is increased, the results get better. Fig. (22) shows that the sum of dispersion and
dissipation errors and eeldld all decrease monotonically with increase in CFL number. Best
results are obtained at CFl 1.0.
The composite scheme made up of a linear combination of Lax-Wendroff and Lax-Friedrichs
is quite a good scheme at specific CFL numbers. At CFL 0.1, 0.2, 0.32, the scheme is quite
dissipative. At CFL 0.4 and 0.5, quite good results are obtained. As we increase the CFL
to 0.64, 0.8 and 1.0, we have more dispersive oscillations. Fig. (23) show the variation of
the sum of the dispersion and dissipation errors and eeldld vs the CFL number. They show
almost the same variation. Both quantities decrease monotonically as the CFL is increased
from 0.1 to 0.4. Then, both quantities increase monotonically as CFL is increased from 0.5
to 1.0. Fig. (24) and Table (7) confirm that best results are obtained at CFL 0.4.

Table 4: Errors for the Lax-Wendroff scheme for Problem II with spatial step 0.01

Time step CFL Ediss Edisp Sum of errors eeldld

0.001 0.1 1.306 1.561 2.867 16.877

0.002 0.2 7.571× 10−1 1.113 1.870 5.919

0.0032 0.32 5.279× 10−1 8.774× 10−1 1.405 3.495

0.004 0.4 4.530× 10−1 7.893× 10−1 1.242 2.863

0.005 0.5 3.889× 10−1 7.081× 10−1 1.097 2.371

0.064 0.64 3.293× 10−1 6.262× 10−1 9.555× 10−1 1.946

0.080 0.80 2.847× 10−1 5.597× 10−1 8.444× 10−1 1.643

0.01 1.0 unstable unstable unstable unstable
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Figure 18: Solutions for Problem II at T = 0.32 using Lax-Wendroff scheme at some values
of time step.
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Figure 19: Solutions for Problem II at T = 0.32 using Lax-Friedrichs scheme at some values
of time step.

Table 5: Errors for the Lax-Friedrichs scheme for Problem II with spatial step 0.01

CFL Ediss Edisp Sum of errors eeldld

0.1 8.354× 10−3 2.066× 10−2 2.901× 10−2 4.182× 10−2

0.2 2.649× 10−3 1.107× 10−2 1.372× 10−2 2.227× 10−2

0.32 1.185× 10−3 6.764× 10−3 7.950× 10−3 1.358× 10−2

0.4 7.959× 10−4 5.195× 10−3 5.991× 10−3 1.042× 10−2

0.5 5.235× 10−4 3.861× 10−3 4.385× 10−3 7.738× 10−3

0.64 3.155× 10−4 2.614× 10−3 2.930× 10−3 5.236× 10−3

0.80 1.846× 10−4 1.684× 10−3 1.869× 10−3 3.371× 10−3

1.0 8.932× 10−5 9.797× 10−4 1.069× 10−3 1.960× 10−3
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Figure 20: Solutions for Problem II at T = 0.32 using LWLF2 scheme at some values of
time step.
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Table 6: Errors for the LWLF2 scheme for problem II with spatial step 0.01

CFL Ediss Edisp Sum of errors eeldld

0.1 2.678× 10−3 1.122× 10−2 1.390× 10−2 2.258× 10−2

0.2 8.379× 10−4 5.549× 10−3 6.387× 10−3 1.113× 10−2

0.32 3.706× 10−4 3.193× 10−3 3.563× 10−3 6.396× 10−3

0.4 2.483× 10−4 2.362× 10−3 2.611× 10−3 4.730× 10−3

0.5 1.642× 10−4 1.693× 10−3 1.858× 10−3 3.390× 10−3

0.64 1.019× 10−4 1.142× 10−3 1.244× 10−3 2.285× 10−3

0.80 6.454× 10−5 8.184× 10−4 8.829× 10−4 1.637× 10−3

1.0 3.866× 10−5 6.899× 10−4 7.285× 10−4 1.380× 10−3

Table 7: Errors for the linear combination of Lax-Wendroff and Lax-Friedrichs scheme for
Problem II with spatial step 0.01

CFL Ediss Edisp Sum of errors eeldld

0.1 1.401× 10−3 7.254× 10−3 8.654× 10−3 1.456× 10−2

0.2 4.154× 10−4 2.665× 10−3 3.081× 10−3 5.338× 10−3

0.32 1.557× 10−4 7.251× 10−4 8.808× 10−4 1.451× 10−3

0.4 8.238× 10−5 3.505× 10−4 4.329× 10−4 7.012× 10−4

0.5 3.174× 10−5 4.848× 10−4 5.165× 10−4 9.698× 10−4

0.64 4.079× 10−6 1.243× 10−3 1.247× 10−3 2.488× 10−3

0.80 1.237× 10−5 2.399× 10−3 2.411× 10−3 4.804× 10−3

1.0 6.672× 10−5 3.921× 10−3 3.988× 10−3 7.858× 10−3
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Figure 21: Plot of sum of dispersion and dissipation errors (∗ ∗ ∗) and eeldld (+ + +) vs
CFL number using Lax-Friedrichs scheme for Problem II.28
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Figure 22: Plot of sum of dispersion and dissipation errors (∗ ∗ ∗) and eeldld (+ + +) vs
CFL number using LWLF2 scheme for Problem II.
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Figure 23: Plot of sum of dispersion and dissipation errors (∗ ∗ ∗) and eeldld (+ + +) vs
CFL number using LW+LF scheme for Problem II.
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Figure 24: Solutions for Problem II at T = 0.32 using a composite scheme made up of
a linear combination of Lax-Wendroff and Lax-Friedrichs at some different values of time
step.

11 Conclusion

We have used the Lax-Wendroff, Lax-Friedrichs, LWLF2, composite scheme made up of a
linear combination of Lax-Wendroff and Lax-Friedrichs (LW+LF) and Fromm’s schemes to
solve a 1D linear advection equation with initial conditions described by a boxcar function.
We observe that out of the five integrated errors, only IELDLD and IEELDLD mimic the
variation of the sum of the dispersion and dissipation errors and eeldld vs the CFL num-
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ber. We note that the measure, IEBERLAND which uses a linear combination of sum
of dispersion and dissipation erors does not mimic the variation of sum of dispersion and
dissipation erors and eeldld vs the CFL number.
The Lax-Wendroff, Lax-Friedrichs, LWLF2, LW+LF have also been used to solve Burger’s
equation subject to some initial and boundary conditions. The LW scheme is not a suit-
able method as it causes excessive dispersive oscillations in regions of shocks. The LWLF2
scheme gives best results at CFL 1.0 while LW+LF is most effective at CFL close to 0.4.
The variation of two quantities namely; sum of dissipation and dispersion errors and eeldld,
vs CFL number all show a similar variation for the four schemes.

12 Nomenclature

I =
√
−1.

k: time step.
h: spatial step.
β: advection velocity.
r: CFL number.

r =
βk

h
.

θ: wave number.
w: phase angle.
w = θh.
n: time level.
RPE: relative phase error.
EAF: Effective Amplification Factor.
IELDLD: Integrated Error for Low Dispersion and Low Dissipation.
MIELDLD: Minimised Integrated Error for Low Dispersion and Low Dissipation.
IEELDLD: Integrated Exponential Error for Low Dispersion and Low Dissipation.
MIEELDLD: Minimised Integrated Exponential Error for Low Dispersion and Low Dis-
sipation.
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