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Abstract

Gramophones were the main audio recording medium for more than seven decades

and regained widespread popularity over the past few years. Being an analogue storage

medium, gramophone records are subject to distortions caused by scratches, dust particles,

high temperatures, excessive playback and other noise induced by mishandling the record.

Due to the early adoption of the compact disc and other digital audio mediums, most

research to reduce the noise on gramophone records focused on physical improvements

such as the enhancements of turntable hardware, amelioration of the record material or

advances through better record cutting techniques. Comparatively little research has

been conducted to digitally filter and reconstruct distorted gramophone recordings.

This thesis provides an extensive analysis on the digital detection and reconstruction

of noise in gramophone audio signals distorted by scratches. The ability to approximated

audio signals was examined though an empirical analysis of different polynomials and

time series models. The investigated polynomials include the standard, Fourier, Newton,

Lagrange, Hermite, osculating and piecewise polynomials. Experiments were also

conducted by applying autoregressive, moving average and heteroskedasticity models,

such as the AR, MA, ARMA, ARIMA, ARCH and GARCH models. In addition, different

variants of an artificial neural network were tested and compared to the time series models.

Noise detection was performed using algorithms based on the standard score, median

absolute deviation, Mahalanobis distance, nearest neighbour, mean absolute spectral

deviation and the absolute predictive deviation method. The reconstruction process
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employed the examined polynomials and models and also considered adjacent window,

mirroring window, nearest neighbour, similarity, Lanczos and cosine interpolation.

The detection and reconstruction algorithms were benchmarked using a dataset of 800

songs from eight different genres. Simulations were conducted using artificially generated

and real gramophone noise. The algorithms were compared according to their detection

and reconstruction accuracy, the computational time needed and the tradeoff between

the accuracy and time.

Empirical analysis showed that the highest noise detection accuracy was achieved

with the absolute predictive deviation using an ARIMA model. The predictive outlier

detector employing a Jordan simple recurrent artificial neural network was most efficient

by achieving the best detection rate in a limited timespan. It was also found that the

artificial neural networks reconstructed the audio signals more accurately than the other

interpolation algorithms. The AR model was most efficient by achieving the best tradeoff

between the execution time and the interpolation error.

Keywords: gramophone, audio reconstruction, noise detection, interpolation,

polynomials, time series modelling, neural networks.
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“I never made one of my discoveries through the process of rational thinking.”

Albert Einstein 
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Chapter 1

Introduction

From the early days of mankind, people were obsessed with preserving information for

generations to come. Starting from early cave paintings and the formulation of alphabets,

man started to develop means by which the current knowledge could be retained for

future use. For centuries the only information that could be preserved was subject to

human interpretation, such as sculpturing, painting or transcribing important events. The

first breakthrough in capturing and preserving physical quantities through an analogue

medium was with the invention of photography in the early 19th century. Recording

sound on the other hand proved to be more difficult. The first advances in this field

were made by Édouard-Léon Scott de Martinville, printer and bookseller by trade, who

was fascinated with the mechanic means for recording vocal sounds. Scott delivered the

designs of his device, the phonautograph, to the French Academy of Sciences in 1857 [80].

A number of working devices were built with the primary intend to record sound and

provide a visual representation, rather than reproducing the sound wave. Three decades

later the poet Émile-Hortensius-Charles Cros invented the paleophone, the first device

that would have been able to both record and playback sound. He submitted the designs

to the French Academy of Sciences in 1877 [14]. Due to the meagre income as a poet,

Cors was never able to produce a working model and eventually gave his ideas and designs

to public domain free of charge. The same year Thomas Edison designed and produced

the phonograph, the first working device that was able to record and playback sound

[211]. His invention was so unexpected to the public that it earned him the nickname The

1
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Chapter 1. Introduction 2

Wizard and propelled his scientific career within weeks. The original phonograph used a

tinfoil cylinder, resulting in poor sound quality and limiting the number of playbacks to a

few times. The device got more attention for practical use when Graham Bell improved

it by amongst other things making use of a wax-covered cardboard cylinder as recording

medium, which became known as the graphophone. The real breakthrough of sound

recordings for industrial and personal use occurred when Emile Berliner marketed his

gramophone in 1889, the forerunner of the modern turntable [264]. Berliner replaced

the wax cylinders with a flat round disc which had an inferior sound quality, but was

able to hold a four minute recording compared to the two minutes of a wax cylinder.

The first gramophone records were made out of gutta-percha, a vulcanized natural latex.

In the early 20th century, some records were made from metal in order to increase the

durability, but were discontinued due to the increased production costs and poor sound

quality. Gramophone records were then produced from shellac, but with the increase

in record sales and advancements in chemistry, the material was replaced by polyvinyl

chloride, which led to the adoption of the widely used name vinyl records.

Due to the limited durability of record material, the audio fidelity decreases with each

playback. To prevent the wearing-down of records, William Heine developed the first

optical turntable in 1976, the laserphone, which used a helium-neon laser to read records

without physical contact [123]. The research was extended by Robert Reis during his

postgraduate studies in 1987 [212], which contributed to the development of the first

commercial laser turntable, the Finial LT-1. The Finial project was later acquired by

Birmingham Sound Reproducers and improved versions of the turntable are still produced

and sold by ELP today. Between 2003 and 2006 researchers at the Lawrence Berkeley

National Laboratories started the IRENE project which takes photographs of records and

then reconstructs the sound wave by using image processing techniques [76]. The original

project used a two-dimensional camera and was able to reconstruct physically broken

records. Later enhancements used confocal scanning microscopy with a three-dimensional

camera to improve the reproduced sound quality by being able to scan surfaces down to

200 µm [77].

Gramophone records served as the main recoding medium for more than six decades,

replacing the phonograph cylinders in the 1920s. Although the compact cassette (CC)
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Chapter 1. Introduction 3

was introduced in the 1970s, record sales remained stable, until the introduction of the

compact disc (CD) in the late 1980s. In 2013 the Nielsen Company reported the highest

vinyl record sales in the United States since it was discontinued as main music medium

in 1993 [213]. Approximately six million units were sold in the Unites States only, an

increase of 33% from 2012 and holding a market share above 2%. It was however reported

that the Nielsen Company’s statistics were an underestimate and that only 15% of the

sales were logged, since most sold records do not have a bar code which is used to track

sales [244].

1.1 Motivation

Gramophone records were discontinued as main recording medium in the late 1980s. Prior

to this time only little research was conducted on digitally processing gramophone audio

with the aim of improving the sound quality by mitigating the problems of durability,

noise and an inferior listening experience. Most research focused on the analogue sound

reproduction by improving the turntable mechanics and record material. With the

introduction of the CD, the sound storage moved from analogue to digital, eliminating

most of the noisy distortions of gramophone records. The majority of recordings prior

to the 1960s are only available on gramophone, are rarely in mint condition and are

often heavily damaged due to excessive use. Many of these recordings are still digitised

today, both for archiving purposes and to make them publicly available. In addition,

numerous private collectors and audiophiles are digitizing their music collection, which

mostly consists of old and damaged records. The digitization requires a tedious manual

process of removing the noise from the recording. Although some automation exists, the

available algorithms are not specifically designed and fine-tuned for gramophone records.

Additionally, most automated systems process the entire audio, therefore also adjusting

parts of the sound wave that are not affected by noise.
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Chapter 1. Introduction 4

1.2 Objectives

The main objective of this thesis is to create an accurate and efficient automated system

for the detection and removal of distortions caused by scratches on gramophone records.

This is achieved through the following sub-objectives:

• Detecting the noise prior to removing it in order to ensure that only distorted parts

are subjected to the noise removal algorithms.

• Determining the ability of various polynomials and time series models to accurately

approximate a music signal.

• Utilising the same polynomials and models to detect and correct distortions through

time series prediction and interpolation.

• Determining an accurate algorithm for the detection of disruptions caused by

scratches, by comparing outlier detectors commonly used in time series analysis.

• Determining an accurate interpolation algorithm to remove the previously detected

noise, by comparing and benchmarking various interpolators used in time series

analysis.

• Measuring the ability of adaptive systems such as an artificial neural network to

learn temporal characteristics of music and comparing it to the traditional time

series models.

• Correcting distorted music so that the human ear is unable to distinguish between

the original and corrected recordings.

1.3 Contributions

The research in this thesis makes the following contributions to knowledge in the fields of

time series analysis and audio processing:

• Provides an extensive benchmark of 22 different models that can be used for the

interpolation of audio data.
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Chapter 1. Introduction 5

• Demonstrates how certain models, which are commonly employed in financial

markets with low model orders, can be adapted to use a higher order for the

accurate approximations of more stable audio signals.

• Lays out the fundamental analysis and benchmarking that can be used for future

research on the digitization of gramophone records and other fields of audio

processing.

• Exemplifies the advantages of an adaptive neural network over traditional time

series models for processing audio signals.

• Illustrates how the characteristics of different music genres can influence the noise

detection and reconstruction process and provides recommendations for choosing

an algorithm and accompanying parameters for certain genres.

In addition to the theoretical contributions, all algorithms were implemented as an open

source project and two external libraries which are available for public use [234].

1.4 Restoration Approach

The audio restoration approach adopted by this thesis is outlined as follows:

1. Audio Decoding and Preprocessing: The audio data is decoded from a direct

input audio signal or a file and prepared for the refurbishment phase.

2. Noise Detection: The noise in the sound wave is detected using an outlier

detection algorithm. The detection is achieved by analysing sub-populations of the

signal and determining the degree of divergence between different sub-populations

and individuals within a given sub-population. The process is divided as follows:

(a) Noise Mapping: A real map is generated, indicating the level of disturbance

for each individual sample in the sound wave by comparing each sample to its

surrounding values.
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Chapter 1. Introduction 6

(b) Noise Masking: Using the previously generated noise map and a given

threshold, a binary mask is generated to indicate if a sample contains noise

and must be flagged as an outlier, or if no distortions are present and the

sample is an inlier.

3. Noise Removal: The previously generated noise mask, where each sample in the

sound wave is marked as either an outlier or an inlier, is utilized to determine which

parts of the signal contain noise and must be refurbished. The process is divided as

follows:

(a) Sample Approximation: Given the samples preceding and succeeding a

noisy segment, an interpolation algorithm is used to approximate the original

non-noisy samples.

(b) Sample Replacement: The noisy samples are replaced by the values of the

approximated samples.

4. Evaluation and Audio Encoding: The restoration quality is determined and

the audio signal is encoded and save to a file.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 provides a brief overview of digital audio storage, comprised of audio

formats, codecs, sample rates and sizes, endianness and channels. The chapter

continues with the gramophone mechanics, the dynamic range and frequency

response of records. Some basic concepts of digital signal processing are highlighted

which includes variances, convolution, correlations and least square regression.

• Chapter 3 discusses a number of polynomials and models used to approximate

discrete functions. The underlying model mathematics are explained and some

insight into the model order and parameter selection is provided.
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Chapter 1. Introduction 7

• Chapter 4 explains a number of noise detection algorithms, including a predictive

outlier identification that employed the models from chapter 3 to predict an audio

signal.

• Chapter 5 examines a number of reconstruction algorithms, including models from

chapter 3 that can be approximated for an audio signal and utilized for interpolation.

• Chapter 6 highlights the research methodology, provides an overview of the test

dataset, explains how noise is introduced in the audio signals and describes the

performance and execution time measurements for the examined algorithms.

• Chapter 7 presents and discusses the empirical results for all the algorithms described

in chapters 3, 4 and 5. The chapter also highlights the optimal structure, model

orders and parameters for the different algorithms.

• Chapter 8 concludes the thesis, provides a summary of the conducted research and

highlights some important directions for future work.

Additional details are provided in the appendices and are organized as follows:

• Appendix A provides a list of the test data used for the empirical analysis in order

to allow future researchers to replicate the results from this thesis.

• Appendix B lists the optimal parameter configurations for all examined algorithms.

• Appendix C serves as an extension to chapter 7, containing a detailed report on

the noise detection results.

• Appendix D expands chapter 7 with more elaborate results generated by the

interpolation algorithms.

• Appendix E provides a summary of the acronyms used in this thesis.

• Appendix F lists the important mathematical symbols and notations used

throughout the chapters.

• Appendix G contains a list of publications derived from the research of this thesis.
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Chapter 2

Gramophones and Audio Processing

The purpose of this chapter is to provide a background for the fundamentals of digital

signal processing with a specific reference to the digital processing of audio recorded

from gramophone records. Technical aspects of storing audio in a digital format is

given, followed by an overview of the mechanics, dynamic range and frequency response

of gramophone records and turntables. The basic mathematics used in digital signal

processing is provided, which will be utilized by the algorithms in chapter 3, 4 and 5.

2.1 Digital Audio Formats

Computers use pulse code modulation (PCM) to represent and sample discrete values

from a continuous signal. PCM samples the amplitude of a signal at uniform intervals

and stores it as the nearest quantity in a predefined range. The quantization levels vary

as a function of the amplitude, which are typically determined using the µ-law or A-law

algorithms [191]. If the quantization levels are linearly uniform, it is known as linear

pulse code modulation (LPCM). PCM is often used to describe LPCM data. Alternatives

to PCM include pulse width modulation (PWM) and pulse position modulation (PPM)

which are, however, rarely used in audio coding.

In order to work with a discrete signal on a software level, a hardware device that

is capable of converting a continuous (analogue) signal to and from a discrete (digital)

signal is needed. A device handling the forward conversion is called an analogue-to-digital

8
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Chapter 2. Gramophones and Audio Processing 9

(ADC) and the backward conversion device is known as a digital-to-analogue (DAC).

The ADC has two components, namely the sampler and quantizer which is illustrated in

figure 2.1. The sampler captures the continuous signal, f(t), at certain intervals, known

as sample and hold in electronics, which is then used by the quantizer to generate a

digital signal, fq(n), using discrete quantities.

Sampler Quantizer

f(t) fq(n)f(n)

Figure 2.1: The sampler and quantizer of an ADC.

The rest of this section will discuss various factors that influence the structure, quality

and storage size of digital audio data encoded with PCM. These factors include the codec,

sample rate, sample type, sample size, endianness and the number of channels, each

discussed in a subsection below.

2.1.1 Audio Codecs

On a software level an audio codec is a set of algorithms and procedures needed to convert

a set of discrete samples into a compressed format (encoding) and vice versa by means

of decompression (decoding). The main purpose of a codec is to reduce the storage size

compared to the raw samples with limited or no reduction in fidelity and to add headers

containing essential metadata needed to decode and play back the audio. Most audio

codecs divide the original signal into chunks. If all chunks follow the same format and

convention, only a single header is added to the audio file. If chunks have a different

format, headers have to be added to each individual chunk. Although the latter approach

has an increased storage size due to the additional headers, it allows each chunk to be

compressed optimally according to the sample values which will reduce the overall file

size.

Audio codecs can be classified into lossless and lossy compressions. Lossless

compression allows the original signal to be fully reconstructed, whereas lossy compressions

only approximates the original signal but has a smaller storage size.
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Chapter 2. Gramophones and Audio Processing 10

One of the most well-known and oldest audio formats is the Waveform Audio

File Format (WAVE or WAV) [181] which is part of Microsoft’s and IBM’s Resource

Interchange File Format (RIFF) [182]. Although not an audio codec itself, WAVE can

make use of other codecs to compress individual chunks. Most WAVE files do not use

any compression, where samples are stored in raw PCM as a single sequential chunk with

a single header, allowing lossless data storage. Drawbacks of WAVE files include the

limitation of only two channels (extensions allow for multi-channel data), big file sizes

(can be reduced by making use of other codecs) and a maximum file size of 4GB due

to its use of 32 bit unsigned integers (an extension of the format makes use of 64 bit

integers).

Lossless codecs include the Free Lossless Audio Codec (FLAC) [93], Apple Lossless

Audio Codec (ALAC) [10] and the MPEG-4 Audio Lossless Coding (ALS) [163]. Some of

the most well-known lossy codecs include MPEG-1 and MPEG-2 Audio Layer III (MP3)

[117], Advanced Audio Coding (AAC) [207], Windows Media Audio (WMA) [183] and

Ogg Vorbis (OGG) [92].

2.1.2 Sample Rate

The sample rate is the frequency at which PCM samples the amplitude and is determined

by the number of samples per second measured in Hertz (Hz). The process of the sampler

in figure 2.1 to convert a continuous signal f(t) to a discrete signal f(n) can be expressed

mathematically as

f(nν) = f(t)δ(t− nν) (2.1)

where ν is the sample interval and δ the Dirac delta function defined as

δ(t) =

1 for t = 0

0 otherwise
(2.2)

The sample rate affects the frequency response of the reproducing system. Higher rates

have a higher frequency response, but also lead to larger file sizes.
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Chapter 2. Gramophones and Audio Processing 11

Theorem 1: Nyquist-Shannon A signal can be completely determined by a series of

points that are sampled at a frequency at least twice the maximum frequency contained in

the signal.

Neither music instruments nor human speech exceed frequencies of 20 kHz, with

most of them rarely exceeding 10 kHz [230]. The human ear is capable of observing

frequencies between 20 Hz and 20 kHz [127], with most adults not able to hear frequencies

above 15 kHz [100]. Taking the Nyquist-Shannon theorem into account, a signal with a

maximum frequency ν can be fully reconstructed from a set of discrete points sampled

at a frequency greater or equal to 2ν. The optimal frequency range for sampling music

is therefore 2× 20kHz = 40kHz. The sample rate is typically chosen somewhat higher

than 40kHz to accommodate low-pass filters which prevent aliasing having a finite slope.

Oversampling occurs when sampling rates are significantly higher than what is suggested

by the Nyquist-Shannon theorem.

A rate of 44.1 kHz is the standard used to sample CD audio, downloadable music

(MP3) and low quality videos (Video and Super Video CD) where both the video and

audio data is sampled at 44.1 kHz. Another widely used sampling rate utilized by

professional equipment is at 48 kHz, used for digital TV, DVD, mixing consoles and

digital recording devices. 96 kHz and 192 kHz started to be used with the introduction of

DVD-Audio, HD DVD and Blu-ray discs. Higher sampling rates can relax the low-pass

filter design requirements in traditional DACs and ADCs, but are less important with

modern converters. Although sampling rates above 50 kHz mostly do not improve the

listening experience of humans, ultrasonic frequencies interact and modulate the audible

part of the frequency spectrum, known as intermodulation.

2.1.3 Sample Type and Size

Besides the sample rate, the sample size or bit depth determines the quality of the PCM

data. The quantizer in figure 2.1 takes the measurement from the sampler and generates

quantities in a range defined by the bit depth. The sample size is the number of bits

that are used to store a single value with ranges typically chosen as a power of two, that

is 2n. Although a large sample size increases the dynamic range of the system, it also
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Chapter 2. Gramophones and Audio Processing 12

increases the file size. A linear increase in the sample size has an exponential increase in

the dynamic range.

The signal-to-noise ratio (SNR) is the measurement of power between the desired

signal and the background noise, defined as

SNR =
Psignal
Pnoise

=

(
Asignal
Anoise

)2

(2.3)

where P is the average power and A is the root mean square (RMS) amplitude. Since

audio systems have a very wide dynamic range, the SNR is often expressed as a logarithmic

decibel (dB) scale, calculated as

SNRdB = 10 log10

(
Psignal
Pnoise

)
dB (2.4)

The RMS of a signal y with n samples is given as

RMS =

√√√√ n∑
i=1

y2
i

n
(2.5)

The crest factor C is the peak amplitude Â divided by the RMS of the signal. The

peak-to-average-power ratio (PAPR) is the squared crest factor, defined as

PAPR = C2 =

(
Â

RMS

)2

(2.6)

The sample size limits the SNR to a maximum level which is determined by the

quantization error. The ADC introduces a quantization error when digitizing the analogue

voltage input, which is ideally a uniform distribution between ±1
2

of the least significant

bit. The average signal-to-quantization-noise ratio (SQNR) is calculated from the bit

depth b [96] and measured in decibels as follows:

SQNRavg ≈ 6.02b+ 4.77− 10 log10(PAPR) dB (2.7)

If the input is a sinusoid, the PAPR is equal to two, simplifying equation (2.7) to

SQNRsin ≈ 6.02b+ 1.76 dB (2.8)
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Chapter 2. Gramophones and Audio Processing 13

Using equation (2.8) above, the SQNR can be calculated for different sample sizes. Table

2.1 lists commonly used integer sample sizes with the corresponding unique values for

the samples and the SQNR for the given bit depth.

Table 2.1: The SQNR and corresponding number of possible values for different sample sizes.

Bit Depth Possible Unique Values SQNR (dB)

4 16 25.84

8 256 49.92

16 65536 98.08

20 1048576 122.16

24 16777216 146.24

32 4294967296 194.40

64 18446744073709551616 387.04

Due to the limitations in modern integrated circuit design, most ADCs rarely exceed

a SNR of 120 dB which is at a sample size just under 20 bits [237, 266]. Due to this

limitation, most audio, including CDs, downloadable MP3s and DVDs, is sampled at 16

bits. Some DVDs adopted a 20 bit format with Blu-rays and HD audio making use of

24 bits. Bit depths beyond 24 bits are rarely utilized and mostly limited to professional

recording equipment.

The sample type is directly related to the bit depth. Samples can be stored as

integers (signed or unsigned) or decimal values. Most formats and codecs make use of

unsigned 16 bit integers with a limited few codecs allowing decimal values to be stored.

When digitally processing audio, the bit depth is dependent on the underlying hardware,

operating system and programming language, and is typically restricted to primitive data

types, namely char (8 bit), short (16 bit), int (32 bit), long (64 bit) and the decimal

types float (32 bit) and double (64 bit). Digitally processing any bit depths in between

the previously listed ones, either requires a storage overhead, since not all bits in a

memory block are utilized, or requires the use of bit shifting, which reduces processing

performance and is not available in all programming languages.
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2.1.4 Endianness

Endianness or the bit order is the organization of 8 bit units (bytes) in memory. Although

it does not have an affect on the audio quality, it is important for the direction of reading,

writing and the processing of samples in memory. Computer memory is divided into

units, each with a unique address, where the smallest assignable unit is 8 bits. Primitive

data types (8, 16, 32 and 64 bits) are generally stored in consecutive memory addresses.

The endianness determines in which order the individual bytes are store in a consecutive

memory block. Big-endian systems store the most significant byte in the smallest address

and use the last address for the least significant byte. Little-endian systems handle

storage the opposite way, with the most and least significant bytes stored in the largest

and smallest address respectively.

Little-endianness is known as the Intel convention, since the Intel x86 and x86-64

processors make use of this format. Big-endianness is used less often and known as the

Motorola convention for being used on the Motorola 6800 and 68k processors. Bi-endian

systems allow the switch between these two formats and amongst others include the

ARMv3 (and above), PowerPC and Alpha architectures.

2.1.5 Channels

Channels refer to the individual recorded signals contained in a single audio track.

Although very similar, the signals from different channels sampled at the same time

during a multichannel recording still differ, since they were obtained from different sources

in the same environment. The sources are typically microphones stationed at various

places during a recording session. Signals contain more characteristics of the sound wave

the closer they are placed the originating source.

Traditionally a single channel (mono) was used for recording audio. Music from

modern sources are typically distributed with two channels (stereo). Although some

music releases are available as multichannel data, surround sound systems using six or

eight channels are mostly used for audio accompanying video data (Dolby Digital or DTS

audio on DVD and Blu-ray discs). Multichannel data is typically stored as interleaving

samples.
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Chapter 2. Gramophones and Audio Processing 15

2.2 Gramophones

This section discusses the basic concepts of gramophone records, turntables, the dynamic

range and frequency response of gramophone systems, and gives a broad overview of

different types of noise affecting record playback.

2.2.1 Gramophone Mechanics

Gramophone records are flat discs with continuous grooves on both sides of the disc.

The diameter of the grooves typically range from 20 µm to 80 µm and run from the

periphery to the center of the disc. A cartridge with a needle is mounted at the end of

the turntable arm that runs through the grooves, generating a sound wave by swivelling

from side to side as illustrated in figure 2.2(a). Traditionally, these needles were made

of metal which reduced the fidelity of the records and produced a poor sound quality.

Modern cartridges have a more sophisticated stylus with a hardened point, typically a

small diamond or sapphire. Although cartridges are only a small part of turntables, they

are the component that influences the sound quality the most, with some selling for as

much as $20,000 [228].

Standard gramophone records are produced in three different sizes, with diameters of

12 in (30.48 cm), 10 in (25.4 cm) and 7 in (17.78 cm). Playback of the records are done

at rotational speeds of 331
3

rpm, 45 rpm and 78 rpm with 78 rpm records rarely being

issued since the 1950s. The combination of the diameter and rational speed determines

the time capacity and are generally divided into long-play (LP), typically between 30 to

50 minutes, extended-play (EP) holding about 25 minutes and the single-play (SP) with

a typical capacity of under 10 minutes.

Monophonic records were the standard until the mid 1960s when the improvements of

turntables replaced them with stereophonic records. Figure 2.2(b) illustrates that mono

records have the same contours on both sides of the grooves, but differ on stereo records

to accommodate the reproduction of two sound waves. In the early 1970s quadrophonic

records were introduced and although without a commercial success, it provided the

initial research for modern surround sound systems. Quadrophonic records did not have

a separate source for each channel like modern multichannel audio, but appeared to
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Chapter 2. Gramophones and Audio Processing 16

Groove

Stylus

ContactContact

(a) The stylus swivels between the sides of the

groove to generate a sound wave.

Mono Stereo

(b) The mono groove contours are the same on

both sides, but differ on stereo records.

Figure 2.2: The workings and grooves of gramophone records.

have an ordinary stereo recording. Separate carriers with different frequency ranges were

added to both sides of the groove and during playback the left and right channels were

subtracted and combined to generate four channels of audio.

2.2.2 Dynamic Range of Gramophones

Since gramophone records are an analogue medium, the dynamic range is theoretically

infinite. In practice, however, the dynamic range is physically limited by the groove width.

The dynamic range improves with an increase in the groove width, but at the same time

the playback duration of the record will decrease. A wider dynamic range that keeps the

original duration can be accomplished by increasing both the groove width and placing

grooves closer to each other. The drawback of this approach is that the gap between

parallel grooves are smaller which can lead to an accelerated sound quality reduction,

since the gap can completely disappear through extensive playback.

Between the 1960s and 1980s research was conducted to increase the dynamic range and

reduce the inner-groove distortions. These methods improved disc cutting equipment and

special playback equipment which was mostly incompatible with standard gramophones.

The most notable projects in this field includes the Dynagroove, CBS DisComputer,

Teldec Direct Metal Mastering and the dbx-encoded records. Due to the drawbacks and

the small market niche, the projects had limited commercial success and were quickly
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Chapter 2. Gramophones and Audio Processing 17

discontinued.

Since gramophones are analogue and therefore can reproduce a continuous signal

which is only limited by the accuracy of the disc cutting equipment, little research

has been done since the 1980s to improve the dynamic range. Audiophiles often argue

that the sound quality of an analogue medium is better due to the infinite number of

values of a continuous function, but when sampling at the optimal rate and taking the

Nyquist-Shannon theorem into account, the human ear will not be able to distinguish

between the quality of modern digital and analogue mediums.

2.2.3 Frequency Response of Gramophones

Gramophone records that are acoustically recorded have a frequency response from 168

to 2000 Hz [177]. Electronic recordings improved the range from 100 to 5000 Hz. The

record itself has little effect on the frequency response, whereas the playback equipment,

especially the stylus cartridge, has the main impact that determines the frequency

response. With the introduction of quadrophonic records such as the Compatible Discrete 4

(CD-4), sub-carriers used special frequency modulation-phase modulation-single sideband

frequency modulation (FM-PM-SSBFM) to increase the maximum frequencies to 45 kHz.

Inexpensive modern cartridges typically have a minimum frequency response close to that

of the human ear at 20 Hz to 20 kHz, but often go up to 50 kHz. Expensive cartridges

have a response from 20 Hz to 100 kHz [228]. Since human speech and instruments do not

exceed this range, modern gramophones, turntables and cartridges are able to capture

and reproduce most frequencies present in natural speech and music.

2.2.4 Gramophone Noise and Distortions

Noise from gramophone records can be caused by various external factors, such as scratches,

dust particles, extensive playback, sunlight and heat, improper storage, mechanical

imbalances and room vibrations. Figure 2.3(a) is a magnification of an used record with

some minor scratches which will have little effect on the reproduced sound wave. Dust

particles and a microscopic thread can be seen in figure 2.3(b). Figures 2.3(c) and 2.3(d)

show a wide scratch which will cause a substantial disruption during playback. Noise,
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Chapter 2. Gramophones and Audio Processing 18

such as small dust particles, mechanical or room vibrations has a minor impact on the

sound wave, often only on the subsonic frequencies, which makes the noise difficult to

detect. Since these frequencies can not be observed by the human ear, they will not be

further discussed in this thesis. Other kinds of noise such as extensive playback or the

warping of the record as a result of sunlight, has a serious impact on the entire sound

wave. Since almost all samples are disrupted, it is difficult to mathematically reconstruct

this kind of noise. In addition, playing these records can sometimes damage the turntable

and stylus and are therefore often discarded by their owners. This thesis focuses on the

noise that is caused by scratches, often referred to as crackles and pops. Scratches causes

most of the observable disruptions during gramophone playback and since only a part

of the sound wave is affected, can be mathematically reconstructed with the unaffected

samples.

2.3 Digital Signal Processing Basics

Digital signal processing (DSP) is the field of mathematics that deals with the

manipulation of discrete time or discrete frequency signals that were often obtained

from continuous signals in order to improve, modify or extract information from the

signal. This section discusses some basic concepts and mathematics of DSP which are

being used by various models and algorithms in chapters 3, 4 and 5.

In statistics a sample refers to a set of observations collected from a larger population.

In audio processing a sample refers to a single observation holding a value within a

discrete range. Throughout this thesis a sample, observation or data point denotes a

single discrete value and a collection will be referred to as a sample set. In statistics

it is also important to distinguish between the population and sample mean, variance,

standard deviation and all related concepts. When working with the population, all

observations from the signal are used. In contrast, the sample mean and variance only

use observations from a subset of the population. Since it makes little sense to use the

entire population when processing a song, the mean, variance and related concepts are

assumed to be calculated from a sample subset and not the entire signal. A discrete

sample set is denoted as y with n samples which are represented by the sample values yi
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(a) A clean record with some minor scratches

across the grooves.

(b) A record with dust particles and a small

thread.

(c) A record with a scratch only affecting some

grooves.

(d) A record with a large scratch affecting

multiple grooves.

(e) The cross section of a record.

Figure 2.3: Magnified gramophone records distorted by scratches and dust particles.
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Chapter 2. Gramophones and Audio Processing 20

for i ∈ {1, 2, . . . , n}. xi refers to the time delay of the ith sample.

2.3.1 Time and Frequency Domains

An audio time-domain signal stored as PCM is plotted with the amplitude of the sound

wave against the time. The time-domain therefore illustrates how the signal’s values

change over time. For instance, a three minute song encoded at 44.1 kHz will contain

7938000 samples in each channel, where the samples are quantized approximately every

22.7 µs.

A time-domain signal can also be represented in the frequency-domain, known as

a frequency spectrum. Values are usually plotted as either amplitude or phase against

frequencies. The Fourier transform (FT) can be used to translate a integrable time-domain

function, f(x), into the frequency-domain. The FT is defined as

f(ξ) =

∫ ∞
−∞

f(x) e−2jπxξ dx (2.9)

where f(ξ) is the amplitude or phase of the signal at a given frequency ξ. The frequency

spectrum can be translated back into the time-domain, known as the Fourier inversion

theorem [94], which was proven by Titchmarsh more than a century later [242]. The

inverse Fourier transform (IFT) is defined as

f(x) =

∫ ∞
−∞

f(ξ) e2jπξx dξ (2.10)

The discrete Fourier transform (DFT) is used to transform the discrete series y with a

finite number of samples, n, into the frequency-domain as follows:

fξ =
n∑
i=1

yie
−2jπξi/n (2.11)

Since the time-domain signal is discrete, the resulting spectrum also contains discrete

frequencies. The discrete finite frequency spectrum of the DFT stands in contrast to the

discrete time Fourier transform (DTFT) which produces a continues periodic frequency

spectrum from an discrete infinite input signal. DFTs are computationally expensive.

The fast Fourier transform (FFT) is an algorithm to efficiently compute the DFT and its
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Chapter 2. Gramophones and Audio Processing 21

inverse by factorizing the DFT matrix into a product of sparse factors. Although the

idea of FFTs already existed from 1805, it did not gain widespread acceptance until 1965

with the Cooley-Tukey algorithm [46] during the popularization of computers.

2.3.2 Least Squares Regression

Least squares regression approximates the unknowns of an overdetermined system, that is

a system with more equations than unknowns. Attributed to Gauss [102], a least square

fit aims to find the set of coefficients that will minimize the sum of squared errors between

the observed and approximated values. Least squares regression can be categorized into

linear least squares (LLS) and nonlinear least squares (NLS) regression. LLS, also referred

to as ordinary least squares, has a closed-form solution, meaning that the system can

be solved in a finite number of operations. LLS is globally concave and will converge

to a unique solution. NLS on the other hand has no closed-form solution, requiring an

iterative process to improve the current solution. Non-convergence is a common problem

in NLS, since there might be multiple minima for the sum of squares. LLS is discussed

below, but NLS is left for further reading [15].

A system of linear equations can be expressed in matrix form as follows:

Xα = y (2.12)

where X is a matrix that holds the expressions, y a vector that contains the solutions

to the expressions and α the unknown coefficients that have to be approximated. For

a discrete function with a set of n data points (xi, yi) for i ∈ {1, 2, . . . , n}, matrix X is

typically constructed with a routine that uses the xi values and vector y with the yi values.

The objective function for the regression with a linear combination of the coefficients

measures the difference between the observed and approximated values, defined as

S(α) = ‖y −Xα‖2 =
n∑
i=1

[
yi −

d∑
j=1

Xijαj

]2

(2.13)

where d is the number of coefficients, corresponding to the number of columns in X. In a

later publication by Gauss [103], it was suggested that the Laplace mean absolute error

should be used instead of the sum of squared errors, defined as
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M(α) =
1

n

n∑
i=1

∣∣∣∣∣yi −
d∑
j=1

Xijαj

∣∣∣∣∣ (2.14)

SinceM(α) requires an additional division operation and the absolute value operation

is slower than calculating the squares by multiplication, S(α) is typically used as objective

function for LLS in modern computer systems. The objective of LLS is to find the set of

parameters α̌ that best fit the given data, therefore minimizing the sum of squares. This

objective can be formulated as

α̌ = arg min
α

S(α) (2.15)

The minimization problem can then be solved by

(XTX)α̌ = XTy (2.16)

where XT is the transpose of matrix X. In order to solve the coefficients, equation (2.16)

is rearranged as

α̌ = (XTX)−1XTy (2.17)

which is easily computed by matrix transposition, inversion and multiplication. Equation

(2.17) is also expressed as

α̌ = X+y (2.18)

where X+ is the Moore-Penrose pseudoinverse of X, which is a generalization of the

inverse matrix, calculated using singular value decomposition (SVD) [24, 186, 205].

Inverting a matrix with normal equations is computationally expensive. A more efficient

approach can be used when the matrix XTX from equation (2.17) is positive definite

and well-conditioned. In such a case, the normal equations are directly solved with a

Cholesky decomposition [18], defined as

CTCα̌ = XTy (2.19)
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where C is an upper triangular matrix. The first step in the Cholesky decomposition is

to solve ω by forward substitution, in other words

CTω = XTy (2.20)

The second step uses ω to solve α̌ through backward substitution, that is

Cα̌ = ω (2.21)

Besides the normal equations, other alternatives exists for solving the least squares

problem, such as QR decomposition. QR decomposition is the basis of the QR transform,

an eigenvalue algorithm independently developed by Francis [97, 98] and Kublanovskaya

[155]. It is an orthogonal method that decomposes the matrix X into a product

X = QR (2.22)

where Q is an orthogonal matrix and R an upper triangular matrix [8]. Although QR

decomposition is computationally more expensive than normal equations, it is numerically

more stable since it is not required to evaluate XTX. QR decomposition may still fail if

the matrix X is nearly rank deficient, meaning that X has a rank close to the largest

possible value [257]. Another orthogonal alternative is SVD where X is decomposed into

a product,

X = UΣV∗ (2.23)

where U is an orthogonal matrix, Σ a rectangular diagonal matrix with a non-negative

diagonal, and V∗ the conjugate transpose of an orthogonal matrix V [116]. SVD is even

more computationally expensive than the QR approach, but is numerically stable and

can handle rank deficiency [159].

2.3.3 Expected Value

The expected value is the weighted average of all possible values, where each value is

multiplied by the probability of the event occurring. Essentially, the expected value can

be seen as the calculated average of the outcome of an experiment repeated indefinitely,
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where each outcome is assigned a probability of occurrence. The expected value of a

signal y is defined as

E[y] =
y1p1 + y2p2 + · · ·+ ynpn

p1 + p2 + · · ·+ pn

=

∑n
i=1 yipi∑n
i=1 pi

(2.24)

where pi are the probabilities. Since the probabilities should add up to one, the equation

is simplified to

E[y] = y1p1 + y2p2 + · · ·+ ynpn

=
n∑
i=1

yipi
(2.25)

The expected value of a m× n matrix Y is written as

E [Y] =


E [Y1,1] E [Y1,2] · · · E [Y1,n]

E [Y2,1] E [Y2,2] · · · E [Y2,n]
...

...
. . .

...

E [Ym,1] E [Ym,2] · · · E [Ym,n]

 (2.26)

2.3.4 Variance

Variance is the measurement of how much the samples are spread out. The population

variance is defined as

σ́2 = E
[
(y − E [y])2]

= E
[
y2
]
− (E [y])2

(2.27)

The expected value of y is represented by the population mean µy of y. Using a subset of

the population y with a known sample mean ȳ, the sample variance is calculated using

σ́2
y =

1

n

n∑
i=1

(yi − ȳ)2 (2.28)
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Equation (2.28) is biased, since it does not correspond to the degree of freedom in the

vector of residuals for the sample set. Applying Bessel’s correction [148], the unbiased

sample variance is given by

var(y) = σ2
y =

1

n− 1

n∑
i=1

(yi − ȳ)2 (2.29)

The unbiased sample variance is used in this thesis when referring to the variance, except

if otherwise stated.

2.3.5 Covariance

Covariance is the measurement of the correlation strength between multiple random

variables. Given two random variates y and z, the population covariance is defined as

cov(y, z) = E [(y − E [y]) (z − E [z])]

= E [yz]− E [y] E [z]
(2.30)

If the covariance cov(y, z) is positive, z increases with an increase in y. If the covariance is

negative, z decreases as y increases. As with the variance, there is a biased and unbiased

covariance. The unbiased sample covariance is used in this thesis, except if otherwise

stated. When replacing the expectation of y and z with their respective sample means, ȳ

and z̄, the unbiased sample covariance is calculated by

cov(y, z) =
1

n− 1

n∑
i=1

(yi − ȳ) (zi − z̄) (2.31)

where y and z both have n number of samples. A special case exists when calculating the

covariance with the same random variate. If y and z are equal, the covariance simplifies

to the variance of y as follows:

cov(y, y) = cov(y) = E
[
y2
]
− (E [y])2 = var(y) (2.32)

The covariance matrix of random vectors y and z is calculated by
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cov(y, z) = E
[
(y − E [y]) (z− E [z])T

]
= E

[
yzT

]
− E [y] E [z]T

(2.33)

The relationship between the vectors y and z is more explicitly represented as the

population covariance matrix, given as

cov(y, z) =


E [(y1 − µy) (z1 − µz)] · · · E [(y1 − µy) (zm − µz)]
E [(y2 − µy) (z1 − µz)] · · · E [(y2 − µy) (zm − µz)]

...
. . .

...

E [(yn − µy) (z1 − µz)] · · · E [(yn − µy) (zm − µz)]

 (2.34)

with n and m the size of vectors y and z respectively. The mean vector is often referred

to as the centroid and the covariance matrix as the dispersion.

2.3.6 Autocovariance

Autocovariance is the covariance of a random variate with a time-shifted version of itself.

If two samples are selected at time t and s respectively and the variate expectation is the

population mean at the given times, the population autocovariance is defined as

acov(yt, ys) = E [(yt − µt) (ys − µs)] (2.35)

The corresponding unbiased sample autocovariance is calculated using

acov(yt, ys) =
1

n− 1

n∑
i=1

(yt+i − ȳt) (ys+i − ȳs) (2.36)

where ȳt and ȳs are the sample means of y at time delay t and s respectively. The

covariance matrix in equation (2.34) for a time-shifted version of vector y has a diagonal

equal to the variance of y at the intervals specified by the diagonal. This matrix is known

as the variance-covariance matrix and is computed using the variances and covariances

as follows:
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cov(y) =


var(y1) cov(y1, y2) · · · cov(y1, yn)

cov(y2, y1) var(y2) · · · cov(y2, yn)
...

...
. . .

...

cov(yn, y1) cov(yn, y2) · · · var(yn)

 (2.37)

Since it makes little sense in DSP to compute the matrix in equation (2.34) with two

different independent vectors, the terms covariance and variance-covariance matrix are

used interchangeably when computed on a time-shifted version of the same signal. If the

joint probability distribution does not change if the time is shifted by τ , y is a stochastic

process with µt = µs. In the case of a stochastic process with τ = s− t, equation (2.35)

simplifies to

acov(yt, yt−τ ) = E [(xt − µy) (yt−τ − µy)]

= E [ytyt−τ ]− µ2
y

(2.38)

The unbiased sample autocovariance given in equation (2.36) is used in this thesis, except

if otherwise stated.

2.3.7 Standard Deviation

The standard deviation is the measurement of how much the samples variate from the

mean and is calculated as the square root of the population variance, defined as

σ =
√

E
[
(y − µy)2] (2.39)

The uncorrected sample standard deviation is calculated using

σ́y =

√√√√ 1

n

n∑
i=1

(yi − ȳ)2 (2.40)

Applying Bessel’s correction, equation (2.40) is rewritten as the corrected sample standard

deviation, given as

σy =

√√√√ 1

n− 1

n∑
i=1

(yi − ȳ)2 (2.41)

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 2. Gramophones and Audio Processing 28

The bias of the variance in equation (2.41) was removed, but the bias of the square root

still exists. According to Jensen’s inequality [144], since the square root is a concave

function, additional adjustments have to be applied for an unbiased estimation that

depends on the distribution of the sample set. The difference between the corrected and

uncorrected standard deviation is only substantial for small sample sets and becomes less

significant as n increases. An unbiased version that takes Jensen’s inequality into account

has an even less significant influence on the estimation. Since the unbiased standard

deviation requires the underlying distribution of the sample set to be known, which is

difficult to determine for a random processes, it is rarely used in DSP. The corrected

sample standard deviation is used in this thesis when referring to the standard deviation,

except if otherwise stated.

2.3.8 Convolution

Convolution is an integral that measures the amount of overlap when a function g is

shifted over another function f . Shifting g over f , which are both objects in the algebra

of Schwartz functions in Rn, will produce a third function from the product of g and f

that represents the overlapping area between the two functions. The convolution of f

and g over a finite range [0, t] is expressed as an integral transform as follows:

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ (2.42)

Using discrete functions y and z, the discrete convolution is defined as

con(y, z) = (y ∗ z)t =
n∑
τ=0

yτzt−τ (2.43)

The convolution in equation (2.43) assumes causality. A system is said to be causal if

its outputs are only depended on the current and past inputs and do not depend on

future inputs. Due to the forward processing of audio signals, this thesis utilizes causal

convolution, except if stated otherwise.

The symmetric properties of convolution allow the time delay τ to be applied to either

one of the functions. Since both y and z have a finite number of samples, the convolution

can only be calculated if t ≥ 0. Entries outside the respective ranges of y and z are zero.
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The convolution will therefore also be zero if t < 0, since one of the signals will have a

value of zero at the given time delay τ .

2.3.9 Crosscorrelation

Crosscorrelation is the measurement of similarity between two functions and is similar in

nature to convolution. The discrete crosscorrelation is given as

(f ? g)t =
∞∑

τ=−∞

y∗τzt−τ (2.44)

where y∗ represents the complex conjugate of y. Crosscorrelation is used to determine the

time delay between two similar signals. The signals are aligned by iteratively increasing

the delay until the crosscorrelation is maximized. The time delay τ between y and z is

calculated in number of samples as follows:

τ = arg max
t

(y ? z)t (2.45)

The Pearson product-moment correlation coefficient, or simply the correlation coefficient,

is the measure of the linear correlation between two variables. The correlation coefficient

is the commonly used to determine how closely y matches z and is calculated by

cor(y, z) =
E [(y − µy) (z − µz)]√

E
[
(y − µy)2]√E

[
(z − µz)2]

=

∑n
i=1 (yi − µy) (zi − µz)√∑n

i=1 (yi − µy)2∑n
i=1 (zi − µz)2

(2.46)

Equation (2.46) is the normalized covariance, that is the covariance between y and z

divided by the product of their standard deviations. Like convolution and covariance,

crosscorrelation is symmetric, making corr(y, z) equivalent to corr(z, y).

The crosscorrelation matrix of vector y is represented in matrix form as
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cor(y) =


1 cov(y1, y2) · · · cov(y1, yn)

cov(y2, y1) 1 · · · cov(y2, yn)
...

...
. . .

...

cov(yn, y1) cov(yn, y2) · · · 1

 (2.47)

which is the variance-covariance matrix in equation (2.37) with the variance on the

diagonal equal to one.

2.3.10 Autocorrelation

Autocorrelation is the crosscorrelation of a signal with itself at a given time delay. Given

the sample mean µt and µs at time delay t and s respectively, the biased autocorrelation

of signal y with n data points is defined as

acor(ys, yt) =
E [(yt − µt) (ys − µs)]√

E
[
(yt − µt)2]√E

[
(ys − µs)2] (2.48)

If y is stochastic where the mean and standard deviation are time-independent, the

autocorrelation simplifies to the normalized autocovariance, given as

acor(yt, yt−τ ) =
E [(yt − µy) (yt−τ − µy)]

E
[
(y − µy)2]

=
acov(yt, yt−τ )

var(y)

(2.49)

Although equation (2.48) is a biased estimator, it is still asymptotically unbiased.

Alternatively, the autocorrelation can be calculated by

acor(y) =

∑n−t
i=1 (xi − µ)(yi+t − µ)

(n− t)
(2.50)

which has a lower bias than equation (2.48), but is susceptible to a higher mean square

error [143].
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2.3.11 Partial Autocorrelation

Partial autocorrelation was introduced for the order identification of Box-Jenkins models

[29]. Partial autocorrelation is the autocorrelation between observation yi and yi+t

with the linear dependency from intervening sample yi+1 through to yi+t−1 removed.

Unlike the normal autocorrelation, partial autocorrelation is not accounted for, for lags 1

through to t− 1. The partial autocorrelation sequence can be solved by calculating the

autocorrelations, inserting the autocorrelations into the Yule-Walker equations and then

determining the best linear projection by solving the system of Yule-Walker equations

through LLS regression. In practice, the application of the Levinson-Durbin recursion

[60, 161] is more efficient and is calculated with two recursive equations where the first

partial autocorrelation is equal to the first autocorrelation, that is

pac1,1(y) = acor1(y) (2.51)

Furthermore, the partial autocorrelation for i ∈ {1, 2, . . . , t−1} using the Levinson-Durbin

approach is calculated using

pact,i(y) = pact−1,i(y)− pact,t(y)pact−1,t−i(y) (2.52)

The rest of the partial autocorrelations for t > 2 are determined by

pact,t(y) =
acort(y)−

∑t−1
i=1 pact−1,i(y)acort−i(y)

1−
∑t−1

i=1 pact−1,i(y)acori(y)
(2.53)

2.3.12 Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC) is a statistical measurement of the linear

dependency between two variables x and y [101, 204]. The linear relationship is in [−1, 1],

where zero indicates that no linear correlation exists. A PCC of positive one describes a

perfect linear correlation, such that if x increases, y increases as well. A PCC of negative

one implies that if x increases, y decreases. The sample PCC is defined as

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.54)
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for a sample size of n and x̄ and ȳ the sample mean of x and y respectively. The confidence

intervals for Pearson’s r is based on Fisher’s r-to-z transform [83, 85], defined as

z =
1

2
ln

(
1 + r

1− r

)
(2.55)

If the pairs (xi, yi) are independent variables and (x, y) has a bivariant normal distribution,

then z is approximately normally distributed with a mean

µz =
1

2
ln

(
1 + ρ

1− ρ

)
(2.56)

where ρ is the population correlation of which r is an estimate. Under a bivariant normal

distribution, z has a standard error of

sez =
1√
n− 3

(2.57)

The 95% confidence levels in the z-space are then calculated using

cz = z ± 1.96sez (2.58)

To determine the confidence levels in the r-space, the inverse of the z-transformed is used

as follows:

cr =
e2cz − 1

e2cz + 1
(2.59)

2.4 Summary

This chapter provided a broad overview of how audio data is stored in a digital format

with reference to codecs, sample rates, sample sizes, endianess and the number of channels.

A clarification on the mechanics, playback, dynamic range and frequency response of

gramophone records and turntables was given, as well as the noise causing disruptions

during playback. The difference between the time- and frequency-domain was highlighted

and the mathematical basis of LLS was given. Fundamental DSP mathematics were

discussed, including variance, convolution, correlation and Pearson’s correlation coefficient.
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Chapter 3

Signal Modelling

Signal modelling is the process of mathematical representing a signal, f(x), as a model,

m(x), with a set of parameters, such that

m(x) u f(x) (3.1)

Complex signals such as audio data are difficult to model perfectly and the parameters

are therefore only an approximation of the true signal. Depending on the characteristics

of the signal, the nature of the mathematical model and the chosen parameters, certain

parts of a fluctuating signal might be modelled with high accuracy. However, using the

same model on a different part of the signal might result in a very poor approximation.

The process of modelling a discrete signal typically involves the selection of a model with

a set of coefficients in such a way that it runs through all given discrete points as closely

as possible. Amongst other things, models are used for signal compression, prediction,

interpolation, pattern recognition, and the characteristics analysis of signals.

This chapter outlines the basics of a number of functions that can be used to

model audio data. Linear models include the standard, Fourier, Newton and Lagrange

polynomials which can also be employed using osculating, Hermite and piecewise

polynomials. Models that can be applied in a linear and non-linear fashion include the

autoregressive, moving average, autoregressive moving average, autoregressive integrated

moving average, autoregressive conditional heteroskedasticity, generalized autoregressive

conditional heteroskedasticity models and artificial neural networks. The theoretical basis

33
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for the given models is presented in this chapter, with their application for extrapolation

given in chapter 4 and interpolation given in chapter 5.

3.1 Standard Polynomials

A polynomial is a mathematical expression of a set of terms, each term consisting of a

variable and a coefficient. In the standard form a polynomial is the sum of terms where

the variables only have non-negative integer exponents. A standard polynomial (STP) is

expressed as

mstp(x) = αdx
d + αd−1x

d−1 + · · ·+ α2x
2 + α1x+ α0 =

d∑
i=0

αix
i (3.2)

where x represent the variable of interest, αi the coefficients, and d the degree of the

polynomial. For audio data, x represents the time delay of the samples y. A unique

polynomial is guaranteed for the given set of points according to the unisolvence theorem

[147].

Theorem 2: Unisolvence Given any set of n+ 1 points (xi, yi), a unique polynomial

m with a degree of n or lower exists such that m(xi) = yi for i ∈ {0, 1, . . . , n} with no

two xi the same.

Considering the unisolvence theorem, the degree d must at least be n to ensure a

unique polynomial. For larger datasets, however, it is impractical to have a polynomial of

degree n, due to the computational time needed to eventuate the polynomial and estimate

the coefficients. It is therefore often sufficient to choose a lower degree polynomial and

approximate the function f(x) to a certain degree of accuracy. Although the unisolvence

theorem states that a discrete function can be modelled perfectly with an appropriate

degree, it does not guarantee that other intermediate points in [0, n] that were not used

for the polynomial approximation, or any exterior points outside [0, n] can be accurately

calculated. In practice the difference between the function f(x) and its approximation

m(x) can be very large, especially outside the interval [0, n]. The difference between

the function and its approximation is formally defined by Weierstrass’ approximation
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theorem [258].

Theorem 3: Weierstrass Approximation Any continuous function f defined on the

real interval [a, b], for every ε > 0 there exists a polynomial function m on [a, b] such that

|f(x)−m(x)| < ε for x ∈ [a, b].

Taking Weierstrass’ theorem into account, a function on the bounded interval [a, b]

can be uniformly approximated to any degree of accuracy desired by the polynomial.

The theorem can be proven with Bernstein polynomials [20]. The error term ε between a

function and its approximation given a set of discrete points is calculated as the sum of

absolute deviations as follows:

ε = |f(x)−m(x)| =
n∑
i=0

|f(xi)−m(xi)| (3.3)

The aim of the modelling process is to reduce the error ε by finding the degree d that

will approximate m as closely to f as possible. The polynomial will converge to the

continuous function on [a, b] as the degree heads to infinity. The objective is therefore to

reduce the maximum difference between f and m until it reaches zero, which is formally

defined as

lim
d→∞

[
max
a≤x≤b

∣∣∣f(x)−m(x)
∣∣∣] = 0 (3.4)

From this objective it might seem like a good approach to choose a high degree polynomial

in order to reduce the error. However, high degree polynomials for certain functions

can overfit, and the polynomials start oscillating at the edges of the interval, which

is known as the Runge phenomenon [218]. Runge found that when modelling the

function f(x) = (1 + 25x2)−1 with equidistant data points over the interval [−1, 1], the

approximation error increases as the degree of the polynomial increases. Figure 3.1

illustrates the phenomenon with polynomials of degree four and six osculating at the

edges.
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Figure 3.1: The Runge phenomenon with polynomials osculating at the edges of the interval.

Runge’s phenomenon can be mitigated by selecting points which are more densely

distributed towards the edges of the interval such as Chebyshev nodes, fitting a lower

degree polynomial, or using piecewise polynomials [90, 91].

According to the unisolvence theorem a system of linear equations adhering to

m(xi) = yi with a set of coefficients αi can be constructed. Equation (3.2) is expressed

in matrix form as

1 x0 x2
0 · · · xd−1

0 xd0

1 x1 x2
1 · · · xd−1

1 xd1
...

...
...

. . .
...

...

1 xn−1 x2
n−1 · · · xd−1

n−1 xdn−1

1 xn x2
n · · · xd−1

n xdn





α0

α1

...

αd−1

αd


=



y0

y1

...

yn−1

yn


(3.5)

where the left matrix represents a Vandermonde matrix which can be proven to be

non-singular [173]. Since xi − xj for i, j ∈ {0, 1, . . . , n} is never zero for the n + 1

distinct data points, the determinant of the matrix can never be zero, making the matrix

non-singular and therefore invertible. The matrix can be solved using LLS regression. In

the case of a linear polynomial running through exactly two points, the calculation is

simplified to

mstp(x) = y0 +
(y1 − y0) (x− x0)

x1 − x0

(3.6)
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which removes the burden of solving the equation with a computationally expensive LLS

fit.

3.2 Fourier Polynomials

In 1807, Joseph Fourier introduced a series for solving the heat equation of metal plates

[95], which later became known as the Fourier series. The idea was to model the complex

partial differentiable equation as a superposition of simpler oscillating sine and cosine

functions. Fourier’s theorem for cosine series can be applied to even functions. A function,

f(x), is said to be even if it is symmetric around the y-axis, that is, f(x) = f(−x).

Theorem 4: Fourier Cosine Series Given an even function f(x) with a period p, the

function can be expressed as an infinite sum of cosine functions, such that

f(x) =
α0

2
+
∞∑
i=1

αi cos

(
iπx

p

)
(3.7)

The cosine model’s coefficients αi are calculated with Euler’s formula using an integral

on the interval [−p, p] as follows:

α0 =
1

p

∫ p

−p
f(x)dx (3.8)

αi =
1

p

∫ p

−p
f(x) cos

(
iπx

p

)
dx (3.9)

Fourier formulated a similar theorem for odd functions using sine series. A function, f(x),

is said to be odd if it is origin symmetric, that is, −f(x) = f(−x).

Theorem 5: Fourier Sine Series Given an odd function f(x) with a period p, the

function can be expressed as an infinite sum of sine functions, such that

f(x) =
∞∑
i=1

βi sin

(
iπx

p

)
(3.10)

The sine coefficients βi are calculated in a similar fashion to the cosine coefficients:
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βi =
1

p

∫ p

−p
f(x) sin

(
iπx

p

)
dx (3.11)

A combination of Fourier’s cosine and sine theorems is known as the Fourier series or the

Fourier polynomial (FOP).

Theorem 6: Fourier Series Given any periodic piecewise continuous function f(x)

with a period p, the function can be written as an infinite sum of sine and cosine waves,

such that

f(x) =
α0

2
+
∞∑
i=1

[
αi cos

(
iπx

p

)
+ βi sin

(
iπx

p

)]
(3.12)

A function f(x) is said to be piecewise continuous on the interval [a, b] for values x0, · · · , xn
where x0 = a and xn = b, such that f(x) is continuous on the open intervals (xi−1, xi)

and there exists a one-sided left limit f(x−) and right limit f(x+) such that

f(x−) = lim
x→xi−

f(x) (3.13)

f(x+) = lim
x→xi−1

+
f(x) (3.14)

for i ∈ [1, n]. A piecewise continuous function may therefore have jump discontinuities at

xi for i ∈ [1, n− 1]. Since an infinite series of functions is impossible to use in practise,

the function can only be estimated to a certain degree. The discrete Fourier polynomial

can therefore be approximated with a finite sum d of sine and cosine functions with a

period of one as follows:

mfop(x) =
α0

2
+

d∑
i=1

[
αi cos (iπx) + βi sin (iπx)

]
(3.15)

For any set of n data points, there exists a trigonometric polynomial that satisfies

equation (3.12) as long as there are no more points than coefficients, therefore n ≤ 2d+ 1.

There exists a unique solution if and only if the number of coefficients is equal to the

number of data points, that is n = 2d + 1. If n > 2d + 1 there might be a solution,

depending on the data points.
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Theorem 7: Fourier Series Pointwise Convergence The Fourier series converges

pointwise to f(x) on the interval (a, b), if f(x) is continuous and f ′(x) is piecewise

continuous on the interval [a, b], such that the sequence of Fourier partial sums converges

to the left and right limit 1
2
(f(x−) + (f(x+)).

The Fourier series of f(x) will therefore converge to the left and right limit’s average

if the periodic extension has a jump discontinuity at x. If the function is periodic with

bounded variation, meaning that the total variation of f(x) is finite, the Fourier series

will converge everywhere.

In addition to pointwise convergence, it can be proven by Jackson’s theorem that

the partial sum of the Fourier series will converge uniformly to f(x) [141]. The absolute

convergence of Fourier series was proven by Wiener’s 1/f theorem [263]. The Riesz-Fischer

theorem shows that the Fourier series converges to f(x) in the norm of the function space

L2, which was proven independently by Riesz [216] and Fischer [81]. Carleson showed

that any continuous function’s Fourier expansion in L2 converges almost everywhere [40].

Using equation (3.15), a system of linear equations can be constructed and solved by

a LLS fit. The equations are expressed in matrix form as



1
2

cos(πx0) · · · cos(dπx0) sin(πx0) · · · sin(dπx0)
1
2

cos(πx1) · · · cos(dπx1) sin(πx1) · · · sin(dπx1)
1
2

cos(πx2) · · · cos(dπx2) sin(πx2) · · · sin(dπx2)
...

...
. . .

...
...

. . .
...

1
2

cos(πxn−1) · · · cos(dπxn−1) sin(πxn−1) · · · sin(dπxn−1)
1
2

cos(πxn) · · · cos(dπxn) sin(πxn) · · · sin(dπxn)





α0

...

αd

β1

...

βd


=



y0

y1

y2

...

yn−1

yn


(3.16)

3.3 Newton Polynomials

In his early years, Isaac Newton formulated a polynomial of least degree that coincides at

all points of a finite dataset [190]. Given n+1 data points (xi, yi), the Newton polynomial

(NEP) is defined as
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mnep(x) =
n∑
i=0

αihi(x) (3.17)

where hi(x) is the ith Newton basis polynomial given as

hi(x) =
i−1∏
j=0

(x− xi) (3.18)

Newton’s divided differences polynomial is the polynomial where the coefficients αi are

calculated with divided differences, given as

αi = [y0, . . . , yi] (3.19)

The divided differences is a recursive division of the n + 1 points. When using the

divided differences for the coefficients, the Newton polynomial is equivalent to the Taylor

polynomial by replacing the instantaneous rates of change with finite differences [240].

The forward divided differences process is defined as

[yi] = yi i ∈ {0, . . . , n} (3.20)

[yi, . . . , yi+j] =
[yi+1, . . . , yi+j−1]− [yi, . . . , yi+j]

xi+j − xi
i ∈ {0, . . . , n− j}
j ∈ {1, . . . , n}

(3.21)

The backward divided differences can also be used for calculating the coefficients, where

the differences are determined in a reversed recursive process by replacing i+j in equation

(3.21) with i− j. New data points can easily be added to the polynomial by placing them

at the right side for the forward formula and at the left side for the backward formula.

However, the accuracy of an estimated point is depended on its distance to the middle of

the x values of the data points. Hence, when increasing the degree by adding points to

the end, the accuracy can only be increased at the end and nowhere else. Gauss mitigated

this problem by altering the addition process to add points to the left and right, thereby

keeping the points centred around the same place [261]. Bessel and Stirling provided

similar approaches for keeping the points centred around a specific middle [235, 261].

Stirling’s formula works best when the evaluation point falls in a region where it is

needed less. Bessel’s formula works best when the evaluation point lies between two other
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points somewhere in the middle. When working with large datasets, the mean accuracy

difference between the Gauss, Bessel and Stirling formulas is statistically insignificant.

Since the Newton basis polynomial is the product of time delay differences, when the

x values are in the range [0, 1], the resulting product hi(x) can be very small. Decimal

precision of most programming languages is only accurate to the 15th or 16th digit.

Multiplying smaller numbers will result in zero, therefore making the entire Newton

polynomial constant at zero. If high degree Newton polynomials are used with time

delays smaller than one, the precision should be accommodated with multi-precision

libraries such as the GNU Multiple Precision Arithmetic Library (GMP) [111].

Another approach to constructing a Newton polynomial is to estimate the coefficients

instead of calculating them from the divided differences. The Newton basis polynomial

in equation (3.18) can be used to construct a system of linear equations with a lower

triangular matrix as follows:



1 0 0 · · · 0

1 x1 − x0 0 · · · 0

1 x2 − x0 (x2 − x0)(x2 − x1) · · · 0
...

...
...

. . .
...

1 xn − x0 (xn − x0)(xn − x1) · · ·
∏n−1

j=0 (xn − xj)





α0

α1

α2

...

αn


=



y0

y1

y2

...

yn


(3.22)

The coefficients αi can then be estimated by solving the equations with a LLS fit.

3.4 Lagrange Polynomials

In 1795, Joseph Louis Lagrange formulated a polynomial of least degrees that fits all

given points of a finite dataset [156]. Although attributed to Lagrange, the formula was

previously discovered by Waring [255] and Euler [75] in 1779 and 1783 respectively. The

Lagrange polynomial (LAP) for n+ 1 data points (xi, yi) is defined as

mlap(x) =
n∑
i=0

yili(x) (3.23)

with li(x) the ith Lagrange basis polynomial given as
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li(x) =
n∏
j=0
j 6=i

x− xj
xi − xj

(3.24)

The Lagrange basis polynomial is always well defined since no xi is the same, ensuring

that the division is never zero. The Lagrange polynomial constructed with equidistant

points is subject to the Runge phenomena. The divergence tends to increase as more

points are added to the polynomial and can be eliminated by constructing the polynomial

with points at Chebyshev nodes.

The Lagrange polynomial of least degree is unique, making it equivalent to the Newton

polynomial where the coefficients are calculated by divided differences. The Lagrange

polynomial has to be recalculated every time new points are added, making the Newton

polynomial easier and more efficient to use when continuously adding points to the set.

An alternative to the recalculation problem is to use the barycentric form of the Lagrange

basis polynomial, defined as

li(x) =

∏n
i=0(x− xi)

(x− xi)
∏n

j=0,j 6=i xi − xj
(3.25)

Like with Netwon, Lagrange polynomials can be zero with time delays smaller than

one. Multi-precision arithmetic has been employed to mitigate this problem.

3.5 Hermite Polynomials

In 1878, Charles Hermite introduced a polynomial closely related to the Newton and

Lagrange polynomials [125]. Besides calculating a polynomial for n+ 1 points, Hermite

also considered the derivatives at these points. The Hermite polynomial (HEP) using the

first derivative is defined as

mhep(x) =
n∑
i=0

hi(x)f(xi) +
n∑
i=0

hi(x)f ′(xi) (3.26)

where hi(x) and hi(x) are the first and second fundamental Hermite polynomials,

calculated as follows:
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hi(x) = [1− 2l′i(xi)(x− xi)] [li(x)]2 (3.27)

hi(x) = (x− xi) [li(x)]2 (3.28)

li(x) is the ith Lagrange basis polynomial given in equation (3.24) and l′i(xi) is the

derivative of the Lagrange basis polynomial at point xi. The fundamental Hermite

polynomials have the following properties:

hi(xj) = δij h′i(xj) = 0 (3.29)

hi
′
(xj) = δij hi(xj) = 0 (3.30)

where δij is the Kronecker delta such that δij = 0 if i 6= j and δij = 1 if i = j.

Since Lagrange polynomials are computationally expensive to differentiate and

evaluate, hi(x) and hi(x) can be calculated by a more efficient Newton divided differences

table [150], where each entry for two identical points are replaced by the slope, f ′(x),

at the common point. The table can then be written in matrix form and solved in the

traditional way or by using the more efficient approach of Mehdi and Hajarian which rely

on the eigenvalues of the matrix [51].

In the original publication by Hermite, Lagrange polynomials were used as the

fundamental polynomials. This approach can be used for any polynomial function as

long as the derivatives of the function are known. To distinguish between them, Hermite

polynomials with Lagrange fundamental polynomials will be simply referred to as Hermite

polynomials, whereas if a different fundamental polynomial is used, it will be denoted as

osculating polynomials. This thesis will investigate the osculating standard polynomial

(OSP) and the osculating Fourier polynomial (OFP).

An osculating polynomial constructed from polynomials in standard form from

equation (3.2) takes on the following system of linear equations:
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

1 x0 x2
0 · · · xd−1

0 xd0
...

...
...

. . .
...

...

1 xn x2
n · · · xd−1

n xdn

0 1 2x0 · · · (d− 1)xd−2
0 dxd−1

0
...

...
...

. . .
...

...

0 1 2xn · · · (d− 1)xd−2
n dxd−1

n





α0

α1

...

αd−1

αd


=



f(x0)
...

f(xn)

f ′(x0)
...

f ′(xn)


(3.31)

The given matrix only contains the equations of the first derivatives. Higher derivatives

can be added in a similar fashion. The first half of the right value vector is easily obtained

by the y values of the data points. The second half of the vector requires the calculation of

the derivatives of the function at the given points. This is not a problem with continuous

functions that have known derivatives, but can be difficult to obtain for discrete functions.

Numerical differentiation has to be applied to the data points of the discrete functions

to estimate the derivatives at the given points. A common approach to this problem is

using finite differences based on the central formula of Gauss, Bessel or Stirling [235, 261].

The generic central formula for higher order derivatives of n+ 1 points is defined as

δns [f ](x) =
n∑
i=0

(−1)i
(
n

i

)
f
(
x+

(n
2
− i
)
s
)

(3.32)

where s is the spacing between the data points.
(
n
i

)
are binomial coefficients, which are

the number of different ways i unordered outcomes can be picked from n possibilities.(
n
i

)
is the coefficient of the term xi in the expansion of the binomial power (1 + x)n. The

Pascal triangle is made up of ordered binomial coefficients with rows for successive values

of n and i ∈ {0, 1, . . . , n}. The binomial coefficients are calculated as

(
n

i

)
=

i∏
j=1

n− i+ j

j
(3.33)

When n is odd in equation (3.32), dividing by two will result in a fraction, causing a

change to the interval of discretization. This problem can be mitigated by taking the

average of the previous and next central differences, that is δn[f ](x− s
2
) and δn[f ](x+ s

2
).

If a discrete function was derived from a continuous function, numerical differentiation

will often be inaccurate, since it is only an estimation of the true derivative. Depending
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on the function and the nature of the data points, this may cause Hermite and osculating

polynomials to be inaccurate at certain points of the discrete function.

3.6 Splines

Splines are a set of piecewise polynomials where the derivatives at the endpoints of

neighbouring polynomials are equal. Spline interpolation is not subject to Runge’s

phenomenon during high-degree interpolation, since a separate polynomial is estimated

between every two neighbouring data points. Additionally, the approximation error can

be kept small even for low-degree splines. Given a set of n+ 1 data points, n number of

splines are constructed, one between every neighbouring data point pair. The splines are

created as follows:

ms(x) =



s1(x) for x0 ≤ x < x1

s2(x) for x1 ≤ x < x2

...

sn−1(x) for xn−2 ≤ x < xn−1

sn(x) for xn−1 ≤ x < xn

(3.34)

The individual splines can therefore be constructed using any other kind of polynomial

function, as long as the derivatives can be calculated. This thesis will focus on standard

polynomial splines (SPS) and Fourier polynomial splines (FPS). To ensure a smooth

connection between neighbouring splines, the derivatives at the interior data points xi

have to be continuous [253], that is,

s′i(xi) = s′i+1(xi) (3.35)

for the first derivatives with i ∈ {1, 2, . . . , n}. As the degree of the individual splines

increases, higher order derivatives also have to be continuous. If the splines each have c

number of coefficients, a total of n× c coefficients have to be estimated and therefore

n× c equations have to be obtained to solve the system. 2× n equations are calculated

for each spline using the data points to the left and right. Spline si will therefore result
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in two equations obtained from point xi and xi+1. Another (d− 1)× (n− 1) equations

are calculated from the derivatives at the interior points, where d is the degree of the

splines. To make up the additional equations, constraints are imposed on the derivatives

at the endpoints by incorporating the free endpoint condition [23]. The derivatives at

the free endpoints are set to zero, starting from the highest continuous derivative. Lower

derivatives are set to zero until enough equations were obtained. When such constraints

are imposed, the function is called a natural spline [42].

Constructing the splines with polynomials in standard form, the system of linear

equations is represented in matrix form as follows:

ra

...

rb

rc
...

rd

re
...

rf

rg

...

rh



1 x0 · · · xd0 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0

1 x1 · · · xd1 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0 1 xn−1 · · · xdn−1

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0 1 xn · · · xdn

0 1 · · · dxd−1
0 0 −1 · · · −dxd−1

1 · · · 0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · dxd−1
n−1

0 −1 · · · −dxd−1
n

0 0 · · · d!x0 0 0 · · · −d!x1 · · · 0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · d!xn−1 0 0 · · · −d!xn

0 0 · · · d!x0 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · d!xn
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

0 1 · · · dxd−1
0 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0 0 1 · · · dxd−1
n





α1,0

α1,1

...

α1,d

α2,0

α2,1

...

α2,d

...

αn,0

αn,1
...

αn,d



=



y0

y1

...

yn

0

0

...

0

0


(3.36)

where αi,j is the jth coefficient of the ith spline. Rows ra to rb hold the equations for

the spline polynomials. These equations always come in pairs of two, one for the left

and one for the right point of the spline. Rows rc to rd contain the equations for the

first derivatives of the interior points. Rows re to rf hold higher derivatives which are
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only required for cubic splines and higher. The last equations in rows rh to rh hold

the constraints on the derivatives at the endpoints and are added sequentially until the

matrix reaches n× c rows.

In practice cubic splines or lower are mostly used, since higher degree splines tend to

overfit the model and reduce the approximation accuracy for intermediate points. Cho

provided a theoretical justification for this observation and concluded that cubic splines

are sufficient for most practical applications [43]. If the splines are constructed with first

degree standard polynomials, they are equivalent to linear polynomials in equation (3.2).

However, since the derivatives and free endpoint conditions are included in the matrix,

the LLS spline approximation will estimate slightly different coefficients compared to the

system in equation (3.5).

3.7 Autoregressive Model

The autoregressive (AR) model, also known as the maximum entropy model, is an infinite

impulse response filter that models a random process where the generated output is

linearly depended on the previous values in the process. Since the model keeps track of

the feedback, therefore retaining memory, it can generate internal dynamics. Given yi as

a sequential series of n+ 1 data points, the AR model of order p predicts the value of a

point at time delay t with the previous values of the series, defined as

yt = c+ εt +

p∑
i=1

αiyt−i (3.37)

where c is a constant, typically considered to be zero, εt the white noise error term, almost

always considered to be Gaussian white noise, and αi the autoregressive coefficients

for the model. A common approach in time series analysis is to subtract the temporal

mean from time series y before feeding it into the AR model. It was found that this

approach is not advisable with sample windows of short durations, since the temporal

mean is often not a true representation of the series’ mean and can vary greatly among

subsets of the series [55]. The series y is assumed to be linear, stationary and has a zero

mean. A stationary series is stochastic where the joint probability distribution does not
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change with a progression in time. If the series does not have a zero mean, an additional

parameter α0 is added to the front of the summation in equation (3.37).

One of the most widely used methods for estimating the AR model coefficients is

solving the Yule-Walker equations with a LLS regression. The Yule-Walker equations

[251, 270] for the AR model coefficients, αi, are defined as

γt =

p∑
i=1

αiγt−i + σ2
εδt,0 (3.38)

where γt is the autocovariance function of yt given in equation (2.36), σ2
ε the variance

of the noise ε and δt,0 the Kronecker delta function. For a time delay τ , multiplying

equation (3.37) with xt−τ and normalizing the expectation values will result in a set of

linear equations where γτ is said to be the autocorrelation coefficient [29]. Since the last

part of equation (3.38) will always be zero if t 6= 0 due to the Kronecker delta function,

the Yule-Walker equations for t > 0 are represented in matrix form as

1 γ1 γ2 γ3 · · · γp−1

γ1 1 γ1 γ2 · · · γp−2

γ2 γ1 1 γ1 · · · γp−3

...
...

...
...

. . .
...

γp−1 γp−2 γp−3 γp−4 · · · 1





α1

α2

α3

...

αp


=



γ1

γ2

γ3

...

γp


(3.39)

Besides the LLS method, a number of alternative approaches exist for the estimation

of the AR model coefficients. One such alternative constructs a system using two sets

of Yule-Walker equations for forward and backward prediction and approximates the

parameters using the Burg method [36]. The estimation is computationally more expensive

than using only forward prediction with LLS and the resulting autocovariances may also

be different. This method is commonly used in maximum entropy spectral estimation [28].

It was also found that the Yule-Walker approach may produce incorrect coefficients if the

function is near periodical and that the Burg method should be used in such a case [50].

Another route calculates the coefficients based on the autocorrelations in equation (2.50)

and autocovariances in equation (2.36) that are estimated separately using conventional

estimates [33]. The maximum likelihood estimation can also be used, which is well-defined

for normal distribution problems, but can be computationally expensive and unsuitable
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or even unsolvable in a number of situations [140, 176]. The Markov chain Monte Carlo

method [106, 120, 180] can also be used for the AR coefficient estimation.

3.8 Moving Average Model

The moving average is a statistical calculation where a series of averages are generated

from subsets of the full dataset. The moving average is a finite impulse response filter

which continuously updates the average as the window of interest moves across the

dataset. Although the concept of moving averages was used in mathematics for decades,

it was only popularized at the beginning of the 20th century by Hooker [131] and Yule

[268]. The moving averages with a window size of n samples over a series y is the new

sequence at of unweighed means defined as

at =
1

n

t+n−1∑
i=t

yi (3.40)

Adaptations of the algorithm were published, which include the cumulative-sum,

exponential, variable, weighted and modified moving averages [57, 148]. A study by

Slutsky on applying the moving average on random events lead to the formulation of what

later became known as the moving average (MA) model [229]. This approach is a finite

impulse response filter with some additional interpretation added where univariate time

series are modelled with white noise terms. Slutzky [229] and Yule [269] independently

discovered that the moving summation of random data series oscillates when no such

fluctuation exists in the original observation. This characteristic later became known as

the Slutzky-Yule effect. The MA model predicts the value of a data point with a time

delay t as follows:

yt = µ+ εt +

q∑
i=1

βiεt−i (3.41)

where µ is the mean of the series, typically assumed to be zero, βi the model coefficients

of order q and εt, . . . , εt−q the white noise error terms. The error terms are assumed to

be independent and identically distributed random variables, meaning that all random

variables are mutually independent and are subject to the same probability distribution.
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Given a normal distribution N (µ, σ2) with mean µ and variance σ2, the error terms in the

MA model are sampled with zero mean N (0, σ2), and will therefore be Gaussian white

noise. The Gaussian white noise is typically generated from the mean and the variance

in equation (2.29). A well-known method for sampling pseudo-random numbers from

a probability distribution is the Smirnov transform, more commonly known as inverse

transform sampling [54]. Given the cumulative distribution function [35], a number u is

uniformly sampled in the interval [0, 1]. The largest number r from the distribution of

interest p(x) is then returned such that p(−∞ < x < r) ≤ u. Although the generation

from a discrete distribution is more efficient than from a continuous distribution, the

Smirnov transform is considered computationally inefficient since it requires a complete

approximation of the cumulative distribution function, regardless of the number of samples

[107]. Similar concerns about the efficiency of the transform have been brought forward

by other publications [110, 265].

A more efficient approach was proposed by Box and Muller where independent pairs of

pseudo-random numbers are generated from a normal distribution [30]. The Box-Muller

transform can be expressed in basic form where two uniformly distributed independent

random numbers u and v from the interval (0, 1] are mapped to two standard, normally

distributed samples z1 and z2 by making use of the sine and cosine functions. The

Box-Muller transform in basic form is defined as

z1 =
√
−2 ln(u) cos(2πv)

z2 =
√
−2 ln(u) sin(2πv)

(3.42)

Marsaglia and Bray proposed to express the Box-Muller transform in polar form

to increase computational efficiency by removing the sine and cosine functions [172].

The Marsaglia polar transform, often just referred to as the polar method, was first

standardized by Bell [17] and later modified by Knop [151]. Given two independently

generated random numbers u and v which are uniformly distributed over the interval

[−1, 1], set s = u2 + v2, cos(2πv) = u√
s

and sin(2πv) = v√
s
. If s ≥ 1 or s = 0, the random

numbers are discarded and two new values are generated for u and v. Once s is in the

interval (0, 1), equation (3.42) is changed as follows:
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z1 =
√
−2 ln(s)

(
u√
s

)
= u

√
−2 ln(s)

s

z2 =
√
−2 ln(s)

(
v√
s

)
= v

√
−2 ln(s)

s

(3.43)

Both the basic and polar form generate two random numbers, even if only one term

is needed at a time. In order to increase performance, certain parts such as
√
−2 ln(u)

in the basic form are computed once when generating z1 and then simply recalled when

generating the second sample z2, rather than recalculated it. The polar form is a rejection

sampling algorithm. Although 1 − π
4
≈ 21.5% of all randomly generated sample pairs

are rejected, since s falls outside the interval (0, 1), the polar form is still more efficient

than the basic form. A multiplication and trigonometric operation in the basic form is

replaced by only a single division operation in the polar form, making it faster on most

machines.

In order to generate Gaussian white noise for the MA model in equation (3.41), the

Gaussian error terms have to be subjected to the observed data series y. This can be

done by multiplying the generated samples z1 and z2 by the variance σ2 of the series y.

Since the lagged error terms of the MA model are not observable, the model parameters

can not be estimated by means of linear fitting, such as LLS regression. The estimation

has to be done by means of nonlinear fitting, often applied in an iterative fashion by

making use of a nonlinear optimization algorithm. One such widely used algorithm

for estimating the parameters of a model is the maximum likelihood estimation (MLE)

method. The MLE tries to find the set of model coefficients that will most likely produce

the observed values. Popularized by Fisher over a period of ten years [82, 83, 84, 85, 86],

MLE is based on previous work done by Newton, Laplace and most notably Edgeworth

[62]. The probability density function (PDF), P(y|β), gives the probability that the

dataset y will be observed when using a set of q coefficients β = (β1, β2, . . . , βq). If the n

data points in the set y are statistically independent from each other, the PDF of the set

can be expressed as the product of the PDFs of the individual data points as follows:

P(y1, y2, . . . , yn|β) =
n∏
i=1

P(yi|β) (3.44)
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The PDF requires the density of a continuous random variable in order to determine

the relative likelihood. This is achieved using a specific distribution, such as a Bernoulli or

Poisson distribution. The PDF of the MA model is determined by a normal distribution,

since the error terms in the model are generated using a Gaussian distribution. Given

the definition of a normal distribution,

p(x, σ, µ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(3.45)

where σ is the standard deviation and µ the mean of the series, the PDF for the normal

distribution relies on two parameters, σ and µ, and can be expressed as

P(y1, y2, . . . , yn|σ, µ) =
n∏
i=1

1

σi
√

2π
exp

(
−(yi − µ)2

2σ2
i

)
(3.46)

The PDF shows that some data has a higher probability than others for a set of

coefficients β. The likelihood function is the inverse problem of the PDF, namely finding

a single PDF that is most likely to have produced the given data. The parameters are

therefore switched around, giving the likelihood function as

L(β|y) = P(y|β) (3.47)

Once the data is available and the corresponding model’s likelihood function was

determined, the goal is to find the set of parameters that will maximize the likelihood

function L(β|y). The natural logarithm of the likelihood function is often used due to

computational convenience. This does not pose a problem, since L(β|y) and lnL(β|y)

are monotonically related to each other and will always result in the same maximum

likelihood estimate when maximizing either one of them [188]. The logarithm of the

likelihood, commonly referred to as log-likelihood, is written as

`(β|y) = lnL(β|y) =
n∑
i=1

lnP(yi|β) (3.48)

Given the MA model in equation (3.41) with the PDF for a normal distribution in

equation (3.46), C as the variance-covariance matrix from equation (2.37), µ the mean

vector and y the vector of observations, the likelihood of the MA model is expressed as
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L(β|y) = (2π)−
n
2 |C|−

1
2 exp

(
(y − µ)TC−1(y − µ)

−2

)
(3.49)

Triangularly factorizing C simplifies the likelihood of the MA model to

L(β|y) = (2π)−
n
2

(
n∏
i=1

θi

)− 1
2

exp

(
−1

2

n∑
i=1

ϕ2
i

θi

)
(3.50)

where

θi = σ2 1 + β2 + β4 + · · ·+ β2i

1 + β2 + β4 + · · ·+ β2(i−1)
=

σ2
∑i

j=0 β
2j∑i

j=1 β
2(j−1)

(3.51)

and

ϕi = yi − µ−
β(1 + β2 + β4 + · · ·+ β2i)

1 + β2 + β4 + · · ·+ β2(i−1)
βi−1 = yi − µ−

βi−1β
∑i

j=0 β
2j∑i

j=1 β
2(j−1)

(3.52)

To improve computational efficiency, the sum of the numerator and denominator in

equations (3.51) and (3.52) only has to be calculated once for i, stored temporarily and

then used to calculate both θi and ϕi. Using equation (3.50), the log-likelihood of the

MA model is defined as

`(β|y) = −n
2

ln(2π)− 1

2

n∑
i=1

ln(θi)−
1

2

n∑
i=1

θ2
i

ϕi
(3.53)

Maximizing the likelihood function in equation (3.47) is commonly known as exact

maximum likelihood (EML) or unconditional maximum likelihood. Based on the

conditional testing by Rasch [210], instead of maximizing the likelihood directly, the

maximization is done on a conditional distribution with respect to an increasing number

of incidental parameters [7], called conditional maximum likelihood (CML). Given the

conditional probability p(y|x) where the probability of y is based on x, the unconditional

likelihood from equation (3.47) changes to the conditional likelihood as follows:

L(β;x|y) = P(x|y; β) (3.54)
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Given the first and second data points from y, the conditional density f(y2|y1; β) is

only useful if an initial assumption about the values of interest, which are the white error

terms in the MA model, are made. Assume that the first error term in the MA model is

known to be zero, that is ε0 = 0. The sequence of error terms ε are calculated from the

observations x by iteratively calculating the next error term by rewriting the MA model

of order q in equation (3.41) as

εt = yt − µ− β1εt−1 − β2εt−2 − . . .− βiεt−q = yt − µ−
q∑
i=1

βiεt−i (3.55)

With the assumption that ε0 = 0 and using equation (3.55) above, the conditional PDF

for the ith observation is defined as

P(yi|εi−1; β) =
1√

2πσ2
exp

(
− ε2

i

2σ2

)
(3.56)

The conditional log-likelihood of the MA model is therefore

`c(β|y) = −n
2

ln(2π)− n

2
ln(σ2)− 1

2

n∑
i=1

ε2
i

σ2
(3.57)

Although CML is in general slightly more efficient than EML when the spread between

parameters decreases, information loss during parameter estimation almost always occurs

[63]. In practice, however, the information loss is so marginal that CML is considered a

sound practice.

Generalizing the parameters to allow β to be a vector β, β̂ is the set of parameters

that will maximize the log-likelihood, that is,

β̂ = arg max
β

`(β|y) (3.58)

β̂ can generally be determined in three different ways, namely exhaustive search, analytical

methods, and numerical optimization. If it is known that β̂ lies within a certain subspace,

an exhaustive search is conducted over the subspace by repeatedly approximating the

model until the value is found that has the largest likelihood. Although easy to implement

and a guarantee to find the appropriate value for β̂, depending on the granularity of

the search, it is in most cases not practical. An exhaustive search is computationally
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expensive and rises exponentially with each additional model parameter. It is also often

difficult to determine in which subspace β̂ will fall. The subspace will determine the

outer bounds for the exhaustive search.

The second option for determining β̂ is to use an analytical approach. Assuming that

coefficients β̂ exist that will maximize the log-likelihood, if `(β|y) is differentiable, it has

to satisfy the partial differential likelihood equation for each coefficient in the set β, in

other words,

∂`(β|y)

∂β̂i
= 0 (3.59)

where β̂i are the ith model coefficients that maximizes the log-likelihood. For the

log-likelihood of a normal distribution in equation (3.46), the function has to be partially

differentiated for both parameters, that is,

∂`(σ|y)

∂σ̂i
= 0 (3.60)

∂`(µ|y)

∂µ̂i
= 0 (3.61)

Since the first derivative does not indicate whether `(β|y) is a minimum or maximum,

a second condition has to be satisfied to ensure that the maximum is chosen, that is a

convex log-likelihood function. This can be done by checking whether or not the second

derivative is negative, that is

∂2`(β|y)

∂β̂
2

i

< 0 (3.62)

A more accurate way of determining convexity makes use of Hessian matrices [109].

Given the Hessian matrix as

Hij(β) =
∂2`(β|y)

∂βi∂βj
=

n∑
k=1

∂2`k(β|yk)
∂βi∂βj

(3.63)

for both i, j ∈ {1, 2, . . . , q}, the log-likelihood function will be convex if the determinate

of the matrix Hij(β) is negative definite, that is
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vTHij(β)v < 0 (3.64)

for a real-numbered vector v.

If there is no analytical solution, that is the likelihood equation in (3.59) can not be

solved, a numerical approach can be used to determine β̂. The gradient is systematically

followed until the maximum is found, where the gradient vector, g(β), containing the

first derivatives of the log-likelihood function are calculated as follows:

gi(β) =
∂`(β|y)

∂βi
=

n∑
k=1

∂`k(β|yk)
∂βi

(3.65)

Gradient-based methods that iteratively search for the maximum are generalised as given

in algorithm 1.

Algorithm 1 A gradient-based algorithm for finding the maximum.

determine the convergence tolerance

determine the maximum number of iterations

determine the initial coefficients β0 ∈ β
repeat

if g(β0) meets the convergence tolerance then

return β0

else

compute the direction vector H(g(β0));

set β1 = β0 + H(g(β0));

change β0 = β1;

end if

until current iteration exceeds the maximum number of iterations

Two parameters are specified, namely a threshold the gradient vector g(β) should

converge to and the maximum number of iterations in case of non-convergence. This

approach is followed by a number of algorithms, which mainly differ in the way the

direction vector H(g(β0)) is calculated, such that `(β1) > `(β0) to ensure that the

maximum is eventually found, unless the maximum number of iterations is reached.
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One such gradient-based optimization is the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm which was independently discovered by Broyden [34], Fletcher [88],

Goldfarb [115] and Shanno [222]. The algorithm is a quasi-Newton method that iteratively

solves unconstrained nonlinear optimization problems. BFGS constructs a Hessian matrix

from the second derivatives and is essentially the same as the Davidon-Fletcher-Powell

(DFP) formula [48, 89], but instead of approximating the Hessian matrix, Hi(β),

the inverse of the matrix Hi(β)−1 is used. DFP has to solve a system of linear

equations to determine the gradient direction, whereas the BFGS is computationally

more efficient, since the direction, which is defined as −Hi(β)gi(β), is determined by a

simple matrix-vector multiplication. ϑi and %i are the differences between consecutive

parameters and gradient vectors respectively, and are defined as

ϑi = βi − βi−1

%i = gi − gi−1

(3.66)

The BFGS formula for updating the Hessian matrix Hi at stage i is given as

Hi+1 = Hi +
%i%

T
i

%T
i ϑi
− Hiϑiϑ

T
i Hi

ϑT
i Hiϑi

(3.67)

If no initial estimation for H0 is available, it is initialized with the identity matrix. The

first step in updating the Hessian matrix will therefore be equivalent to a gradient descent.

Convergence can be checked where the gradient approaches zero, that is

lim
i→∞
|gi| = 0 (3.68)

Typically a tolerance is chosen to asses the convergence. Convergence is not required for

BFGS, unless the function being optimized has a quadratic Taylor series expansion [240]

near an optimum.

The inverse of the matrix Hi+1 is updated by storing the information of previous

calculations and then using the stored information recursively to update the inverse

matrix H−1
i+1, an idea originally proposed by Bathe and Cimento [16], Matthies [175] and

Nocedal [200]. The inverse is calculated by applying the Sherman-Morrison formula [223]

to equation (3.67) as follows:
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H−1
i+1 =

(
I− ϑi%

T
i

%T
i ϑi

)
H−1
i

(
I− %iϑ

T
i

%T
i ϑi

)
+
ϑiϑ

T
i

%Tϑi
(3.69)

where I is the identify matrix. In order to avoid temporary matrices and making the

computation more efficient, if H−1
i−1 is a symmetric matrix, equation (3.70) is computed

using

H−1
i+1 = H−1

i +

(
ϑT
i %i + %Ti H−1

i %i
) (
ϑiϑ

T
i

)(
ϑT
i %i
)2 − H−1

i %iϑ
T
i + ϑi%

T
i H−1

i

ϑT
i %i

(3.70)

Other implementations for calculating the inverse exist [38, 53, 189]. A common

extension to BFGS is the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

which only uses a predefined amount of physical memory [200]. The main problem with

BFGS is that, as the number of coefficients q increases, the Hessian matrix grows in

both directions, which can lead to large memory consumption. Instead of storing the

entire inverse Hessian matrix of size q × q, L-BFGS only has a couple of vectors of

size q which implicitly store the approximation values. L-BFGS keeps a history of k

previous updates to the matrix, discarding any update memory prior to k. Additionally,

the search direction is calculated in a number of steps that are linear in q and k. Due

to the linear amount of memory needed, L-BFGS is well suited for approximating a

very large number of parameters. A variant of the algorithm, the limited memory

Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B), adds lower and upper bounds

constraints on the values of the parameters in L-BFGS [273]. The online limited memory

Broyden-Fletcher-Goldfarb-Shanno (O-LBFGS) is an online version based on the idea of

L-BFGS-B for both BFGS and L-BFGS [187].

BFGS is a robust maximizer that can be applied in many different situations. The

Newton-Raphson method [209] is an alternative maximizer which is not as robust as

BFGS, but may converge much faster than BFGS for certain problems, especially where

the maximand is quadratic [124]. The Newton-Raphson method updates the parameter by

multiplying it with the negative of the inverted Hessian matrix H, where H is determined

analytically [219]. The Newton-Raphson method is defined as

βi+1 = βi + λi(−H−1
i )gi (3.71)
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where λi is the step size that ensures and increase in `(β|y) during each iteration.

Calculating a Hessian matrix is computationally expensive and an analytical Hessian is

rarely available. The Newton-Raphson method can also fail to find an increase in `(β|y)

if the function is convex at βi, will move in the opposite direction to the slope of the

log-likelihood function and make −H−1
i positive definite [11]. If the function is evaluated

at a point where the Hessian is not negative definite, the Newton-Raphson method will

fail. Since BFGS is more robust in most cases, it can be used as an initial maximzer.

If BFGS fails or does not converge according to the specified tolerance and maximum

number of iterations, the Newton-Raphson method can be applied as a second option.

The Berndt-Hall-Hall-Hausman (BHHH) algorithm is an extension to the

Newton-Raphson method which uses an information identity in the numerical search for

the log-likelihood maximum [19]. BHHH is defined as the iterative procedure,

βi+1 = βi + λiri

ri = −H−1
i gi

−Hi =
n∑
j=1

gjg
T
j

gi =
n∑
j=1

gj

(3.72)

The identify information indicates that the asymptotic variance-covariance matrix

of a maximum likelihood estimator is equal to the variance-covariance matrix of the

gradient of the likelihood function [19]. According to the central limit theorem [126], the

asymptotic distribution of β̂ is multivariate normally distributed with a mean vector β̄

and has a variance matrix that is equal to the inverse of the negative Hessian matrix.

The variance matrix of β̂ is expressed as

var(β̂) =
(
−E

[
H(β̄)

])−1
(3.73)

The variance-covariance matrix can therefore be estimated as the inverse of the outer

product of gradients (OPG) [12], therefore
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var(β̂) =
n

n− 1

[
n∑
j=1

gj(β̂)gj(β̂)T

]−1

(3.74)

The numerical optimization procedure of the BHHH algorithm is summarized in algorithm

2.

Algorithm 2 The Berndt-Hall-Hall-Hausman algorithm.

determine the convergence tolerance

determine an initial vector of parameters βi

repeat

calculate H(βi) by the OPG

calculate the direction vector ri = [−H(βi)]
−1

set λ = 0

repeat

increment λ by one

calculate the new vector βi+1 = βi + λri

until f(βi + λri) ≤ f(βi + (λ− 1)ri)

until convergence tolerance reached

The convergence tolerance is set to a value just above zero, commonly 0.0001 [11, 12].

BHHH is often used in conjunction with CML.

3.9 Autoregressive Moving Average Model

The autoregressive moving average (ARMA) model is a combination of the AR and MA

models. Using Fourier and Laurent series with statistical interference, Whittle proposed

the ARMA model in his PhD thesis [262]. The model was later popularized by Box

and Jenkins who described a method for determining the model orders and an iterative

method for estimating the model coefficients [29]. The ARMA model is defined as

yt = c+ εt +

p∑
i=1

αiyt−i +

q∑
i=1

βiεt−i (3.75)
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where p and q are the AR and MA model orders respectively. If p = 0, the ARMA model

reduces to the MA model; equally, if q = 0 the ARMA model reduces to the AR model.

ARMA(p, q) is a common notation to indicate the orders for the AR and MA parts. The

ARMA model parameters are typically fitted using the MLE approach.

It is important to select the correct model and the values for the model orders p and

q, since it directly influences the prediction accuracy. Choosing an appropriate model

for the given data is known as model selection and choosing the order that will best fit

the given data is known as model order selection. The orders should be large enough to

model the complexity of the given data, but on the other hand should be as small as

possible to eliminate possible overfitting of the function. A good practice is to choose the

smallest values for p and q that provide an acceptable fit and is as close as possible to

the true observations [206]. There are three approaches for choosing the ARMA model

orders, namely fixed orders, the autocorrelation function and information criteria. The

first approach uses fixed values for p and q. Although easy to implement and without

any computational overhead, the fixed values might not always represent the best model

order for all sample subsets.

The second approach makes use of the autocorrelation function (ACF) and the partial

autocorrelation function (PACF) in equations (2.50) and (2.51) to (2.53) respectively

[142]. Once the ACF and PACF are calculated, they can be plotted to determine if the

AR, MA or ARMA model should be used. A confidence level is added to the plot to

determine the optimal order of the selected model. The confidence intervals are typically

set at 95% [271]. The confidence interval for PACF is the same for all lags and is defined

as the standard error with 95% of the PACF sequence falling inside the confidence interval

as follows:

SEpacf =
±1.96√

n
(3.76)

where n is the number of observations. Note that the 1.96 is often rounded up to 2

in academic literature, which is not an accurate representation of the 95% confidence

interval. Additionally, equation (3.76) is also often used for the confidence interval of

the ACF. Since equation (3.76) is a test for randomness and ACF, unlike PACF, is not

calculated recursively, determining the standard error in this way may not provide an
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accurate confidence interval for ACF. The 95% ACF confidence should be calculated by

using Bartlett’s formula:

SEacf = ±1.96

√
1 + 2

∑t
i=1 acor2

i

n
(3.77)

where acori is the autocorrelation in equation (2.50). The standard error therefore uses

the autocorrelations of all previous lags. Since the first autocorrelation has no previous

lags, acor1 is set to zero. The AR model order p is chosen as the last PACF lag that falls

outside the confidence interval, SEpacf. Similarly, the MA model order q is the last ACF

lag confidence interval, SEacf. More specifically, the model type and order is selected

according to the rules given in table 3.1.

Table 3.1: The model selection rules of AR, MA and ARMA models using ACF and PACF.

Model ACF PACF

AR(p) Tails off gradually Cuts off after p lags

MA(q) Cuts off after q lags Tails off gradually

ARMA(p,q) Tails off gradually Tails off gradually

AR(p) or MA(q) Cuts off after q lags Cuts off after p lags

Neither (random process) No spike outside confidence No spike outside confidence

The third approach for selecting the model orders is using information criteria, which

determine how well a model with a certain order fits the observed dataset. The best

known criteria for linear models is the coefficient of determination R2, defined as

R2 = 1− RSS

TSS
= 1−

∑n
i=1(xi − x̃i)2∑n
i=1(xi − x̄)2

(3.78)

where the residual sum of squares (RSS) is calculated with x̃i as the predicted value of

xi and the total sum of squares (TSS) with a sample mean x̄ over n observations. R2

does not penalize the inclusion of additional parameters. Since the overuse of parameters

mostly does not increase the estimation accuracy much, compared to the decrease in

computational efficiency, the lowest model order with an acceptable fit should be selected.

The adjusted R2 which penalizes additional parameters is given as
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R2
a = 1− RSS/(n−m)

TSS/(n− 1)
= 1− (n− 1)

∑n
i=1(xi − x̃i)2

(n−m)
∑n

i=1(xi − µx)2
(3.79)

where m is the number of parameters. Since R2 can only be used for linear models, in

this case the AR model, a different criterion is needed for MA and ARMA model order

selection. The Akaike information criterion (AIC) measures the relative model quality

with respect to a given set of parameters [2]. AIC is defined as

AIC = 2m− 2`(β̂) (3.80)

where m is the number of independently adjusted parameters and β̂ the set of parameters

that maximises the log-likelihood function `(β̂). A model is continuously evaluated with

different sets of parameters. The set of parameters for the model that has the lowest

AIC value is selected as best solution for the current sample set. The AIC for models

estimated by least squares is calculate as

AICLS = n(1 + ln(2π)− ln(n)) + n ln(RSS) + 2m (3.81)

Although AIC favours parsimony, it does not go far enough with the penalization of

additional parameters. If there are two models with m and m− 1 parameters respectively,

taking the null hypothesis m = 0 into account, AIC will select the parsimonious model

for large datasets about 16% of the time [49]. Schwarz proposed the Bayesian information

criterion (BIC) which puts a greater emphasis on the penalty for additional parameters

[221]. BIC is defined as

BIC = m ln(n)− 2`(β̂) (3.82)

Although BIC reduces the chances of overfitting, it is not derived from the principles

of information like AIC. Additionally, BIC has a prior distribution of 1
c
, where c is the

number of models being evaluated, which should rather be a decreasing function of the

number of parameters m. These limitations contributed to the proposal of a corrected

version of AIC, known as the Akaike information criterion corrected (AICC), which

penalizes additional parameters more, but still retains the benefits of AIC. AICC is

calculated as

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 3. Signal Modelling 64

AICC = AIC +
2m(m+ 1)

n−m− 1
= 2m+

2m(m+ 1)

n−m− 1
− 2`(β̂) (3.83)

Simulations indicated that AICC has a computational advantage over BIC [37]. A

number of other information criteria exist that can be used for model order selection.

The Hannan-Quinn information criterion (HQIC) uses the law of iterated logarithms

to penalize additional parameters [119]. The deviance information criterion (DIC) uses

the mean model-level deviance and the model complexity to estimate the expected loss

for a certain set of parameters [232]. The focused information criterion (FIC) directs

its attention directly to the parameter of primary interest, rather than following the

approach of AIC, BIC and DIC which assess the overall quality of candidate models

[45, 129]. Model selection using information criteria is not a reliable approach and has

gained widespread discussion in academic literature. The success of various information

criteria choosing the correct model greatly depends on the characteristics of the data,

the presence and degree of outliers, the set of candidate models to choose from and the

number of samples used to determine the model. Benchmarking showed that on average

only 62% [164] and 63.8% [13] of the time the correct AR model was selected for various

information criteria for a set of 100 samples or lower. Similar only 61.3% [3] of the time

the correct MA model was selected for 100 samples or lower.

Other approaches for model selection using particle swarm optimization [250, 250],

genetic algorithms [184, 201] and artificial neural networks [1, 4] were also proposed. The

latter three approaches usually take longer to find the optimal parameters than to solve

the model itself, often without a major increase in accuracy for the given parameters.

Therefore, for continuous model selection and evaluation, a fixed suboptimal model

approach is advisable if computationally power is limited.

3.10 Autoregressive Integrated Moving Average

Model

The autoregressive integrated moving average (ARIMA) model is a generalization

of the ARMA model which is applied if the observed data shows characteristics of
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non-stationarity, such as seasonality, trends and cycles [29]. A differencing operation is

added as an initial step to the ARMA model to remove possible non-stationarity. The

ARMA model in equation (3.75) can also be expressed in terms of the lag operator as

α(L)yt = β(L)εt (3.84)

where α(L) is said to be the lag polynomial of the AR model given as

α(L) = 1−
p∑
i=1

αiL
i (3.85)

and β(L) the lag polynomial of the MA part as

β(L) = 1 +

q∑
i=1

βiL
i (3.86)

The lag or backshift operator produces the previous values of a time series y with n+ 1

data points as follows:

Lyt = yt−1 (3.87)

for t ∈ {1, 2, . . . , n}. The operator is expressed for any lag i as

Liyt = yt−i (3.88)

The first difference operator is the difference between the point of interest and its previous

point, defined as

∆yt = yt − yt−1 = (1− L)yt (3.89)

This is generalized to any ∆d for positive integers d as follows:

∆dyt = (1− L)dyt (3.90)

The ARIMA model is expressed by expanding equation (3.84) and incorporating the

difference operator as follows:
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(
1−

p∑
i=1

αiL
i

)
(1− L)d yt =

(
1 +

q∑
i=1

βiL
i

)
εt (3.91)

where p is the AR order, q the MA order and d the order of integration. The ARMA

model assumes a zero mean for the observed data, which may not always be the case if a

series is processed in subsets that have a non-zero mean. The ARMA model in equation

(3.84) is expressed as a collection of parametrized terms as

yt = α1yt−1 + · · ·+ αpyt−p + εt + ε1βt−1 + · · ·+ εqβt−q (3.92)

Incorporating µ as the non-zero mean of yt changes the model in equation (3.92) to

zt = α1zt−1 + · · ·+ αpzt−p + εt + ε1βt−1 + · · ·+ εqβt−q (3.93)

where yt = zt + µ, or more explicitly by subtracting the non-zero mean from yt, that is

zt = yt − µ. A non-zero mean can be incorporated into the ARIMA model as follows:(
1−

p∑
i=1

αiL
i

)
(1− L)d yt =

(
1 +

q∑
i=1

βiL
i

)
εt + µ̃ (3.94)

where µ̃ are the AR parametrized non-zero mean terms calculated by expressing equation

(3.93) in terms of yt instead of zt, such that

µ̃ = µ−
p∑
i=1

αiµ (3.95)

ARIMA(p, d, q) is typically used to indicate an ARIMA model with specific orders.

An ARIMA model with d = 0 reduces it to the ARMA model.

3.11 Autoregressive Conditional Heteroskedasticity

ARMA models are the conditional expectation of a process with a conditional variance

that stays constant for past observations. This means that ARMA models use the same

conditional variance, even if the latest observations indicate a higher or lower variation.

The autoregressive conditional heteroskedasticity (ARCH) model was developed by Engel
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for financial markets that show periods of low volatility followed by periods of high

volatility and vice versa [69] and earned him the Nobel Prize in Economic Sciences in

2003. Music data shows similar characteristics where the start of refrains, verses or beats

produce sudden bursts caused by upbeats, leading to an increase in variance. These bursts

are then often followed by an unaccented stroke, temporarily decreasing the variance

of the sound wave. However, music signals typically oscillate less than most financial

markets and have, therefore, a comparatively lower variance.

A variable is said to be heteroskedastic if subsets of its population have different

variabilities. The variability is quantified using a statistical dispersion, such as the

standard deviation or variance. ARCH achieves nonconstant conditional variance by

calculating the variance of the current error term εt as a function of the error terms εt−i

in the previous i time periods. Therefore the forecasting is done on the error variance at

time t, compared to the AR model which does its prediction directly on the previously

observed values. The ARCH process for a zero mean series is defined as

yt = σtεt (3.96)

where εt is Gaussian white noise and σt is the conditional variance, modelled by an AR

process as

σt =

√√√√α0 +

q∑
i=1

αiε2
t−i (3.97)

The ARCH model is typically denoted as ARCH(q), where q is the order of the ARCH

model. In order to ensure that the variance is always nonnegative, αi ≥ 0 must hold

true for i ∈ {0, 1, . . . , q}. If αi = 0 for i ∈ {1, 2, . . . , q}, then α0 > 0. If the sum of the

coefficients αi is less than one, the ARCH process is weakly stationary and will have a

constant unconditional variance, that is

σt =

√
α0

1−
∑q

i=1 αi
(3.98)

Since ARCH makes use of an AR model, the coefficients αi can be estimated using LLS

with Yule-Walker equations. Since the distribution of ε2
t−i is naturally not normal, the
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Yule-Walker approach does not provide an accurate estimation for the model coefficients,

but can be used to set the initial values for the coefficients. An iterative approach, such

as MLE, is then used to refine the coefficients in order to find a better fit. Similar to the

ARMA model, the PACF or various information criteria can be used to determine the

ARCH model order. Engel proposed another method for determining heteroskedasticity

and if ARCH is the correct model for the observed data or not [69]. Under the null

hypothesis, the model is a standard dynamic regression model with εt as Gaussian white

noise, which can be tested with the Lagrange multiplier test. The alternative hypothesis

is that εt is not Gaussian white noise, but an ARCH process. Engel later extended his

method using the statistic TR2 where T are the residuals and R2, given in equation (3.78),

is calculated from the regression of ε2
t [70]. Under the null hypothesis with no ARCH

errors, TR2 follows a X 2 distribution with q degrees of freedom. If TR2 is greater than

the chi-square the null hypothesis is rejected, meaning that the process has an ARCH

effect. Other related approaches for testing heteroskedasticity includes the White test

[260], the one-sided ARCH effect test [52], and the locally most mean powerful based

score test [160].

3.12 Generalized Autoregressive Conditional

Heteroskedasticity

The generalized autoregressive conditional heteroskedasticity (GARCH) is a generalization

of the ARCH model proposed by Bollerslev which also uses the weighted average of

past squared residuals without the declining weights ever reaching zero [27]. Instead of

assuming an AR model in equation (3.97), GARCH uses an ARMA model for the error

variance as follows:

σt =

√√√√α0 +

q∑
i=1

αiε2
t−i +

p∑
i=1

βiσ2
t−i (3.99)

The notation GARCH(p, q) is used for GARCH models with an ARCH degree of q

and a GARCH degree of p. Since GARCH makes use of the ARMA model for the error
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variance, the model can not be estimated using LLS regression, but has to follow the

same estimation approach used by ARMA, such as the MLE.

The Engel test can be used to test for ARCH errors. In order to test for GARCH errors,

the autocorrelations of ε are calculated using equation (2.50). Using the Ljung-Box Q-test

[165], the first k autocorrelations are evaluated to determine if they have a collectivity

small magnitude. The Q-test is defined as

Q = n(n+ 2)
k∑
i=1

r2
i (ε)

n− i
(3.100)

where n is the number of samples and ri(ε) the sample autocorrelation of ε at lag i. Under

the null hypothesis, the Q-test statistic is asymptotically X 2(k − p− q) distributed. The

null hypothesis is rejected at level θ, indicating that GARCH errors exist, if Q exceeds

the (1− θ)-quantile of the X 2(k− p− q) distribution. The significance level θ is typically

chosen at 5% [99].

3.13 Artificial Neural Networks

An artificial neural network (ANN) is a model of a biological neural network with a network

structure that consists of a number of layered artificial neurons that are connected with

artificial synapses. This section discusses the basics of ANNs, the workings of an artificial

neuron, different activation functions, the configuration of various ANN architectures and

how an ANN is trained.

3.13.1 Artificial Neurons

An artificial neuron (AN) or perceptron is the fundamental functional component of an

ANN. An AN takes one or more input signals and produces an output signal using a

mathematical function, also referred to as an activation function. Figure 3.2 depicts the

process of an AN.

The first task of an AN is to calculate the net input by combining the input signals si

with the weights wi for each signal. A typical approach is to use the weighted sum of the

inputs,
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Figure 3.2: An artificial neuron.

net =
I∑
i=1

wisi (3.101)

An alternative approach is to calculate the net input using the product of exponential

inputs [61], defined as

net =
I∏
i=1

swi
i (3.102)

The second task of the AN is to pass the net input through an activation function f

in order to produce the output signal o. A threshold θ is often added to the AN. In order

to simplify training, the threshold is added as an additional input with a value of −1,

referred to as a bias unit. The bias changes the net input in equation (3.101) to

net =
I∑
i=1

wisi − θ (3.103)

where θ = wI+1sI+1. The bias can be added to the product of exponential inputs in a

similar fashion.

3.13.2 Activation Functions

The net input and bias must be passed through an activation function in order to

determine the output signal o. The weights of the inputs and the type of activation

function determine the strength of the AN output. Activation functions typically produce

outputs in the range of [0, 1] or [−1, 1]. Figure 3.3 illustrates some widely used activation

functions.
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0

(a) The step activation function.

0

(b) The linear activation function.

1

0

0.5

(c) The sigmoid activation function.

1

-1

0

(d) The hyperbolic tangent activation function.

1

0

0.5

(e) The Elliot activation function.

1

-1

0

(f) The symmetric Elliot activation function.

Figure 3.3: Various artificial neural network activation functions.
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The step activation function produces a binary output of either α or β as follows:

f(net− θ) =

α for net ≥ θ

β otherwise
(3.104)

The linear activation function is unbounded and produces a modulated output with

gradient α as follows:

f(net− θ) = α(net− θ) (3.105)

The more frequently used sigmoid activation function produces an output in the range

of (0, 1) using

f(net− θ) =
1

1 + e−α(net−θ) (3.106)

where α controls the steepness of the function and is usually set to one. In order to

produce an output in (−1, 1) with the sigmoid function, a symmetric version known as

the hyperbolic tangent function can be used as follows:

f(net− θ) =
eα(net−θ) − e−α(net−θ)

eα(net−θ) + e−α(net−θ) (3.107)

Since the exponential function has to be evaluated at least twice, the function can be

approximated more efficiently with

f(net− θ) =
2

1 + e−α(net−θ) − 1 (3.108)

Even with a single exponential operation, the sigmoid function can be computationally

expensive when evaluated numerous times. Elliot proposed an activation function that

produces similar results to the sigmoid function, but is more efficient [65]. The Elliot

function produces outputs in (0, 1), and is defined as

f(net− θ) =
net−θ

2

1 + |net− θ|
+

1

2
(3.109)

The symmetric function in (−1, 1) is even more efficient to calculate, and is defined as
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f(net− θ) =
net− θ

1 + |net− θ|
(3.110)

Even though the Elliot function is faster than the sigmoid function to calculate, it

reaches its extremes more slowly. The output error will therefore in general be greater,

requiring more training iterations to reach the desired error. This problem was observed

by benchmarking the sigmoid and Elliot functions on a backpropagation ANN [226].

3.13.3 Architecture

By itself, an AN is capable of learning linearly separable functions if the summation

unit is used [68]. In order to realize complex non-linearly separable functions, ANs are

combined into a network architecture. A widely used architecture is the feed forward

artificial neural network (FFANN), consisting of an input, one or more hidden, and an

output layer. Each layer contains one or more ANs which are fully connected to all ANs

in the previous and next layer. Figure 7.22 illustrates a FFANN with a single hidden

layer.

The complexity of the FFANN is increased by adding additional ANs to layers or by

adding additional hidden layers. It was proven that a single hidden layer with a sufficient

number of ANs can be used to model any continuous function [25, 132, 133].

Discrete values from the signal being processed are provided to the ANs in the input

layer. The inputs are then propagated to all connected ANs in the hidden layer. The

signal is passed through the activation function and the resulting f(net − θ) is then

forwarded to the next hidden layer until the signal finally reaches the output layer. The

forward propagation to calculate the outputs of a FFANN with a single hidden layer is

formalized as

ok = fok

(
J+1∑
j=1

wj,kfhj
(
nethj

))

= fok

(
J+1∑
j=1

wj,kfhj

(
I+1∑
i=1

vi,jgi,p

))
(3.111)
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g1
gi
gI

h1
hj
hJ

o1
oK

w1,1v1,1

... ... ...
vI+1,J-1 -1 wJ+1,K

... ...

Figure 3.4: A feed forward neural network.

where gi are the ANs in the input, hj the ANs in the hidden layer and ok the ANs in

the output layer as illustrated in figure 7.22. vi,j and wj,k are the connections between

the input and hidden, and hidden and output units respectively. fok and fhj are the

activation functions for specific units on the output and hidden layer. A FFANN can

therefore be regarded as a non-linear mapping of an input signal to a desired output

signal.

Another architecture, the time delay artificial neural network (TDANN) [157], is often

used for the processing of time series signals. On initialization, the TDANN has a value

for only the first input AN, all other inputs are set to zero. Once the first pattern was

propagated through the TDANN and a second pattern is available, all input values are

shifted ahead by one. Therefore, a time delay t is introduced with a total of τ previous

shifts. The time delay is formalized as
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gk(t− τ) = gk(t− τ + 1) (3.112)

for τ ∈ {1, 2, . . . , T}. Hence, a total of T patterns are used during training. The forward

propagation to calculate the outputs in equation (3.111) changes to

ok = fok

(
J+1∑
j=1

wj,kfhj

([
I∑
i=1

T∑
t=1

vi(t),jgi(t)

]
+ vI+1,jgI+1

))
(3.113)

Feedback connections can also be added to the network, allowing the FFANN to learn

the temporal characteristics of the input signal. These networks are known as simple

recurrent artificial neural network (SRANN). If one for instance tries to predict the next

few samples of a time series, one sample at a time, the output of the previous forward

propagation of the hidden layer or output layer can be used as an additional input neuron

for the next propagation. A feedback connection is therefore established between the

output and input layer, which is known as a Jordan SRANN [146]. The output of a

Jordan SRANN is calculated as

ok = fok

(
J+1∑
j=1

wj,kfh,j

(
I+K+1∑
i=1

vi,jgi

))
(3.114)

where an additional K ANs are added to the input layer which are linked with a feedback

connection from the K output ANs. An alternative approach to the Jordan SRANN,

is to create feedback connections between the hidden and input layers by duplicating

the activation of the hidden ANs and adding them as additional ANs to the input layer.

This architecture is known as the Elman SRANN [66]. A novel approach in time series

is to combine TDANN and SRANN into a simple recurrent time delay artificial neural

network (SRTDANN) in order to learn the temporal characteristics of the latest samples

in the series [104, 108, 149].

Choosing the correct size and structure for the ANN is a problematic process. Finding

the optimal structure that can accurately model the given signals requires the optimization

of the number of neurons and hidden layers which can be computationally expensive.

Overfitting may occur during training when the network size is too large and training

continues for too long with a dataset that contains noise. Overfitting occurs when the ANN
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structure has an excess degree of freedom, that is an excess number of weights, allowing

the ANN to remember noisy inputs, that would otherwise have been discarded more

quickly. Different approaches exist to mitigate the problem of choosing the network size.

Pruning removes unfavourable ANs and weights in order to improve the generalization

[67, 185]. Unfavourable ANs and weights are those that have no or a statically insignificant

effect on the ANN’s error rate and only increase the computational time to evaluate and

train the ANN. A cascade artificial neural network (CANN) starts with the simplest

architecture, only consisting of direct connections between the input and output layers

[79]. A set of ANs are trained separably and the most promising of the candidate ANs

are then added to the ANN. These candidate units are systematically added in order to

improve the output accuracy. All input units are connected to all hidden units, where

the output of the hidden units serve as the inputs to all succeeding hidden and output

ANs. Although CANN relieves the responsibility of choosing the network size, it can be

computationally expensive to train when a large number of candidate ANs are maintained

and trained separably.

3.13.4 Learning

By itself, an ANN is not capable of adapting to the characteristics of the input signal. A

training algorithm is required to adjust the weights of the ANN in order to capture the

input characteristics and reduce the output error. The process of weight adjustments

is known as learning. Three major paradigms are employed for ANN training, namely

supervised, unsupervised and reinforcement learning.

• Supervised learning: Supervised learning is used for pattern recognition,

classification problems and regression. Supervised learning requires prior knowledge

of the problem by making use of a dataset containing the inputs and desired outputs.

The ANN outputs are calculated based on the inputs and compared to the desired

outputs. The aim is to reduce the output error by adjusting the weights of the

ANN, which can be done using gradient descent. A widely used algorithm is the

backward propagation of errors, or backpropagation for short, which utilizes gradient

descent to find a local minimum. Backpropagation passes the error signal from
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the output layer, through the hidden layers and uses the error signal to adjust the

weights [217, 259]. Backpropagation requires the activation and error functions to

be differentiable. Backpropagation can be applied in three different modes, namely

incremental, stochastic and batch training. During incremental or online training,

the weights of the ANN are updated after each presentation of a new training pattern.

Incremental backpropagation may be beneficial to TDANN, since the last weight

updates where done with the most recent patterns. Stochastic training also updates

the weights after each pattern propagation, but randomly selects the pattern from

the set instead of a sequential selection. Similar to incremental training, stochastic

training may reduce the error on the single pattern, yet increase the error on the

entire training set. However, an increase in the number of training patterns reduces

the influence of the weights’ adjustment of a single outlier pattern on the error

of the entire training set. Batch training presents all patterns to the ANN before

adjusting the weights. The summation of the weight updates of all patterns are

used for training instead of updating the weights for each individual pattern. Batch

learning reduces the risk of an ANN unlearning what was learned in previous steps,

which can also be achieved though a learning momentum in stochastic training by

adding a fraction of the previous weight update to the current one. A variation

of the backpropagation algorithm is quickprop which is loosely based on Newton’s

method [78]. Quickprop requires the second order derivatives of the error function

and tries to approximate the error surface with a quadratic polynomial (parabola).

In general, quickprop trains faster than the standard backpropagation algorithm,

since it attempts to use a single step to jump from the current gradient position

directly into the minimum of the parabola. Resilient backpropagation, or Rprop for

short, is another widely used learning algorithm that adds a penalization when the

previous weights adjustment was too large, causing the ANN to jump over local

minima [214]. If the partial derivative of a weight changes sign compared to the

previous iteration, Rprop decreases the weight update by a factor η− for η− < 1. If

the sign of the partial derivative does not change, the weight update is increased by

a factor η+ for η+ > 1. Riedmiller and Braun suggested η− to be fixed at 0.5 and η+

at 1.2 [215]. An improved version of Rprop, known as iRprop, decreases the training
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time and was shown to outperform the standard Rprop and quickprop algorithms

[138]. Both, Rprop and iRprop, have two variants each. Rprop+ and iRprop+ make

use of weight-backtracking, whereas Rprop− and iRprop− omit weight-backtracking

[137]. Other supervised learning algorithms include the Widrow-Hoff rule [178], the

generalised delta rule [22] and particle swarm optimization (PSO) [118, 246].

• Unsupervised learning: Unsupervised learning only requires a set of inputs, but

no desired outputs. The ANN attempts to find patterns without any feedback

from error signals or rewards. Approaches in this category include clustering [58],

compression [231], classification [167] and self organizing maps (SOM) [152].

• Reinforcement learning: Unlike supervised learning, reinforcement learning

does not rely on a set of input-output pairs for training. Reinforcement learning is

typically used for sequential decision making and control tasks. The ANN interacts

with the environment and is penalized with a negative signal or rewarded with a

positive signal based on its performance. The weights are updated through the

rewards and penalties until it produces favourable outputs. Popular reinforcement

learning algorithms include Q-learning [256] and methods of temporal differences

[236].

3.14 Summary

This chapter discussed a number of polynomials and models that can be used to

approximate a function. The polynomials include the standard, Fourier, Newton, Hermite,

Lagrange polynomials and splines. More advanced modelling of audio signals can be

through the AR, MA, ARMA, ARIMA, ARCH or GARCH models. ANNs provide an

additional level of complexity, by allowing the model to learn from previous mistakes and

adapt accordingly in order to produce more accurate results. These polynomials and

models can be used to detect and reconstruct noise in audio signals which is discussed in

the upcoming chapters 4 and 5.
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Chapter 4

Noise Detection

Noise in gramophone recordings is a result of frequent use and mishandling of the record.

The noise can be caused by scratches, dust particles, long exposure to sunlight or other

sources of heat, extensive playback, rumble caused by the turntable mechanics and

vibrations from the speakers or other external factors in the room. Although all these

aspects contribute towards the degradation of the reproduced audio, scratches cause

the most audible disruptions as a result of a high deviation of the signal’s amplitude.

Individual samples that are affected by scratches diverge from the surrounding unaffected

parts of the signal. In order to reconstruct the disrupted samples, they first have to be

identified and flagged as disrupted, a process know as noise or outlier detection.

Outlier detection methods are broadly classified into time and frequency domain

approaches [114, 248]. Frequency domain techniques discover abnormalities in certain

frequencies. This is often achieved by comparing the frequency amplitudes calculated

from smaller time delay sample windows to those of larger parts of the signal, thereby

correlating temporal with population frequencies. Time domain techniques analyse the

displacement of an individual or a group of samples from the time delay signal with

relation to the non-corrupted parts of the signal. The noise causes impulse disturbances

in the sound wave, referred to as outliers in statistical analysis and considered to be

isolated disruptions in the samples’ amplitudes. These variances have a unity length

and a certain probability of occurrence. In practice, however, noise from gramophone

recordings are often not isolated, with disturbances occurring close to each other. If only

79
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Chapter 4. Noise Detection 80

a single sample is affected by the noise, the outlier is univariate. If outliers occur in a

joint combination of consecutive samples, they are multivariate.

Some outliers from noisy gramophone recordings, such as those caused by dust

particles and turntable rumble, are not easily detectable. These outliers only cause a

minor interference, making it difficult to distinguish the noise from the signal. The

typical approach to this problem is to apply a smoothing filter over the entire signal.

Various techniques were introduced, such as smoothing Kalman filters [56, 192], Monte

Carlo Bayesian filtering [166], an Ephraim and Malah noise suppressor [39], and two-pass

split-window filtering [71]. Although smoothing filters are able to reduce much of the

noise, they also sift the parts of the signal that do not contain outliers, leading to the

adjustment of non-corrupted samples. Additionally, audiophiles often listen to records

because of the unique listing experience caused by imperfections of the gramophone

medium and playback devices. This thesis therefore focuses only on multivariate outliers

that cause notable disruptions, and other types of minor noise is left for future research.

Since gramophone records have been around for many years, numerous approaches

were published over the years that attempt to reduce the noise caused by scratches.

Niedźwiecki proposed a method where mono records were played back with a stereo

turntable, generating two identical signals from one groove [192]. Since most scratches

only affect one side of the groove, the two signals are correlated with each other to detect

disturbances. This method is problematic when scratches affect both sides of the groove

and will be unusable if stereo recordings are used, which is the case with most records.

In his more recent research, Niedźwiecki used bidirectional processing in the time

domain to eliminate impulse disturbances of gramophone recordings [194]. This technique

relies on unidirectional detection techniques that process the signal from start to end,

and then in reverse order, from the last to the first sample. By adapting the existing

forward-time algorithms to also include backward-time detection, it was found that the

detection accuracy was increased, comparable to state-of-the-art commercial audio-based

outlier detectors. This approach can only be conducted on prediction-based algorithms,

such as the AR model and also requires the availability of the entire signal before

commencing the processing, making it unsuitable for real-time noise detection.

Niedźwiecki and Cio lek also proposed a model-based predictor that matches highly
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repetitive click patterns to a set of previously generated noise templates [196]. The main

problem with pattern matching is that the click templates must be generated prior to

the detection phase and noise that does not match any of the given templates will go

undetected. The empirical tests were conducted on only five gramophone recordings with

a subjective perceptual evaluation of 20 participants.

Another recent research project makes use of multiple copies of the same gramophone

record to refurbish the audio signal, with the hope that the scratches and damages do not

occur in the same place on the different copies [233]. The recorded signals are then aligned

to detect and eliminate outliers. Although this approach has a very high restoration

accuracy, it is infeasible in practice. In most cases it is difficult to obtain multiple copies

of the same record, especially for the older archived ones. Additionally, damages that are

similar and occur in the same place on all copies, such as the beginning of a record where

the needle enters the groove, are not detected and corrected.

Czyzewski proposed a FFT-based click detector by subtracting the frequency spectrum

of the impulse-related part of the signal from the whole spectral representation of the

signal, therefore, highlighting the frequencies of the signal segments which are affected by

noise [47]. Czyzewski’s research also proposed the training of an ANN to learn two classes

of noise in order to detect outliers. This ANN approach requires extensive training prior

the the detection phase and certain classes of noise may go undetected.

Most of these approaches are very limited, since they require special playback

equipment, multiple records, or have some restrictions on how the data should be processed.

This chapter discuses a number of generic outlier detection algorithms without these kind

of restrictions. The algorithms include the standard score, median absolute deviation,

Mahalanobis distance, nearest neighbour deviation, mean absolute spectral deviation,

and absolute predictive deviation. Each of these algorithms produces a per-sample noise

map which is then analysed with a direct, mean and maximum thresholding technique to

produce a noise mask.
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4.1 Noise Mapping

This section discusses a number of algorithms to detect outliers and to generate a noise

map. The noise map has an entry for each sample in the audio signal. Each of these

entries are in the range of [0, k], where 0 indicates that the sample is an inlier and

not affected by any noise and k indicates that the sample represents pure noise. The

maximum value for k is determined by the individual algorithms. The algorithms are

applied in a moving window fashion on series yi, generating a value for the noise map m

at time delay t as follows:

mt = d
(
(yi)

t+v
i=t−u

)
(4.1)

where d is the noise detection algorithm and u and v the number of samples to the left

and right of yt respectively. The values for u and v are determined by the individual

algorithms, but always adhere to (u + v) = (n − 1), where n is the size of the moving

window. If n is even and the detection algorithms require t to be centred between u and

v, the right-hand side of the moving window is reduced by one sample, that is v = (u− 1).

The purpose of this section is to provide a theoretical overview of different outlier

detection methods. The standard score, median absolute deviation, Mahalanobis, nearest

neighbour, mean absolute spectral deviation, and absolute predictive deviation outlier

detection algorithms will be discussed in the subsections to follow.

4.1.1 Standard Score

The standard score (SS), also know as the z-score or standardized variable, is a statistical

measurement of the relationship between a single observation and its population mean. A

positive score indicates that the data of interest is above the mean, with a negative value

indicating that the data is below the mean. The standard score can be calculated for the

entire population or only a sample subset. Since the mean of audio data is typically very

close to zero, it makes little sense to use the population’s score for outlier detection and

this thesis therefore only focuses on the sample standard score. Given the data point yt

for series y at time delay t, the sample standard score is calculated as
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dss(yt) =
yt − µ
σ

(4.2)

where µ is the mean and σ the standard deviation of y as given in equation (2.41). If

y follows a normal distribution, that is y ∼ N (µ, σ2), then the standard score follows

a standard normal distribution such that yt−µ
σ
∼ N (0, 1). A rule of thumb for a set of

n samples is to mark them as outliers if their absolute standard score is 2.5 or greater

for n ≤ 80 and 3 or greater for n > 80 [249]. It was however shown that the absolute

maximum possible score is dependent on the sample count and can be calculated as n−1√
n

[224]. The standard score has a limitation in that the standard deviation is exaggerated

when a few or even a single extreme outlier is present in the set, which is especially

problematic for very small datasets. Moderate outliers can therefore go undetected in

the presence of extreme outliers.

4.1.2 Median Absolute Deviation

The mean and standard deviation are greatly influenced by a few extreme values in the

population. The median absolute deviation (MAD) detection replaces the mean with

the median of the population, which reduces the risk of a single extreme value affecting

the outcome of the score [162]. Like the standard score, the MAD score can also be

calculated on the entire population or a subset. This thesis only discusses the sample

MAD score. The median of absolute deviations is calculated by

mady = median(|yi − ỹ|)ni=1 (4.3)

where ỹ is the median of the sample subset y. A MAD score at time delay t is defined as

dmad(yt) =
c(yt − ỹ)

mady
(4.4)

where c is a constant. Iglewicz and Hoaglin suggested using 0.6745 as a value for c and

labelling samples as outliers if the MAD score exceeds 3.5 [139]. This threshold was

estimated by simulations where a tabulated proportion of random normal observations

were labelled as outliers. It is computationally expensive to calculate the median. The
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calculation can be accelerated with more efficient approaches, such as quickselect, which

is based on quicksort [130], or successive binning [241].

4.1.3 Mahalanobis Distance

Mahalanobis introduced a relative measure to determine the distance from a data point

to a common point [169]. The Mahalanobis distance (MHD) accounts for the covariance

between variables and accommodates variances in different directions. It differs from

the Euclidean distance in that it is scale-invariant and therefore does not change when

the scales of length are multiplied by a common factor. A function f(x) is said to be

scale-invariant for a scale factor λ if

f(λx) = λ∆f(x) (4.5)

for some exponent ∆. The Mahalanobis distance is equal to the Euclidean distance under

a standard normal distribution [64]. Given a vector y of n multivariate independent

random data points and µ as a vector of size n containing the means of the independent

variables, the Mahalanobis distance is defined as

dmhd(y) =
√

(y − µ)TC−1(y − µ) (4.6)

where C−1 represents the inverse of the covariance matrix in equation (2.34). Since C

contains the covariances with itself on the diagonal, C can also be expressed as the

variance-covariance matrix in equation (2.37). The Mahalanobis distance reduces to the

Euclidean distance if the covariance matrix is equal to the identify matrix [26]. If the

covariance matrix is diagonal, the distance measurement is called a normalized Euclidean

distance [171], defined as

dmhd(y) =

√√√√ n∑
i=1

(yi − µi)2

σ2
i

(4.7)

where σi and µi are the standard deviation and mean at points yi respectively.
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4.1.4 Nearest Neighbour Deviation

Similar to other nearest neighbour (NN) based algorithms, outliers can be detected

by calculating the deviation of a subset of k samples from a larger data set, which is

commonly referred to as k nearest neighbour (kNN) outlier detection. Calculating the

deviation for continuous attributes is often done using the Euclidean distance between

vectors of attributes [21, 267, 272], but other means for determining the deviation exists,

such as the Mahalanobis, Kullback-Leibler and Hamming distances [254]. If the data is

multivariate, the distance is calculated for each individual attribute and then combined

to create a distance for all multivariate attributes [238].

The nearest neighbour deviation (NND) algorithms are grouped into two main

categories. The first approach determines a score for a kNN global anomaly and is

calculated using the distance to the kth neighbour [208]. Alternatively, the mean distance

of k nearest neighbours to the point of interest can be used as the score [9]. Given the

point of interest yt at time delay t, the global kNN score for a sequential dataset is

calculated by using k
2

samples on both sides of yt as follows:

dnnd(yt) =
1

k

 k
2∑
i=1

|yt − yi|+
k+1∑

j= k
2

+2

|yt − yj|

 (4.8)

To ensure that both sides of yt contribute equally, the window size k should be an even

number. Using the mean distance instead of the distance to the kth neighbour is more

robust with regards to statistical fluctuation and often the preferred method [6].

The second category of NN anomaly detectors make use of the local outlier factor

(LOF). LOF finds outliers by calculating the local deviation of a point with respect to its

k nearest neighbours [32]. The distance between the point of interest and its neighbours is

used to estimate the local density. The local density of the given point is then compared

to the local density of its neighbours. Points in regions with a local reachability density

of approximately one indicate a similar density with respect to its neighbours and are

therefore not considered outliers. Denser regions with values below one are also considered

inliers. Regions with substantially lower densities, that are values greater than one, are

considered outliers. LOF shares the concept of reachability distance and core distance

with clustering algorithms such as the ordering points to identify the clustering structure
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(OPTICS) [74] and density-based spatial clustering of applications with noise (DBSCAN)

[31]. A benefit of LOF is that, due to calculating the local instead of the global deviation,

NN distances will be more prominent for local outliers that would otherwise not be

detected through global approaches [6, 32]. In addition, LOF can easily be generalized to

work in various problem areas, such as detecting outliers in video streaming, spatial data

and authorship networks [220].

Parametrization poses a problem with local distances in LOF: when choosing the

threshold to determine which LOF value will be marked as outlier, the threshold might

work well for one dataset, but poorly for another. This drawback limits LOF when the

same parameters are applied to a number of datasets which are coherently different in

nature. A number of extensions to LOF have been proposed in order to reduce the

previously mentioned and other drawbacks, but still maintaining LOF’s advantages. The

feature bagging for outlier detection (FBOD) runs LOF on multiple instances, combining

the NN distances in higher dimensions to increase the detection accuracy [158]. The local

outlier probability (LoOP) calculates the final distance of neighbours as a probability,

allowing data instances to be compared with other instances in the same or other sets

[153]. LoOP also uses inexpensive local statistics to reduce the sensitivity when choosing

parameter k. The interpreting and unifying outlier scores (IUOS), an improvement of

LoOP, proposes the normalization of the LOF score to the range [0, 1] by using statistical

scaling [154]. The connectivity based outlier factor (COF) was introduced to handle

anomalies from spherical density patterns, such as straight lines, with the idea that

outliers do not always have a lower density [239]. The influenced outlierness (INFLO)

method increases the detection accuracy by taking clusters with varying densities that

are near each other into account [145]. The local correlation integral (LOCI) eliminates

the crucial parameter k by using the density of an instance which is proportional to the

number of objects within a specified radius. The radius starts from the minimum and

increases to incorporate all instances of the dataset [203].

Benchmarking with optimal parameters between global kNN, LOF, COF, LoOP,

INFLO and LOCI showed that the kNN global score on average performs the best over

a number of datasets, with LOF and its extensions only performing slightly better on

individual datasets [6].
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4.1.5 Mean Absolute Spectral Deviation

Noise in the time domain causes sudden disruptions for a set of samples. These disruptions

can be prominent in the time domain, but can still be hard to detect if the surrounding

signal has a certain degree of randomness, making it difficult to distinguish between inliers

and outliers. Transforming the signal into the frequency domain moves the problem from

detecting which samples are disrupted to determining which frequencies are affected by

the disruptions. Most excitations occur in the very low and higher frequencies. Since

speech and instruments mostly do not exceed the 10000 Hz range, noise in the higher

frequencies (above 10000 Hz) are prominent and therefore easier to detect.

Figure 4.1 shows an example of an original and the corresponding noisy samples in the

time and frequency domains for a signal obtained from a gramophone with a scratch. The

frequency spectrum was acquired with a Hamming window computed over 4096 samples.

Although lower frequencies between 100 Hz and 4000 Hz have a clear excitation from the

noise, more noticeable disturbances are observed in the higher frequencies between 12000

Hz and 20000 Hz.
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Figure 4.1: The difference between the original and noisy signals.

Outliers often cause a phase and amplitude shift in the Fourier series, making it

suitable to apply spectral methods on the frequency domain to identify anomalies. An

algorithm was proposed by Shittu and Shangodoyin that makes use of MLE to estimate

the parameters of a Fourier model in order to determine the variance between the
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approximation and the actual values [225]. It was found that the algorithm performed

well for three datasets, but very poorly for two others. Another proposition focuses on the

use of warped linear prediction on the frequency domain of audio data by using bilinear

conformal mapping [72]. It was found that by properly tuning the parameters, the outliers

can be emphasized in the higher frequencies with a better detection accuracy than the

traditional warped linear prediction. A comparison was done on the effects of using

outlier interval detection on the time domain by applying a variance algorithm, versus

the use of outlier interval detection on the frequency domain by replacing the variance

with a nearest neighbour algorithm [135]. A kNN algorithm was used to determine the

distances between the interval’s frequency vector and the k nearest frequency vectors. The

three mentioned algorithms all have a slight increase in the detection accuracy compared

to working in the time domain, but have either an unacceptable increase in the time

complexity or only work well for special datasets.

By using a moving window, time domain outliers can be detected by analysing the

surrounding frequency spectrum. The Euclidean distance between the amplitudes of

neighbouring frequencies is used to calculate the mean absolute deviation among the

entire frequency spectrum for a window at a certain time delay. Given a sample window y,

a set of frequencies f can be calculated using the DFT in equation (2.11). The resolution

of the DFT depends on the window size and is also influenced by the windowing function.

Using the set of frequencies f, the median absolute spectral deviation (MASD) for a

window size of n samples is calculated using

dmasd(f) =
1

n− 1

vn∑
i=un

|fi−1 − fi| (4.9)

where u and v are additional parameters in [0, 1] which control the range of frequencies

considered to be affected the most by noise. If u and v are at the extremes, that is zero

and one respectively, the entire spectrum is used.

Since noise mostly only disrupts a certain frequency range, the mean absolute deviation

for those frequencies is greater than those of non-noisy data. The frequency deviation

score for the original and noisy signals from the example in figure 4.1 is given in figure

4.2. Note that the values are not given in decibels, but represent the deviation between

unprocessed Fourier values.
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Figure 4.2: The deviation between the original and noisy signals.

The frequency deviation score, calculated using equation (4.9), for the given example’s

noise signal has a clear excitation in the higher frequencies with a score of 3.56, 66%

higher than the original signal’s score at 2.15.

4.1.6 Absolute Predictive Deviation

The absolute predictive deviation (APD) outlier detection makes use of a forecasting

model to determine the next values in a time series and if these predicted values deviate

from the observed values with a certain degree, they are marked as outliers. Predictive

outlier detection has gained widespread academic coverage, using models such as AR

[193] and ARMA models [243], multilayer perceptrons [128], nearest cluster prediction

[128], and support vector regression (SVR) [168]. Given a predictive model m with a lag

of n points that predicts the the next value at time delay t+ 1 in the series y, outliers

are detected with the absolute deviation as follows:

dapd(y) = |yt+1 −m(yt−n+1, . . . , yt)| (4.10)

An alternative approach makes use of the Mahalanobis distance to determine the deviation

from the original signal [121]. If the absolute deviation in equation (4.10) exceeds a given

threshold, the sample is flagged as an outlier. This approach is sound for univariate

outliers, but can skew the model estimation for multivariate outliers, depending on the
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characteristics of the input data. If yt+1 was flagged as an outlier, the observed value

at t + 1 should not be used for future model estimations, that is for estimations at

yt+2, . . . , yt+r, where r is the number of sequential points that contain noise. The problem

is mitigated by utilising one of two alternative approaches. The first approach depicted

in algorithm 3 makes use of recurrent prediction where outliers at t+ 1 are replaced with

their predicted value before estimating the next model at t+ 2.

Algorithm 3 The recurrent algorithm for the absolute predictive deviation.

set y as the time series of observations

set p as an empty set of predictions

determine n as the optimal lag length for the model

set i = n

while i <= size of y do

estimate model with yi−n, . . . , yi−1

set pi to the model prediction at time i

if |yi − pi| > threshold then

set yi = pi

end if

increment i

end while

The second approach, batch prediction, is shown in algorithm 4. A model is estimated

once for the surrounding samples and then used to predict all r sequential outliers.

Although batch prediction is computationally less expensive than recurrent processing,

since the model has to be estimated only once for an entire batch of sequential outliers, it

relies on the model’s ability to accurately predict up to r points. If the model is able to

accurately predict enough samples into the future, batch prediction is advised, otherwise

recurrent prediction should be used. In the case that a models predicts the first point in

a multivariate outlier set inaccurately, all r − 1 successive predictions will deviate even

more from the intended values. In such a case the detection accuracy is very low and

the model parameters must be adapted to ensure accurate predictions. If adjusting the

model parameters does not improve the prediction accuracy, the model is deemed unfit
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for predictive outlier detection.

Algorithm 4 The batch algorithm for the absolute predictive deviation.

set y as the time series of observations

set p as an empty set of predictions

determine n as the optimal lag length for the model

set i = n

while i <= size of y do

estimate model with yi−n, . . . , yi−1

set pi to the model prediction at time i

set r = 0

while |yi+r − pi+r| > threshold do

set pi+r to the model prediction at time i+ r

increment r

end while

increment i

end while

Another problem with predictive outlier detection is that the first n samples can not

be tested for noise, since there is not enough data available for the model estimation.

This is not a major problem when processing audio data, because even for large n, this

will evaluate to only a few milliseconds than can not be processed. Alternatively, the

model can be simplified to use less samples for the first prediction, reducing the number

of unprocessed samples but not completely mitigating the problem. Another more formal

approach that does not require a less accurate model for the first samples, is to process

the first n samples in reversed order by making use of the second n samples.

In his master’s thesis, Cheboli compared different outlier detection methods by

benchmarking them against 19 datasets from different unrelated fields, such as NASA

valve data, disk failures, power usage and enhanced vegetation data [41]. It was shown that

predictive outlier detection with AR and SVR models are on average inferior to proximity

based algorithms such as kNN. However, the detection accuracy of the benchmarked

algorithms greatly depend on the characteristics of the data, such as volatility, and do
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not necessarily provide a true representation of music data which is less volatile for high

sample rates, compared to the datasets used by Cheboli.

The notation APD-m is used in this thesis, where m represents the model used for

the prediction.

4.2 Noise Masking

The noise detection algorithms described in section 4.1 generate a noise map with a score

for each sample in the observed signal. The scores are in [0, k], where k is determined

by the individual detection algorithms. The noise map indicates how much a sample is

affected by noise, with a value of zero indicating no noise at all and k as pure noise. A

threshold process generates a noise mask where each sample is either flagged as an inlier

or an outlier. Once the noise mask is generated, a noise removal algorithm reconstructs

those samples that were previously flagged as outliers by the masking threshold. Three

common approaches to apply a threshold during the noise masking process are discussed

next.

The first approach uses a threshold in the standard manner, where samples above a

specific value are flagged as outliers. Given a threshold θ and a noise map η, the noise

mask is generated as follows:

η̆i =

1 for ηi ≥ θ

0 otherwise
(4.11)

where integer i ranges over all samples in the dataset. The other two approaches, mean and

maximum thresholding, are often used in conjunction with nearest neighbour algorithms

[122], but can be adapted to work with other outlier detection algorithms as well. The

mean threshold is applied as

η̆i =

1 for ηi ≥ µ
1−θ

0 otherwise
(4.12)

where µ is the mean of η. The mean threshold approach is beneficial if a mutual value

for θ must be chosen amongst a set of different noise detection algorithms. The third
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approach uses the maximum value of the noise map, that is

η̆i =

1 for ηi ≥ η̂θ

0 otherwise
(4.13)

where η̂ is the maximum value in η. The maximum threshold approach is beneficial if a

global value is chosen for θ and the noise characteristics of different signals vary greatly.

The detection accuracy may, however, be very low for this approach if a single sample

was significantly affected by noise with the rest of the samples only being influenced

moderately. The first approach that uses a standard threshold, has a performance

advantage over the other two approaches, since neither the mean η̄ nor the maximum η̂

has to be computed.

4.3 Summary

This chapter discussed a number of algorithms used to detect outliers in a dataset,

including a standard score, median absolute deviation, Mahalanobis, nearest neighbour

and mean absolute spectral deviation. A predictive outlier method was proposed using

the models from chapter 3. The standard, mean and maximum thresholding techniques

are used to transform a real noise map into a binary mask.
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Chapter 5

Noise Reconstruction

Interpolation is the process of reconstructing a function, curve or other geometric object

by using a finite number of known values. The word interpolation is derived from the

Latin word interpolare which means “to refurbish” or “to add something new”. From as

early as 300 BC, interpolation was used by Babylonian, Chinese and Arabian astronomers

to fill gaps in calendars, often with formulas equivalent to later work done by Gregory

and Newton [179]. The first reference to interpolation in the context of mathematics

was in 1655 by Wallis in his book on infinitesimal arithmetic [252]. In the past century,

interpolation theory has been adopted in different fields, ranging from pure mathematics in

numerical integration and differentiation to more practical uses such as image resampling,

audio filtering or network transmissions.

Vaseghi and Frayling-Cork proposed an adapted spectral subtraction algorithm to

eliminate white noise from gramophone recordings [247]. In addition, a restoration

method was discussed in the case that several copies of the same record are available.

Using multiple copy restoration caused major problems, such as the time misalignment

of two or more signals and signal delays as a result of fluctuations in the speed of the

playback devices. In addition, multiple records are rarely available, making the solution

infeasible in most practical circumstances.

Godsill and Rayner proposed a simple reconstruction algorithm using a truncated

sinc function [113]. Although the authors concluded that the audio restoration was of

high quality, neither an empirical analysis nor a qualitative or quantitative evaluation of

94
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the algorithm was performed.

Godsill and Rayner also compared a frequency-based interpolation algorithm to the

reconstruction of an AR model [112]. It was found that reconstructing a signal with its

estimated FFT was more accurate than the AR model. The research provided only two

isolated examples without any qualitative or quantitative measurement of the algorithm’s

performance.

Niedźwiecki and Cio lek proposed an restoration solution for stereo audio utilizing

a vector autoregressive (VAR) model where the model parameters are tracked online

using the stability-preserving Whittle-Wiggins-Robinson algorithm with exponential data

weighting [195]. The experiments were conducted using only five artificially corrupted

audio recordings. It was found that the VAR model outperformed the AR model by a

small margin for all five test cases. It was also shown that if the stereo channels are

analysed and processed jointly, the restoration improves. The research was later extended

by Niedźwiecki et. al. where the online tracking of model coefficients was conducted

using a weighted least squares algorithm [197].

The purpose of this chapter is to discusses and evaluate some fundamental interpolation

algorithms used to reconstruct segments of noisy samples that were previously flagged

by the outlier detection algorithms in chapter 4. The algorithms are categorised into

duplication, trigonometric and model interpolation. Duplication techniques follow a

copy-and-paste principle where gaps in the sound wave are replaced by sample segments

retrieved from elsewhere in the signal. Duplication interpolation includes adjacent

windows, mirroring windows, nearest neighbour and similarity interpolation. Lanczos and

cosine interpolation are part of the trigonometric methods which utilize a trigonometric

function to approximate the missing samples. Model interpolation employs any of the

models presented in chapter 3 to estimate the temporal characteristics of the signal and

use the coefficients to reconstruct sample gaps.

5.1 Duplication Approaches

A number of early approaches for reconstructing music and other sources of audio rely on

the principle of re-occurrence. Assuming that the pre- or succeeding sequence of samples
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share some characteristics with samples to be interpolated, this category of algorithms

reconstruct missing samples by duplicating them from the surrounding data. Duplication

algorithms typically make use of equivalent sources to reconstruct the audio, where at

least one of the sources is not subjected to noise at each given time delay [5, 233]. Since

in practice multiple copies are mostly not available, a more generic technique is required

by copying samples from different parts of the same source. Niedźwiecki and Cisowski

proposed a smart copying algorithm that copies a similar fragment from the preceding or

succeeding samples using an AR model with mixed excitation and a Kalman filter [199].

The reconstruction accuracy was not determined mathematically, but by a small group of

people that had to distinguish the reconstructed signal from the original audio. The smart

copying algorithm was also applied to gramophone records in Cisowski’s PhD thesis which

provided similar performance results compared to the clean audio processing [44]. This

section discusses four primitive interpolation techniques using sample duplication, namely

adjacent window, mirroring window, nearest neighbour and similarity interpolation.

5.1.1 Adjacent Window Interpolation

During adjacent window interpolation (AWI), a gap of size n is interpolated at time delay

t by simply copying the preceding n samples from the signal y, that is,

yt+i = yt−n+i (5.1)

for integer i ∈ {0, 1, . . . , n − 1}. This approach relies on the idea that if a certain

combination of samples exists, there is a likelihood that they might be repeated. The

interpolation accuracy is improved by using bidirectional processing and taking the

average between the forward and backward interpolation process, in other words,

yt+i =
yt−n+i + yt+n+i

2
(5.2)

5.1.2 Mirroring Window Interpolation

Volatile signals that are interpolated with the adjacent windows can cause a sudden jump

between sample yt and yt−1 and sample yt+n−1 and yt+n, that is, where the gap of missing
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samples starts and ends respectively. This sample jump is prominent for a large n, since

using a forward adjacent window will only interpolate the gap with the historical data

and not consider the future direction of the signal. By mirroring the samples during

mirroring window interpolation (MWI), the signal is smoothed between the first and last

sample of the gap as follows:

yt+i = yt−1−i (5.3)

for integer i ∈ {0, 1, . . . , n− 1}. Similarly, the average between the forward and backward

interpolation increases the accuracy:

yt+i =
yt−1−i + yt−1+2n−i

2
(5.4)

5.1.3 Nearest Neighbour Interpolation

The nearest neighbour interpolation (NNI) interpolates a point by choosing the value of

the closest neighbouring point in the Euclidean space. NNI for a sequential dataset at

time delay t is defined as

yt =
t+k∑
i=t−k

h(t− i4t)yi (5.5)

where k is the number of samples to consider at both sides of yt and h is the rectangular

function defined as

h(t) =

1 for− 1
2
≤ t
4t

< 1
2

0 otherwise
(5.6)

For a sequential dataset of n samples, NNI always chooses point yt−1 for t ≤ n
2

and point

yt+n t >
n
2
. Since NNI was originally intended for resampling two-dimensional grid data,

the reconstructed samples may have a steep jump in the middle of the gap if there is a

steep gradient between the last sample before and the first sample after the gap. In order

for a smoother interpolation between the samples on the left and right side of the gap,

instead of simply using the nearest point in a dataset with k values, the missing samples
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are interpolated with the mean of the nearest k samples. Depending on the position of the

interpolated sample, a different number of samples from the left and right of the gap is

considered to calculate the mean. The mean can also be replaced with the median, which

is statistically more accurate for volatile signals or if the signal still contains outliers that

were not flagged by the outlier detection process in chapter 4. However, as n increases,

the interpolation accuracy advantage of the median over the mean will decrease, and will

only increase the computational time.

5.1.4 Similarity Interpolation

Duplication-based interpolation algorithms can produce an inaccurate reconstruction

if the interpolation gap shares little characteristics with the preceding and successive

samples. A more accurate approach through similarity interpolation (SI) involves the

search for a sequence of samples that are similar to the samples on each side of the gap.

This can be done by constructing a set of vectors di by calculating the deviation between

the amplitudes of neighbouring samples in a moving window as follows:

di = [(yi − yi+1), (yi+1 − yi+2), . . . , (yi+n−1 − yi+n)] (5.7)

where y is the series of observed samples with a moving window size of n+ 1. Given u

as the number of previous and v as the number of future samples surrounding the gap,

a total of (u+ v − n) vectors are calculated when the window moves over y. For a gap

starting at time delay t, the last deviation vector just before the gap is denoted as

d̃ = dt−n = [(yt−n − yt−n+1), (yt−n+1 − yt−n+2), . . . , (yt−2 − yt−1)] (5.8)

In addition, for every vector di, except for i = t − n, the difference between the last

sample in the current and the first sample in the next window is calculated as

ri = yi+n − yi+n+1 (5.9)

The goal of similarity interpolation is to find the vector in di that shares most of its

characteristics with d̃. Note that, by using the amplitude deviation, the algorithm will

find a sequence of samples that are similar in direction and gradient and not necessarily
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similar in amplitude. This ensures that sample sequences with a similar waveform are also

considered and not only sequences that have similar amplitudes. The similarity between

a vector d and the desired vector d̃ is calculated as the sum of squared differences:

s(d) =
n−1∑
i=0

(d̃i − di)2 (5.10)

The vector which has the lowest score is then chosen, as follows:

ď = arg min
i

s(di) (5.11)

Once the most similar vector was found, the corresponding deviation ri is added to the

last sample before the gap, that is

yt = yt−1 + ri (5.12)

The process is applied iteratively until all missing samples are interpolated. Similar to

AWI and MWI, in order to increase the accuracy, SI can be applied in a forward and

reversed order by taking the average ri in both directions. Processing in both directions

will only improve the interpolation accuracy slightly, but double the computational time.

5.2 Trigonometric Approaches

Trigonometric functions can be fitted between two points to create a smooth adjacency

used for interpolation. This section discusses two basic trigonometric approaches, namely

Lanczos and cosine interpolation.

5.2.1 Lanczos Interpolation

Lanczos interpolation (LI), named after Cornelius Lanczos, is a smoothing interpolation

technique based on the sinc function [59]. The sinc function is the normalized sine

function [105] defined as

sinc(x) =
sin(x)

x
(5.13)
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The Lanczos interpolation is defined as

l(x) =

bxc+n∑
i=bxc−n+1

yiL(x− i) (5.14)

where bxc is the floor function of x, n the number of samples to consider on both sides

of x and L(x) the Lanczos kernel. The Lanczos kernel is a dilated sinc function used to

window another sinc function as follows:

L(x) =

sinc(x)sinc(x
n
) for− n < x < n

0 otherwise
(5.15)

Lanczos interpolation is typically used for resampling where the interpolation is applied

to gaps between equidistant samples. If non-equidistant gaps are interpolated, all values

of x in the Lanczos kernel are scaled to the range [0, 1] and the resulting interpolate is

divided by the sum of the Lanczos kernel.

5.2.2 Cosine Interpolation

A continuous trigonometric function like cosine can be used to smoothly interpolate

between two points. Given a gap of n missing samples starting at time delay t, the cosine

interpolation (CI) is defined as

c(x) = yt−1(1− h(x)) + yt+nh(x) (5.16)

where h(x) is calculated with cosine as follows:

h(x) =
1− cos

(
π(x+1)
n+1

)
2

(5.17)

The cosine operation can be replaced with any other smoothing function f(x), as long as

the function adheres to

f(0) = 1 and f ′(x) < 0 x ∈ (0, 1) (5.18)

Alternatively, if the function has the properties
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f(0) = 0 and f ′(x) > 0 x ∈ (0, 1) (5.19)

the points yt−1 and yt+n in equation (5.16) have to be swapped around.

5.3 Model Interpolation

Model interpolation is a widely used technique for reconstructing gaps of missing samples.

A model is estimated to fit a set of given data points as accurately as possible. The

estimated model is then used to determine the values of the missing points. Any of

the models discussed in chapter 3 can be used for this type of interpolation. The

reconstruction accuracy of the model depends on the characteristics of the observed

points and the chosen parameters for the model.

5.4 Summary

This chapter discussed interpolation techniques using duplication approaches such as

adjacent and mirroring windows, nearest neighbour and similarity interpolation. Two

trigonometric approaches, namely Lanczos and cosine interpolation were considered. In

addition the models in chapter 3 can be estimated in order to approximate the missing

samples.
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Chapter 6

Research Methodology

This chapter discusses the methodology, test data collection and procedures followed

to prepare, benchmark and analyse the ability of the proposed system to detect and

reconstruct noise from gramophone recordings. The characteristics of gramophone noise

is discussed, followed by a description of the data used during testing. A short report

on the audio format, benchmarking system, performance measurement and parameter

optimization process is also given.

6.1 Noise

A single stereo song encoded at 44.1 kHz with a duration of four minutes contains

approximately 21 million samples. In order to validate the ability of the outlier detection

algorithms, the noise in the recorded songs must be manually identified and correlated

with the output of the algorithms. Manually identifying the noisy samples, even for

a single song of 21 million samples, is a tedious and time-consuming process and it is

therefore impractical to create a large dataset where the noise was manually flagged. A

typical approach in audio processing is to generate artificial disruptions in clean audio

data with Gaussian white noise [73, 134, 202]. Besides Gaussian white noise, Niedźwiecki

[198] also suggested using positive pulses with a constant magnitude and a mixture of

white noise and impulses.

Figure 6.1 shows four examples of noise disruptions typically observed in gramophone

102
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Chapter 6. Research Methodology 103

recordings. These examples were specifically chosen, since they represent the overall

characteristics of the majority of noise caused by scratches. As can be seen from figure 6.1,

it is insufficient to simply use artificially generated Gaussian white noise to represent the

disruptions caused by scratches on gramophone records, since is not a true representation

of the observed noise which typically follows one of several patterns.
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(a) A distortion with a positive pulse affecting

7 samples.
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(b) A distortion with a negative pulse affecting

23 samples.
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(c) A distortion with multiple positive pulses

affecting 10 samples.
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(d) A distortion with a negative followed by

a positive pulse affecting 21 samples.

Figure 6.1: The sound wave of typical noise pulses from a distorted gramophone record.

Four different types of artificial noise are used for the empirical tests. Unlike

Niedźwiecki [198], the four different types of noise are applied with both positive and

negative pulses, since scratches affect the amplitudes in both directions. Positive pulses

are shown in figure 6.1(a) and 6.1(c) with negative pulses given in figure 6.1(b) and 6.1(d).

The patterns of artificial noise used in the experiments are categorised as follows:
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• Single bursts: A single burst with a sudden positive increase or negative decrease

in the amplitude as shown in 6.1(a) and 6.1(b).

• Dual bursts: A single burst with a sudden positive increase or negative decrease,

immediately followed by another burst in the opposite direction.

• Dual gradual bursts: Similar to the dual bursts, this type of noise has two peaks

with one positive and one negative pulse. Instead of the two peaks following each

other immediately, a more gradual increase or decrease between the peaks are

followed as shown in figure 6.1(d).

• Oscillating bursts: This type of noise follows a more irregular rhythm with

sudden consecutive positive and negative bursts. As shown in figure 6.1(c), short

positive and negative pulses follow each other, creating a zigzag-like pattern.

These four noise patterns are not directly applied to the audio signals, but are first

subjected to a Gaussian white noise process. Adding a certain degree of randomness to

the noise patterns ensures that the outlier detection algorithms and the corresponding

parameters are generic enough to detect different variations of the noise and not only a

small group of constant patterns.

Scratches typically affect no more than 30 sequential samples. For the empirical

tests, noise with a duration of up to 50 samples are generated to also accommodate

slightly larger scratches. Each of the four artificial noise patterns are applied to the 50

different noise lengths and subjected to white noise, generating a large set of different

noise variations. The artificially generated noise of each pattern is uniformly distributed

over noise durations between one and 50 samples. Hence, a generated noise sequence

of type pa with a duration of na has the same probability of occurrence than any other

noise pattern pb with a duration of nb for na, nb ∈ {1, 2, . . . , 50}. Although scratches can

exceed 50 samples, they are very rare in practice and were omitted in order not to skew

the detection performance with scarce anomalies.

Besides using artificially generated noise, another dataset with real noise from

gramophone recordings is also used. Since real noise requires the tedious task of manually

flagging the outliers beforehand, the dataset is considerably smaller than the artificially

generated noise dataset.
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A standard four minute stereo song encoded at 44.1 kHz was artificially disrupted

with a total of 529200 noisy samples which is equivalent to approximately 2.5% of all

samples in the signal. Real gramophone recordings had fewer disruptions with less than

1.5% of samples being distorted.

6.2 Test Data

The test data is divided amongst eight different music genres, in order to accommodate

various characteristics of different types of music. The genres are categorised as follows:

• Classical: Classical music is typically composed of the string, brass, percussion, and

woodwind families of instruments and also includes opera. The genre is subdivided

into medieval, renaissance, baroque, classical, modern, and contemporary, according

to the era of composition. Classical music typically has a very narrow dynamic

range with calm or even silent fragments. An example of a classical sound wave is

given in figure 6.2(a).

• Country: Country music is characterised by simple harmonies accompanied by

mostly string instruments such as banjos, acoustic guitars, fiddles, and other

instruments such as harmonicas and accordions. Country can be divided into folk,

swing, blues, boogie, and gospel. Country music has a lower dynamic range than

most other genres. An example of a country sound wave is given in figure 6.2(b).

• Electronic: Electronic music encapsulates music generated with electronic

instruments such as electric guitars, keyboards, theremins, and sound synthesizers.

A large part of this genre is directly created through computer software. Subgenres

include electro, techno, dance, trance, and house. The genre is characterised by a

very wide dynamic range with a large number of samples reaching the extremes.

An example of an electronic sound wave is given in figure 6.2(c).

• Jazz: Jazz is typically composed using drums, guitars, pianos, and brass

instruments, most notably the trumpet and saxophone. Although not one of the

main genres, jazz was included due to the higher amplitudes from brass instruments
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in a mostly narrow dynamic range. Subgenres include soul, bop, latin jazz, and

often overlaps with blues and swing. An example of a jazz sound wave is given in

figure 6.2(d).

• Metal: Metal is characterised by loud and distorted sound generated by drums,

distorted guitars, dense bass and vigorous vocals. Although a subgenre of rock,

metal was specifically included due to the very wide dynamic range and sound

distortions that are similar to the noise caused by gramophone scratches. The genre

can be divided into heavy metal, death metal, nu metal, punk, and grunge. An

example of a metal sound wave is given in figure 6.2(e).

• Pop: Originally derived from rock, dance and country music, pop or popular music

employs repeated choruses, melodic tunes, and hooks composed with a wide range

of instruments. Pop music typically has a medium dynamic range with higher

amplitudes caused by electric guitars, electronic beats or high-pitched vocals often

repeated in refrains. An example of a pop sound wave is given in figure 6.2(f).

• Reggae: A genre that originates from Jamaica, reggae mainly uses guitars, hand

drums, and traditional Jamaican and African instruments. This genre was included,

since reggae is characterised by emphasizing the last note in a beat. This stands

in direct contrast to almost all western music which emphasizes the first note in

a beat. Other genres that fall in this category includes ska and rocksteady. An

example of a reggae sound wave is given in figure 6.2(g).

• Rock: Also known as rock and roll, this genre is typically composed with electric

and acoustic guitars, bass and drums. Rock has a wide dynamic range, but in

general still narrower than metal and electronic music ranges. Subgenres include

classic, hard, punk, and alternative rock. An example of a rock sound wave is given

in figure 6.2(h).

Although other songs in the same genre may deviate from the sound waves in figure 6.2,

it illustrates the general pattern most songs in the given genres follow.

The test data consists of 100 songs from each genre. For a total of 800 songs, the

dataset has a size of 23.2 GB with a duration of approximately 14 hours and more than
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(a) The sound wave of a classical song.
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(b) The sound wave of a country song.
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(c) The sound wave of an electronic song.
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(d) The sound wave of a jazz song.
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(e) The sound wave of a metal song.
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(f) The sound wave of a pop song.
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(g) The sound wave of a reggae song.
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(h) The sound wave of a rock song.

Figure 6.2: The sound waves of songs from eight different genres.
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2 billion (2.2 × 109) samples. The entire list of songs used during testing is given in

appendix A. The test data is encoded as follows:

• Codec: FLAC (Free Lossless Audio Codec)

• Sample rate: 44100 Hz

• Sample type: Integer

• Sample size: 16 bits

• Channels: 2 (Stereo)

In addition to the 800-track set, a number of gramophone records were also tested. In

order to evaluate the algorithms’ performance, the reconstructed signal must be compared

to a target signal. For this reason, gramophone records in a sealed mint condition were

obtained, meaning the records were new and never played before. All records were

recorded in mint condition to generate a set of target signals. The records were then

physical damaged and rerecorded to create a set of distorted signals. The distorted signals

were reconstructed and correlated against the target signals. The interpolation process

will produce similar results to the non-gramophone test set, since the reconstruction

process is identical in both cases. However, since artificial noise was used, the noise

detection process for gramophone records may deviate from the results obtained from the

non-gramophone test set. Since sealed gramophone records are difficult to obtain, are

often very expensive, and require the noise to be manually flagged, the gramophone test

set only consists of eight records. The gramophone records have a total of 83 songs with

a duration of more than six hours and a total size of 9.1 GB. The list of gramophone

records used for benchmarking can be found in appendix A under section A.9.

6.3 Performance Measurement

All benchmarking and tests were performed on the following machine:

• Processor: Intel Core i7 2600 (3.4 GHz with 8 threads)
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• Memory: 16 GB (DDR3 at 1333 MHz)

• Operating System: Ubuntu 14.04 (64 bit)

Although a multi-threaded processor was used, all algorithms were executed with a

single thread to ensure consistency in the computational time between the different

algorithms. This section discusses the performance measurement for the noise detection

and interpolation algorithms, the assessment of the computational time and the tradeoff

between the accuracy and time.

6.3.1 Outlier Detection Performance

A common approach to measure the ability of an algorithm to detect outliers is to

calculate the true positives (TP), true negatives (TN), false positives (FP) and false

negatives (FN). The TP and TN are the number of correctly identified outliers and inliers

respectively, whereas the FP and FN are the number of incorrectly flagged inliers and

outliers respectively. To make sense of these values, the sensitivity (SEN) which is the

ability to identify outliers, and the specificity (SPE) which is the ability to identify inliers,

can be calculated [170]. The SEN and SPE are defined as

SEN =
TP

TP + FN

SPE =
TN

TN + FP

(6.1)

Although SEN and SPE on their own are good indications of how well in- and outliers

were identified, a single measurement is needed to determine the detection performance.

The binary classification performance can be measured as the proportion of true

identifications to the population size, which is known as the statistical accuracy and is

calculated using

ACC =
TP + TN

TP + TN + FP + FN
(6.2)

The statistical accuracy has an inflated performance when calculated with imbalanced

datasets. If the SNR of the dataset is very low, the accuracy favours an increase in
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negatives (TN and FN) more than a decrease in positives (TP and FP). To reduce this

problem, a balanced accuracy is often used on imbalanced datasets instead, which is

defined as

BACC =
TP

2(TP + FN)
+

TN

2(TN + FP)
(6.3)

The balanced accuracy is equivalent to the average of the sensitivity and specificity. Both

accuracy and balanced accuracy are still subject to the accuracy paradox which states

that a model may have a greater predictive power than another one even though the

accuracy is lower [245]. If the minority class is more important, the paradox is avoided

by using the G or F1 score measurement, defined as

G =
TP√

(TP + FN)(TP + FP)

F1 =
2TP

2TP + FP + FN

(6.4)

The G-measurement is the geometric mean of the precision and recall. F1 is the harmonic

mean and produces results very similar to G. Both these measurements correctly drop

to zero as the specificity reaches one and the sensitivity reaches zero. However, both

measurements result in a high sensitivity even if the specificity is very low. This problem

can be corrected by penalizing false identifications more. The Matthews correlation

coefficient (MCC), is a balanced measure even if the classes are unbalanced and in essence

is the correlation coefficient between the observed and predicted binary classifications

[174]. The MCC is defined as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6.5)

Unlike the other measurements, the MCC can have negative values. Negative one indicates

a total disagreement with the observation, zero a random prediction and positive one a

perfect prediction. The maximum MCC is close to the intersection of the sensitivity and

specificity and drops to zero if either one of them heads to zero.
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6.3.2 Reconstruction Performance

In order to determine the ability of algorithms to reconstruct missing samples, a

performance measurement is needed. Such a performance measurement relies on the

availability of the target samples to be interpolated or predicted, which does not pose

a problem in a controlled experimental environment. However, if the target signal is

unknown, for instance if only a single damaged gramophone record is available, the only

measurement is through human cognition by listening and evaluating the reconstructed

signal. If the target sample values are known, the mean squared error (MSE) can be

used to calculate the difference between the observations and the model’s interpolated or

predicted samples. The MSE is defined as

MSE =
1

n

n∑
i=1

(ỹi − yi)2 (6.6)

for a set of n samples, where yi is the observed value and ỹi is the estimated value. The

root mean squared error (RMSE) allows the error to be compared with the absolute

sample deviation and is calculated using

RMSE =
√

MSE (6.7)

The RMSE is scale dependent and can therefore only be used to determine the accuracy

between different models for a particular variable [136]. The normalized root mean

squared error (NRMSE) takes the range of the variables into account. For audio samples

this range lies in [−1, 1]. The NRMSE is defined as

NRMSE =
RMSE

ŷ − y̌
(6.8)

where ŷ is the maximum and y̌ the minimum of the observed values y. Most musical

signals come close to the edges of the interval [−1, 1] at some stage and the NRMSE will

therefore be close to the RMSE divided by two for the entire signal. The NRMSE is

used as the interpolation performance measurement in this thesis, since unlike RMSE,

NRMSE accurately compares the performance of small sample windows with different

sample ranges.
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An assumption was made during the reconstruction phase for the dataset corrupted by

artificial noise that all noise was correctly flagged during the detection phase. Hence, the

results for the reconstruction of samples are not influenced by possible mistakes made by

the outlier detection algorithm. The real gramophone recordings were refurbished using

the previously generated noise mask. Therefore, the real gramophone audio reconstruction

is affected by mistakes made by the outlier detector and will therefore have a higher error

compared to the artificially disrupted dataset.

6.3.3 Computational Speed

The computational time in this thesis is calculated as the number of seconds required

to process one second of audio data, denoted as s\s. Therefore, the computational time

should be interpreted as a speed, measuring the time required by an algorithm to process

a certain number of samples, where both the required time and the number of processed

samples are measured in seconds. Note that all tests were conducted with audio channels

encoded at 44.1 kHz. Hence, one second of stereo data contains (2 × 44100) = 88200

samples. Other sample rates will result in different execution speeds, but will follow the

same trend.

A score of 1 s\s or lower indicates that the algorithm can be executed in real-time.

Scores greater than 1 s\s indicate that it takes longer to process the data than the actual

duration of the audio signal. Algorithms with an computational speed greater than 1 s\s
can still be applied in real-time on a multi-core processor if the algorithm’s calculation

can be executed over multiple threads.

6.3.4 Tradeoff

Based on the concept of the scoring metric in [227], in order to evaluate the tradeoff

between the algorithms’ performance and the required execution speed, the speed-accuracy

tradeoff (SAT) is used as follows:

SAT =

(
κ

κ̂− κ̌
+

τ

τ̂ − τ̌

)−1

(6.9)

where τ is the computational speed measured in s\s. τ̂ and τ̌ are the execution speeds
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of the fastest and slowest algorithm respectively. Since a lower NRMSE indicates a

better performance, κ for the interpolation SAT is equal to the NRMSE. However, since

a higher MCC indicates a better performance, κ is equal to (1−MCC) for the outlier

detection SAT. κ̂ and κ̌ are the accuracies of the best and worst performing algorithms

respectively. κ̂ and κ̌ have bounds which lie in [0, 1] for the NRMSE and [−1, 1] for the

MCC. However, since equation (6.9) does not have an upper limit for τ̂ , a few or even a

single algorithm with a computational speed significantly higher than the mean execution

speed, skews the SAT scores with the deviation (τ̂ − τ̌). Algorithms that take longer to

execute are therefore not penalized appropriately. The problem is mitigated by specifying

a fixed upper speed limit for τ̂ . The SAT in this thesis utilizes the real-time limit of 1

s\s. A higher SAT score indicates a more efficient tradeoff between the accuracy and the

execution speed.

6.4 Parameter Optimization

Factorial design, as introduced by the statistician Fisher [87], was utilized for all parameter

optimization. Factorial design fully searches all possible discrete values in the parameter

space, and will therefore also evaluate values in areas of the search space that are evidently

moving away from the intended objective. More specifically, fractional factorial design

was used, where a carefully selected subset of the parameter space was searched. This

subset was chosen by iteratively increasing the parameters, such as the window size and

polynomial orders, until the results stabilized or a clear trend was observed in the opposite

direction of the objective. The full list of optimal parameters is given in appendix B. A

total of 80 songs, ten in each genre, were used for the parameter optimization.

6.5 Summary

The methodology and procedures followed during the empirical analysis was discussed in

this chapter. A description of artificially generated and real gramophone noise was given,

followed by an overview of the test dataset. The performance measurement of the outlier

detection and reconstruction algorithms, the execution speed and tradoff was presented,
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followed by a discussion about the optimization process.
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Chapter 7

Empirical Analysis

This chapter provides the empirical analysis of the reconstruction system. The test dataset

is anayalsed according to its mean, standard deviation and the Pearson correlation

coefficient. The polynomials and models from chapter 3 are then benchmarked to

determine their ability to interpolate and predict music signals. The capabilities of the

proposed system are examined by testing and evaluating the various outlier detection

algorithms from chapter 4 and the reconstruction algorithms from chapter 5. The noise

detection and reconstruction algorithms are compared using artificially generated noise,

followed by an analyses of the performance using real gramophone noise. A more detailed

report on the results of the outlier detection and reconstruction algorithms is given in

appendix C and D respectively.

7.1 Data Analysis

Table 7.1 shows the average sample mean, standard deviation and PCC over the entire

test dataset of 800 songs, calculated using a sample size of 32. All genres had a sample

mean close to zero. The sample standard deviation shows that electronic and metal music

had the highest volatility, whereas classical, country and jazz signals were more stable.

The PCC was calculated with two consecutive windows x and y as defined in equation

(2.54). Hence, the PCCs in table 7.1 show the positive and negative linear dependencies

between a sample window x and the sample sequence y that immediately followed x. The

115
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95% PCC confidence intervals are given in brackets next to the correlation coefficients.

Classical, country and jazz music had a strong linear dependency. With an increase in

volatility, notable in electronic and metal signals, the linearity decreased, although the

linear relationship was still moderate at approximately ±0.5 to ±0.6.

Table 7.1: The mean, standard deviation and Pearson correlation coefficient of the dataset.

Genre Sample µ Sample σ Positive Sample PCC Negative Sample PCC

Classical -0.0005 0.0101 0.7609 [0.426, 0.912] -0.7281 [-0.364, -0.899]

Country -0.0008 0.0294 0.6708 [0.262, 0.875] -0.6829 [-0.283, -0.881]

Electro 0.0001 0.0543 0.4931 [-0.004, 0.795] -0.5079 [-0.016, -0.802]

Jazz -0.0002 0.0271 0.6886 [0.293, 0.883] -0.6445 [-0.219, -0.864]

Metal -0.0002 0.0526 0.5352 [0.054, 0.815] -0.6109 [-0.165, -0.849]

Pop -0.0001 0.0459 0.5271 [0.043, 0.811] -0.5491 [-0.073, -0.821]

Reggae -0.0003 0.0428 0.5638 [0.094, 0.828] -0.5845 [-0.125, -0.838]

Rock -0.0016 0.0319 0.5888 [0.131, 0.839] -0.6252 [-0.188, -0.856]

Average -0.0004 0.0368 0.6035 [0.154, 0.846] -0.6166 [-0.174, -0.852]

7.2 Model Analysis

This section empirically analyses and discusses the ability of the polynomials and models

in chapter 3 to accurately interpolate and predict a music signal. The interpolation

NRMSE determined the reconstruction accuracy of missing or noisy samples for each

model. The forecasting quality was evaluated for the predictive noise detection algorithm

discussed in section 4.1.6 and was also measured using the NRMSE. The figures in this

section that are given in pairs illustrate the model fitness for the observed values for a

given parameter configuration on the left-hand side. The corresponding graphs on the

right-hand side show the interpolation or prediction fitness for different parameters. The

rectangular boxes in the top legend of the graphs represent the minimum NRMSE with

the optimal parameters given in brackets. These optimal parameters are given in the

measurement of the x-axis in tow-dimensional graphs, and the x -and y-axis’ measurement

in three-dimensional surface graphs. The interpolation and prediction results for each

model in this section represent the overall performance of reconstructing or forecasting
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up to 50 samples. The polynomials and models can, however, interpolate or predict any

number of samples without changes to their implementation, but the results were omitted

since longer noise durations rarely occur on gramophones.

7.2.1 Standard Polynomials

This section analyses the interpolation and prediction ability of standard polynomials as

discussed in section 3.1. The polynomials are also applied in an osculating fashion and

by using splines which were examined in section 3.5 and section 3.6 respectively.

Standard Polynomial Interpolation

The standard polynomial was able to accurately fit 100 data points or less, but an increase

in the window size lead to a slight surge in the NRMSE as illustrated in figure 7.1(a). The

performance of the interpolation shows an opposite trend as depicted in figure 7.1(b). As

the window size increased, the NRMSE of the observed and interpolated values converged

close to an error of 0.1. However, for smaller window sizes, the higher deviation between

the model and interpolation NRMSE indicates that the polynomial was overfitted for

the given data. The degree of the polynomial had a lesser impact on the interpolation

accuracy. Low degree polynomials performed better with smaller window sizes, but as the

number of samples increased, higher degree polynomials achieved better results, although

the improvement was statistically insignificant.

Taking the unisolvence theorem 2 into account, at least n+ 1 points are needed to

accurately approximate a polynomial of degree n. Hence, the peak in figure 7.1(b) was the

result of high degree polynomials that were approximated with too few data points. This

trend is also observable in figure 7.1(a), however, to a lesser extend. All the polynomials

computed over small window sizes achieved the lowest model NRMSE with a polynomial

order of exactly one less than the window size. The interpolation performed best with a

linear polynomial running through only two points.

Standard polynomials that were applied in an osculating fashion resulted in a similar

model trend for the observed values as shown in figure 7.2(a).

The best model accuracy was also achieved using a polynomial order of seven, computed

over eight samples. The influence of the number of derivatives on the model accuracy is
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Figure 7.1: The accuracy of standard polynomials for different parameter configurations.

given in figure 7.2(c). Lower derivatives performed better, indicating that the derivatives

should be omitted and that osculating polynomials are not appropriate for reconstructing

music signals. The interpolation accuracy of osculating polynomials is given in figure 7.2(b)

with the corresponding derivatives in figure 7.2(d). The NRMSE of the derivatives was

calculated as the average error over all window sizes. Similar to figure 7.1(b), small window

sizes resulted in a high NRMSE due to a lack of data points to accurately approximate

the polynomial. Quadratic osculating polynomials interpolated most accurately with

a window size of six samples. Although osculating polynomials performed relatively

well, omitting the derivatives increased the interpolation accuracy. Note that the worst

interpolation NRMSE of osculating polynomials was still twice as low as the worst case

of standard polynomials. Due to the inclusion of derivatives, the chances of overfitting

osculating polynomials, especially for smaller window sizes, were reduced.

The accuracy of splines that were constructed with standard polynomials had a

good fit for larger window sizes as illustrated in figure 7.3(a). The best model and

interpolation accuracy was achieved through linear splines. Figure 7.3(b) shows that

smaller window sizes were preferred for spline interpolation. Although the reconstruction

error of splines was slightly lower than that of standard polynomials, spline matrices grew

larger through the incorporation of derivatives and the free endpoint conditions which

increased the computational speed without adding a statistical significant improvement

to the interpolation process.
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Figure 7.2: The accuracy of osculating standard polynomials for different parameter

configurations.

Standard Polynomial Prediction

Figure 7.4(a) shows that low degree polynomials achieved a better prediction than high

degree polynomials. Since prediction clearly favoured linear polynomials, figure 7.4(b)

was added to illustrate the trend more clearly. A linear polynomial approximated with

48 samples was able to most accurately forecast music signals.

Osculating polynomials had a lower interpolation accuracy than standard polynomials,

but when applied for forecasting purposes, the prediction error of osculating polynomials

was notably lower. The prediction NRMSE reached a minimum using quadratic osculating

polynomials computed over 48 samples as depicted in figure 7.5(a). The corresponding
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affect of the derivatives on the forecast accuracy is given in figure 7.5(b), calculated as the

average over all polynomial orders and window sizes. Higher order derivatives performed

better during forecasting and stabilized after the fourth derivative.

Due to the free endpoint condition that is applied to the first and last samples of a

window, splines often have a poor prediction accuracy. In addition, forecasting one sample

at a time with splines is computationally expensive, is infeasible for prediction-based

outlier detection and was therefore omitted from the results.

7.2.2 Fourier Polynomials

The interpolation and prediction performance of Fourier polynomials from section 3.2

is provided in this section. The Fourier polynomials are also employed in an osculating

fashion as described in section 3.5 and by using splines discussed section 3.6.

Fourier Polynomial Interpolation

Both the model and interpolation accuracy of Fourier polynomials quickly decreased with

an increase in the polynomial order as depicted in figure 7.6. In both cases a Fourier

polynomial of degree one achieved the best results. The influence of the window size

played a smaller role, with 350 samples or lower performing slightly better than larger

window sizes.
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Figure 7.3: The accuracy of standard polynomial splines for different parameter configurations.
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Figure 7.4: The prediction accuracy of standard polynomials for different parameter

configurations.

 20  40  60  80  100 120 140  2
 3

 4
 5

 6
 7

 8
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120

Window Size
Degree

N
R

M
S

E

Minimum NRMSE: 0.0811725880 (48, 2)

(a) The prediction accuracy for different

window sizes and degrees.

0.10

0.12

0.14

0.16

0.18

0.20

0.22

 1  2  3  4  5  6  7

N
R
M
S
E

Derivative

Minimum NRMSE: 0.0963080620 (5)

(b) The prediction accuracy for different

derivatives.

Figure 7.5: The prediction accuracy of osculating standard polynomials for different parameter

configurations.

Using osculating Fourier polynomials showed more promising results for higher orders.

Like with standard polynomials, the high anomalies for high degree polynomials with small

window sizes in figure 7.7(c) and 7.7(d) was caused by a lack of data points to accurately

approximate the coefficients. The accuracy deviation between different model orders was

reduced and stabilized at window sizes of 200 samples and greater. Figure 7.7(e) and

7.7(f) show a decrease in the NRMSE as the number of derivatives increased. The best
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Figure 7.6: The accuracy of Fourier polynomials for different parameter configurations.
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Figure 7.7: The accuracy of osculating Fourier polynomials for different parameter

configurations.
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parameters for both the observed and interpolated data points were at a degree of ten

and the corresponding maximum derivative order of nine. Unlike standard polynomials,

Fourier interpolation clearly benefited when applied in an osculating fashion.

Fourier splines can only be created with an order of one. For every increase in the

order, two additional coefficients are added, one for the sine and one for the cosine waves.

Due to the double increase in coefficients, not enough equations can be constructed

to approximate higher degree Fourier splines. Only Fourier splines of degree one have

enough equations if the free endpoint condition is applied to both the first and last spline.

The NRMSE for the observed values in figure 7.8(a) and the interpolated values in figure

7.8(b) show that a window size of only two samples had the best fit. Although the model

accuracy was slightly lower than that of Fourier and osculating Fourier polynomials,

Fourier splines had a substantial increase in their interpolation accuracy, with a NRMSE

reduction of approximately 0.04.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0  50  100  150  200  250  300

N
R

M
S

E

Window Size

Minimum NRMSE: 0.1272869630 (2)

(a) The model accuracy for different window

sizes and degrees.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0  50  100  150  200  250  300

N
R

M
S

E

Window Size

Minimum NRMSE: 0.0859014500 (2)

(b) The interpolation accuracy for different

window sizes and degrees.

Figure 7.8: The accuracy of Fourier splines for different parameter configurations.

Fourier Polynomial Prediction

Although Fourier polynomials were inferior to standard polynomials for interpolation

purposes, Fourier polynomials performed better during forecasting. The best prediction

accuracy was achieved over a window size of 64 samples with ten sine and cosine waves

as depicted in figure 7.9. Higher degree Fourier polynomials predicted more accurately,
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however, there was little statistical difference between the forecast of Fourier polynomials

of different orders. In addition, higher order polynomials took longer to approximate.

For instance, a tenth degree Fourier polynomial with a window size of 64 samples took

approximately ten times longer to estimate than a first degree polynomial, but had

an insignificant error reduction of only 0.01. The long execution time of high degree

Fourier polynomials make them impractical for noise detection purposes and a first degree

polynomial was therefore utilized for the outlier detection.
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Figure 7.9: The prediction accuracy of Fourier polynomials for different parameter

configurations.

Figure 7.10(a) shows the affect of the window size and the degree of osculating

Fourier polynomials on the prediction accuracy. Although interpolation slightly benefited

from adding derivatives to the Fourier polynomial, the forecast accuracy decreased with

osculating Fourier polynomials. The influence of the derivatives on the prediction is given

in figure 7.10(b). Osculating Fourier prediction had an opposite trend compared to the

interpolation, where higher derivatives reduced the forecasting accuracy. Since higher

order osculating polynomials are computationally expensive and add little improvement

to the prediction accuracy, a quadratic osculating polynomial with the first derivative

was employed for the predictive noise detection.

Like standard polynomial splines, Fourier splines are inaccurate for forecasting

purposes, are computationally expensive and were therefore omitted from this study.
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Figure 7.10: The prediction accuracy of osculating Fourier polynomials for different parameter

configurations.

7.2.3 Hermite, Lagrange and Newton Polynomials

This section analyses the ability of Newton, Lagrange and Hermite polynomials to

interpolate and predict audio signals as discussed in section 3.3, section 3.4 and section

3.5 respectively.

Hermite, Lagrange and Newton Polynomial Interpolation

Hermite, Lagrange and Newton polynomials followed a similar trend with the best

interpolation accuracy achieved with a polynomial running trough only two points as

depicted in figure 7.11(b). Since Lagrange and Newton polynomials are equivalent, Newton

polynomials were estimated using a LLS fit to determine if coefficient approximation

improves the interpolation process. The approximated Newton polynomials achieved

almost identical results to the Lagrange polynomials for window sizes up to 32 samples.

For larger window sizes, Newton polynomials had a minor increase in the NRMSE

compared to Lagrange polynomials. The model accuracy of Newton polynomials in figure

7.11(a) indicates that the observed data points were fitted well, but employing the model

for interpolation resulted in a poor performance. Due to the nature of the Lagrange

and Newton polynomials in equations (3.23) and (3.17) respectively, achieving their best

performance with two samples makes the constructed polynomials equivalent to linear
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Figure 7.11: The accuracy of Hermite, Lagrange and Newton polynomials for different

parameter configurations.

polynomials in equation (3.6). Newton polynomials deviated from the results of linear

polynomials, since they were approximated with LLS regression and not computed in the

traditional way using divided differences. The quick increase to a NRMSE of almost 0.8

shows that Hermite, Lagrange and Newton polynomials are inadequate to interpolate

music signals.

Hermite, Lagrange and Newton Polynomial Prediction

Similar to the interpolation, predicting with Hermite, Lagrange and Newton polynomials

was inaccurate as shown in figure 7.12. Lagrange and Newton polynomials performed

best for a window size of two samples, but their error quickly increased when computed

over more samples.

7.2.4 Autoregressive and Moving Average Models

This section discusses the capacity to which the AR, MA, ARMA and ARIMA models

were able to interpolate and predict music signals as discussed in section 3.7, 3.8, 3.9 and

section 3.10 respectively. The AR model coefficients were approximated using a LLS fit,

whereas the MA, ARMA and ARIMA models were estimated with CML. The BHHH

algorithm was utilized for the CML, where BFGS served as a fallback if the characteristics
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Figure 7.12: The prediction accuracy of Hermite, Lagrange and Newton polynomials for

different window sizes.

of the input data, the model type and order resulted in a poor approximation using the

BHHH algorithm.

Autoregressive and Moving Average Model Interpolation

Compared to the interpolation performance of the polynomials priorly discussed in

this chapter, the AR models performed notably better. Due to the nature of the AR

process, the model fitness had a very high NRMSE as shown in figure 7.13(a). However,

the interpolation accuracy in figure 7.13(b) was substantially better and reached the

optimal configuration with the AR(9) model computed over 1088 samples. The AR model

struggled to fit a small number of data points, but as the window size increased, the

linear dependency of its previous values decreased both the model and the interpolation

error.

The MA model for the observed values in figure 7.14(a) shows a similar trend to the

AR model. However, due to the Guassian white noise, the MA interpolation accuracy

in figure 7.14(b) shows a different trend, where smaller window sizes performed better.

Increasing the order of the MA model added little to no improvement when employed on

its own. The MA(1) model performed best, reaching its minimum NRMSE at a window

size of four samples.

Figure 7.15 shows the relationship between the AR and the MA orders in an ARMA

model. An increase in the AR order decreased the model fitness for the observed
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Figure 7.13: The accuracy of AR models for different parameter configurations.
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Figure 7.14: The accuracy of MA models for different parameter configurations.

values, but improved the interpolation accuracy. The MA component added little to no

improvement for both the observed and interpolated models. The ARMA(9,2) model

performed best for all window sizes and reached its minimum error when calculated

over 1440 samples. The addition of an integrated component to the ARMA model is

illustrated in figure 7.16. The model for the observed values in figure 7.16(a) shows

a similar trend to the AR, MA and ARMA models. Figure 7.16(b) reveals that the

addition of an iterated part did not improve the model’s interpolation accuracy. The

ARIMA(9,1,4) model achieved the bet results with a window size of 1312 samples.
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Figure 7.15: The accuracy of ARMA models for different parameter configurations.
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Figure 7.16: The accuracy of ARIMA models for different parameter configurations.

Autoregressive and Moving Average Model Prediction

The prediction accuracy of the AR and MA models is illustrated in figure 7.17(a) and

figure 7.17(b) respectively. Both models followed a similar trend resulting in a low forecast

accuracy when computed over window sizes smaller than 50 samples. The best prediction

was achieved with an AR(2) and MA(1) model using a window of 64 and 204 samples

respectively.

The relation between the AR and MA orders in the ARMA model is given in figure

7.18(a). The ARMA(2,2) model predicted most accurately, however, with a slight decline

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 7. Empirical Analysis 130

 50  100  150  200  250 1
 3

 5
 7

 9
 11

 13
 15

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Window Size
AR Degree

N
R

M
S

E

Minimum NRMSE: 0.1146223500 (64, 2)

(a) The prediction accuracy of AR models for

different window sizes and degrees.

 50  100  150  200  250  300 1  2  3  4  5  6  7  8  9 10
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

Window Size
MA Degree

N
R

M
S

E

Minimum NRMSE: 0.1723290000 (204, 1)

(b) The prediction accuracy of MA models for

different window sizes and degrees.

Figure 7.17: The prediction accuracy of AR and MA models for different parameter

configurations.

compared to the AR(2) model. Figure 7.18(b) shows the effect of extending the ARMA

model with an integrated part. Forecasting quickly deteriorated with an increase in the

integrated order. The ARIMA(2,1,1) model with a window of 48 samples predicted most

accurately.
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Figure 7.18: The prediction accuracy of ARMA and ARIMA models for different parameter

configurations.
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Model Order Selection

Table 7.2 shows the AR, ARMA and ARIMA models’ interpolation performance for

different model order selection criteria as discussed in section 3.9. The optimized

parameters were used for the fixed models, that is a window size of 1088, 1440 and

1312 for the AR(9), ARMA(9,2) and ARIMA(9,1,4) models respectively. Although the

models had a minor error reduction for most model selection criteria, the substantial

increase in the computational speed does not justify the utilization of these criteria.

The AR model had a five fold increase in the execution speed when utilizing a model

selection criteria, whereas the ARIMA model had an even bigger increase of 706. Since

the employment of selection criteria is practically infeasible for processing audio signals, a

fixed model order was used for the time series models. Using ARCH and GARCH models

in conjunction with a model selection criteria had a similar trend to the results in table

7.2.

Table 7.2: The influence of model selection criteria on the interpolation performance of the

AR, ARMA and ARIMA models.

Criteria
AR ARMA ARIMA

NRMSE Speed (s\s) NRMSE Speed (s\s) NRMSE Speed (s\s)

Fixed 0.071107 0.074627 0.071045 0.520056 0.076689 1.444043

R2 0.103022 0.359764 - - - -

R2
a 0.103022 0.362720 - - - -

ACF 0.074018 2.207516 0.074053 2.268634 0.077763 2.330745

MSE 0.069094 0.403360 0.069483 77.95319 0.075127 319.6081

AIC 0.069226 0.402776 0.069588 248.1559 0.075232 1017.439

AICC 0.069243 0.401304 0.069586 248.3064 0.075230 1018.056

BIC 0.069515 0.399242 0.069563 248.3685 0.075207 1018.311

HQIC 0.069364 0.399615 0.069512 248.2319 0.075156 1017.750

7.2.5 Heteroscedasticity Models

This section provides an overview of the heteroscedasticity models, ARCH and GARCH,

as examined in section 3.11 and 3.12 respectively. The interpolation and prediction
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accuracy of both heteroscedasticity models for music signals were evaluated. The ARCH

and GARCH models were both estimated using CML.

Heteroscedasticity Model Interpolation

The model and interpolation accuracy of the ARCH model is depicted in figure 7.19. An

increase in the window size resulted in a better model fitness, whereas the interpolation

benefited more from smaller window sizes. Both the model and interpolation performed

best with a ARCH(1) model. Since the ARCH process models the time series using

Gaussian white noise, the results were similar to that of the MA model in figure 7.14.
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Figure 7.19: The accuracy of ARCH models for different parameter configurations.

The relationship between the ARCH and GARCH orders of the GARCH model is

illustrated in figure 7.20. Figure 7.20(a) shows that the GARCH order had little effect

on the model fitness, whereas an increase in the ARCH order lead to an increase in

the model NRMSE. The GARCH(1,1) model performed best. The error deviation with

different ARCH and GARCH orders were so marginal that only a distinction in the

eighth decimal digit or the NRMSE could be observed. Although the ARCH and GARCH

models had an acceptable interpolation accuracy, the error increased compared to the AR

and ARMA models. This decline indicates that employing the AR and ARMA models in

a heteroscedasticity fashion is not suitable for reconstructing audio data.
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Figure 7.20: The accuracy of GARCH models for different parameter configurations.

Heteroscedasticity Model Prediction

Figure 7.21(a) shows the forecasting error of the ARCH model with different window

sizes and degrees. The ARCH(1) model achieved the best prediction with 48 samples.

Figure 7.21(b) shows the relationship between the ARCH and GARCH degrees. The

addition of a GARCH component to the model did not increase the prediction accuracy

and the GARCH(1,1) model prediction was close to that of the ARCH(1) model. Since
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Figure 7.21: The prediction accuracy of the ARCH and GARCH models for different parameter

configurations.
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both these models were originally designed to predict instead of interpolate signals, the

forecasting accuracy compared to the AR, MA, ARMA and ARIMA models was notably

better, whereas the interpolation performed worse.

7.2.6 Artificial Neural Network Model

This section discusses the implementation and parameters of various ANNs as introduced

in section 3.13 and their ability to interpolate and forecast music signals.

Artificial Neural Network Model Interpolation

Given K as the sample length of the largest gap in the signal and k as the length of

the current gap to be interpolated for 1 ≤ k ≤ K, different ANNs were utilized for the

reconstruction process as follows:

• Forward incremental TDANN (FI-TDANN): A TDANN was trained by

sequentially moving a window one sample at a time over the input signal.

Incremental training updated the weights using only historical data. The TDANN

had K output neurons. Therefore, if a gap of k samples had to be reconstructed,

the TDANN predicted a series of K samples and only used the first k outputs for

the reconstruction.

• Bidirectional incremental TDANN (BI-TDANN): A FI-TDANN only

operated on historical data without considering the future direction of the signal.

Two separate FI-TDANNs were incrementally trained, one processing the signal

from start to end, the other one from end to start. The gap was then reconstructed

by taking the average of the output of both FI-TDANNs.

• Forward incremental SRTDANN (FI-SRTDANN): A Jordan SRTDANN

network was trained incrementally on historic data. The SRTDANN had only one

output neuron which was linked with a recurrent connection as an additional neuron

to the input layer. The SRTDANN recurrently predicted one sample at a time until

the entire gap was reconstructed.
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• Bidirectional incremental SRTDANN (BI-SRTDANN): Similar to the

FI-SRTDANN, two distinct Jordan SRTDANNs were trained on the signal in

both directions. The average output of both SRTDANNs was used to interpolate

the samples.

• Forward separate batch TDANN (FSB-TDANN): A training set was created

with the historical data of the input signal. The weights of the TDANN were updated

once for all training patterns during an epoch using a batch training algorithm. A

total of K TDANNs were maintained, that is, one TDANN for each possible gap

size. Each TDANN had a different number of output neurons, equal to the number

of samples in the gap. If a gap of k samples was encountered, the corresponding

kth TDANN was selected from the set, trained and then utilized to reconstruct the

k missing samples.

• Bidirectional separate batch TDANN (BSB-TDANN): The signal was

processed in both directions using a set of FSB-TDANNs and the average of

the reconstruction process was used to interpolate the gap. No additional TDANNs

had to be maintained, since one of the K TDANNs from the forward process was

simply reused for the backward interpolation.

• Forward complete batch TDANN (FCB-TDANN): Training patterns were

generated using the historical samples of the signal and the weights were updated

using a batch training algorithm. The TDANN had K output neurons. If a gap of

size k had to be interpolated, only the first k outputs from the K output neurons

were used.

• Bidirectional complete batch TDANN (BCB-TDANN): Two separate

FCB-TDANNs were trained, one for the forward interpolation and one for the

backward interpolation of the signal. The average output of both FCB-TDANNs

was used to reconstruct the gap.

• Interpolation batch TDANN (IB-TDANN): This TDANN had two sets of

inputs which were k samples apart. The first set of inputs consisted of the consecutive

samples preceding the gap, the second set of the sample succeeding the gap. A total
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of K IB-TDANNs were batch trained, one for each possible gap duration. When

a gap of size k was reconstructed, the kth IB-TDANN was selected from the set,

trained with the patterns and then utilized to interpolate the missing samples.

Incremental training for the FI-TDANN, BI-TDANN, FI-SRTDANN and the

BI-SRTDANN kept the training time low by only presenting each sample pattern

once during the weight updates. Batch training for the FSB-TDANN, BSB-TDANN,

FCB-TDANN, BCB-TDANN and the IB-TDANN on the other hand presented each

training pattern z times to the TDANN during the weight updates, where z is the number

of training epochs. Batch training was, therefore, unacceptably slow when processing a

single song consisting of millions of training patterns. In addition, a music signal changes

slowly, meaning that most training patterns were very similar when moving a window

one sample at a time over the input signal. In order to reduce the computational time of

batch training, the number of training patterns for each interpolation was limited to a

maximum value v. Training patterns were also accumulated by delaying the patterns by

τ samples instead of one sample. Both v and τ were determined empirically. The lowest

value for v and the highest value for τ was chosen in such a way that the ANN’s output

error was not increased compared to the ANN’s performance for τ equal to one and v

equal to the maximum number of patterns preceding the interpolation gap. Therefore,

the parameters v and τ reduced the training time without affecting the output error of

the ANNs.

Table 7.3 lists the optimal parameters for each ANN which were obtained through

factorial design. The layers’ structure is given in the format g-o, where g represents the

number of input neurons and o the number of output neurons. Parameter optimization

was conducted on an input layer of up to 1536 neurons with up to three hidden layers

each containing a maximum of 512 neurons. It was found that all TDANNs performed

best without any hidden layers, which were therefore a set of perceptrons. The PCCs

in table 7.1 support these findings, indicating that there is a strong linear dependency

between the inputs and outputs of the perceptrons. Since most music signals are relatively

stable, a linear combination of the input samples generally achieves a better interpolation

accuracy than a nonlinear input composition.
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Table 7.3: The optimal parameter configurations for interpolating ANNs.

ANN

Type

Layer

Structure

Training

Algorithm

Learning

Rate

Activation

Function

Training

Epochs

Training

Patterns

FI-TDANN 832-K Incr. Backprop. 0.1 Sym. Elliot 1 -

BI-TDANN 832-K Incr. Backprop. 0.1 Sym. Elliot 1 -

FI-SRTDANN 961-1 Incr. Backprop. 0.1 Hyp. Tangent 1 -

BI-SRTDANN 961-1 Incr. Backprop. 0.1 Hyp. Tangent 1 -

FSB-TDANN 224-k iRprop− - Sym. Elliot 50 256-6

BSB-TDANN 224-k iRprop− - Sym. Elliot 50 256-6

FCB-TDANN 220-K iRprop− - Sym. Elliot 50 256-8

BCB-TDANN 220-K iRprop− - Sym. Elliot 50 256-8

IB-TDANN 256-k iRprop− - Sym. Elliot 50 768-8

Figure 7.22a shows the average training NRMSE for the FSB-TDANN, FCB-TDANN

and IB-TDANN using different training algorithms. The detailed training algorithm

results for the individual ANNs are given in appendix D in figure D.1. Standard batch

backpropagation and quickprop performed better for short training durations. However,

iRprop− had a lower error from epoch 17 onwards, whereas iRprop+ took longer and only

outperformed quickprop from epoch 41 onwards. iRprop+ and iRprop− produced similar

results and the deviation in their error increased as training continued over more epochs.

iRprop− performed best overall and was therefore utilized as the training algorithm for

the batch trained ANNs.

Figure 7.22b illustrates the affect of the learning rate and learning momentum on the

interpolation error of the incrementally trained ANNs. The results for the individual

ANNs are given in appendix D in figure D.2. The interpolation error grew with an

increase in the learning rate and momentum. The autocovariance of music signals is

small, meaning the signal changes little over time. Hence, incremental training performed

better with lower learning rates, where smaller consecutive weight updates corresponded

to the slow changes in the input signal. Learning at a rate of 0.1 without a momentum

proved most effective and more than halved the ANNs output error compared to higher

learning rates above 0.4. Since Rprop is an adaptive training algorithm, it does not

require a learning rate or momentum.
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Figure 7.22: The average output NRMSE of the ANNs for different parameter configurations.

Various activation functions were tested for each ANN, including the symmetric Elliot

function, the hyperbolic tangent function, a bounded linear function, the symmetric

Gaussian function, and the symmetric sine and cosine functions. The symmetric Elliot

activation function produced the best results for all ANNs, except for the SRTDANNs

which benefited more from the hyperbolic tangent activation function. Besides producing

better results in most cases, the Elliot function was slightly faster to compute than the

tanh function. The detailed results of the interpolation NRMSE and the execution speed

using different activation functions is given in appendix D in table D.1 and table D.2

respectively.

Figure 7.23(a) shows the training error of the batch trained ANNs over a number of

epochs and figure 7.23(b) the corresponding interpolation output error. Although the

training error only stabilized around the 100th epoch, the interpolation error decreased

more quickly. The interpolation error of the FSB-TDANN steadied after the 16th epoch,

the FCB-TDANN after the 10th epoch and the IB-TDANN after the 34th epoch. Since

the interpolation error only decreased marginally between the 40th and 250th epochs, the

maximum number of epochs for all batch trained TDANNs was set to 50.

The last column in table 7.3 is given in the format v-τ . All batch trained ANNs,

except the IB-TDANN, performed best with a maximum of 256 training patterns. These

training patterns were collected either 6 or 8 samples apart.
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Figure 7.23: The batch ANN training and interpolation errors when trained over an increasing

number of epochs.

Artificial Neural Network Model Prediction

Two different ANNs were utilized for prediction purposes, with the optimal parameter

configurations given in table 7.4. The TDANN predicted all K samples at once, whereas

the SRTDANN predicted one sample at a time, recurrently feeding the output back

into the ANN as an additional neuron in the input layer. Both ANNs were trained

incrementally using a learning rate of 0.1. The TDANN utilized the symmetric Elliot

activation function, whereas the SRTDANN applied the hyperbolic tangent activation

function. Similar to the interpolating TDANNs, the forecasting was more accurate using a

linear combination of the preceding samples and the prediction ANNs therefore performed

best without any hidden layers.

Table 7.4: The optimal parameter configurations for predicting ANNs.

ANN

Type

Layer

Structure

Training

Algorithm

Learning

Rate

Activation

Function

Training

Epochs

TDANN 12-K Incr. Backprop. 0.1 Sym. Elliot 1

SRTDANN 17-1 Incr. Backprop. 0.1 Hyp. Tangent 1

Table 7.24 shows the forecasting error of both predictive ANNs when predicting further

into the future. The TDANN and SRTDANN had a slight decrease in the NRMSE when
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predicting up to 23 and up to 20 samples respectively. Forecasting further than 23 samples

shows a quick increase in the error. Both ANNs had a average prediction NRMSE above

0.1 calculated over all gap sizes.
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Figure 7.24: The ANN forecasting error for predicting further into the future.

7.3 Noise Detection Analysis

This section discusses the outlier detection algorithms from chapter 4. The parameters

of the algorithms are analysed, followed by an inspection of the three examined noise

masking techniques. Finally, the algorithms are compared according to their detection

accuracy, computational speed and the tradeoff between the accuracy and speed.

7.3.1 Noise Detection Algorithm Parameters

The outlier detection performance of the SS for an increasing window size is illustrated in

figure 7.25. The highest detection accuracy was achieved when the SS is computed over

a window of 1868 samples. Windows with more than 1900 samples saw a steady decline

in the MCC. Since the mean and standard deviation of the sequence headed towards

zero as the window size increased beyond 1900, a division with an increasingly small

value in equation (4.2) resulted in an amplified SS which on the other hand resulted in a

lower MCC. The SS had an acceptable detection rate, even when computed over very

few samples.
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Figure 7.25: The noise detection accuracy of the SS for different window sizes.

The MAD for different window sizes is given in figure 7.26. Since MAD used the

median instead of the mean, the chances of the score heading towards zero with an

increasing window size were reduced. MAD stabilized at a window size of 136 samples

and reached its best detection accuracy when calculated over 1600 samples.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0  500  1000  1500  2000  2500

M
C

C

Window Size

Maximum MCC: 0.8280115000 (1600)

Figure 7.26: The noise detection accuracy of the MAD for different window sizes.

Figure 7.27 shows the outlier detection accuracy of the MHD for different window

sizes. The MHD detection accuracy stabilized around a window size of 980 samples and

reached its best performance at 2248 samples. Both the MAD and MHD performed

poorly when computed over a small number of data points.

The detection performance of the NND algorithm using a global outlier factor is

illustrated in figure 7.28. Even for a very small k of 100 samples or less, the algorithm

preformed well. The best detection was achieved with k equal to 324. Larger windows
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Figure 7.27: The noise detection accuracy of the MHD for different window sizes.

provided a continuous stable detection accuracy.
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Figure 7.28: The noise detection accuracy of the NND for different window sizes.

Figure 7.29 shows the MASD outlier detection performance through the observation of

changes in the frequency spectrum. Although the observation of frequencies beyond 15000

Hz resulted in an acceptable detection rate, lower frequencies were on average slightly

more affected by noise. The best performance was achieved by observing frequencies

between 1102 Hz and 5512 Hz which reached a sensitivity of approximately 0.432 and a

specificity of 0.999. Other parts of the spectrum resulted in a sensitivity as high as 0.973

but with a reduced specificity of almost 0.8, indicating that it was difficult to distinguish

the signal from the noise in those frequencies.

Table 7.5 shows the performance of the APD using the batch prediction algorithm

4 and the recurrent prediction algorithm 3. Recurrent prediction performed notably
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Figure 7.29: The noise detection accuracy of the MASD for different window sizes.

better for all models, indicating that the models were able to more accurately predict a

single sample rather than a sequence of samples. The recurrent approach was therefore

employed for the predictive outlier detection.

Table 7.5: The comparison between the batch and recurrent approaches for predictive outlier

detection expressed in terms of the MCC.

Algorithm Batch Recurrent

APD-STP 0.649120 0.817205

APD-OSP 0.781792 0.811854

APD-FOP 0.575251 0.820939

APD-OFP 0.556653 0.820760

APD-NEP 0.541140 0.809282

APD-LAP 0.567202 0.812545

APD-HEP 0.581386 0.818658

APD-AR 0.796796 0.822206

APD-MA 0.791946 0.772551

APD-ARMA 0.796948 0.832109

APD-ARIM 0.729526 0.833718

APD-ARCH 0.771116 0.823137

APD-GARCH 0.771116 0.823137

APD-TDANN 0.765105 0.778625

APD-SRTDANN 0.770974 0.816484

Average 0.696405 0.814214
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The full list of optimal parameters for all noise detection algorithms is given in

appendix B in table B.1.

7.3.2 Noise Masking Comparison

Section 4.2 in chapter 4 introduced three alternative approaches for creating a noise mask

from a noise map using a threshold. The masking techniques were benchmarked over all

800 songs and the results, expressed in terms of the MCC, are given in table 7.6. The

APD represents the average over all forecasting models.

Table 7.6: The noise detection MCC performance of different noise masking techniques.

Algorithm Standard Threshold Mean Threshold Maximum Threshold

SS 0.792384 0.798677 0.798666

MAD 0.740720 0.740155 0.740161

MHD 0.798867 0.808759 0.808748

NND 0.753863 0.760939 0.760933

MASD 0.558229 0.543735 0.543727

APD 0.801338 0.784376 0.784353

Average 0.740900 0.739440 0.739431

The standard thresholding technique performed best on average. Since additional

time is required to calculate the mean and maximum without improving the detection

rate significantly, the standard thresholding technique was chosen for the noise masking

process.

7.3.3 Noise Detection Algorithm Comparison

Figure 7.30(a) shows the noise detection performance of the proximity and spectral

algorithms over different genres. The MAD performed best for classical music, but was

inferior to the MHD for all other genres. The SS had a good detection accuracy, but

still lagged behind the MHD. The spectral algorithm, MASD, performed considerably

worse than the proximity approaches. Figure 7.30(b) illustrates the sensitivity for an

increasing multivariate outlier duration. The NND had the highest sensitivity over all

noise durations, but due to a reduced specificity, had a lower MCC compared to the SS
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and MHD. MASD struggled to identify short noise sequences. Although not shown in the

graph, MASD had a steady increase in the sensitivity for multivariate outlier durations

longer than 50 samples and outperformed SS, MAD and MHD for noise durations beyond

93 samples. MASD’s poor performance indicates that short noise bursts do not disrupt

the frequencies to an extend that is observable by the algorithm. Since gramophone

distortions rarely exceed 50 samples, MASD is deemed unfit for outlier detection and

should only be employed in the rare occasion of a very long disruption.

Figure 7.31(a) gives the per-genre detection performance for the APD algorithm

using polynomials. Although the APD-HEP detected outliers most accurately in classical

music, it performed very poorly for all other genres. The other polynomials had a

similar detection rate, with APD-NEP and APD-LAP performing slightly better for the

more volatile electro, metal, pop and reggae signals. Figure 7.31(b) highlights the APD

polynomial algorithms’ sensitivity for an increasing noise duration. Approximately half

of all single outlying samples were not identified and a stable detection rate was achieved

with multivariate outliers longer than 15 samples. The FOP and OFP reached the overall

best detection accuracy amongst the polynomials over all noise durations.

The noise detection performance for the predictive time series and ANN algorithms is

given in figure 7.32(a) and figure 7.32(b). The AR, ARMA and ARIMA models achieved a
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Figure 7.30: The outlier detection accuracy of the proximity and spectral algorithms for

different genres and noise durations.
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Figure 7.31: The outlier detection accuracy of the predictive polynomial-based algorithms for

different genres and noise durations.

good detection accuracy for classical, country and jazz music. However, the volatile genres

performed better under the ARCH and the GARCH models, since they are intended

for highly irregular financial markets rather than stable signals. The APD-SRTDANN

performed even better for more volatile series, achieving the best detection rate in electro,

metal, pop and reggae. The models had a similar sensitivity trend over different noise

durations as depicted in figure 7.32(b). More than half of the single outliers were not

flagged, with a considerable sensitivity increase from durations of two samples onwards.

Table 7.7 shows the overall performance of the outlier detection algorithms. Note

that the results in table 7.7 were calculated over the entire dataset of 800 songs and,

therefore, slightly deviate from the results in table 7.5 which were computed from the test

set of 80 songs. The NND had the highest sensitivity and was therefore able to identify

most of the outliers. The MHD flagged the fewest inliers as noisy, which is indicated by

the high specificity. The overall best detection accuracy between the correctly identified

inliers and outliers was achieved by the ARIMA prediction, followed by the APD-AR

and APD-ARMA algorithms. The fifth column in table 7.7 lists the sample standard

deviation of the MCC over the entire dataset. A higher standard deviation indicates that

noise in some tracks or parts of a track were easier to identify than in other songs. A

lower standard deviation on the other hand stipulates that the detection accuracy across

all songs is more consistent. The APD-SRTDANN achieved the most uniform MCC
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Figure 7.32: The outlier detection accuracy of the predictive model-based algorithms for

different genres and noise durations.

over the entire dataset. Only five of the detection algorithms were able to execute in

real-time using a single thread, where the APD-TDANN had the fastest computational

speed. The TDANNs had a very low execution speed, since they did not have any hidden

layers, had a small number of input neurons and were trained incrementally. The tradeoff

between the detection accuracy and the computational speed is given in the last column.

The APD-SRTDANN was most efficient by achieving a good detection rate in real-time,

followed by the APD-TDANN.

Detailed reports on the detection rate for different noise durations, the performance

over different genres and a full list of the MCC’s sample standard deviation is given in

appendix C.

7.4 Noise Reconstruction Analysis

This section empirically analyses the ability of the models and algorithms in chapter

3 and 5 to accurately reconstruct a sample gap that was previously flagged by a noise

detection algorithm. The parameters of the NNI, SI and LI are analysed, followed by

a comparison of all interpolation algorithms according to their reconstruction accuracy,

computational speed and the tradoff between the accuracy and speed.
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Table 7.7: The sensitivity, specificity, detection accuracy, detection accuracy’s standard

deviation, computational speed and tradeoff of the outlier detection algorithms.

Algorithm SEN SPE MCC MCC σ Speed (s\s) SAT

SS 0.681131 0.999762 0.792384 0.172186 5.466633 0.140497

MAD 0.636569 0.999370 0.740720 0.194504 19.16386 0.042976

MHD 0.685187 0.999817 0.798867 0.168352 15.47347 0.053309

NND 0.824754 0.993025 0.753863 0.174360 1.690628 0.350316

MASD 0.384057 0.998339 0.558229 0.083418 0.506437 0.459383

APD-STP 0.784893 0.997493 0.801771 0.124437 13.80646 0.059506

APD-OSP 0.783452 0.997617 0.803745 0.121825 30.85764 0.027268

APD-FOP 0.802095 0.997499 0.818400 0.116617 24.69167 0.033975

APD-OFP 0.800950 0.997428 0.820194 0.120362 68.22695 0.012473

APD-NEP 0.712309 0.999245 0.808044 0.074389 7.177062 0.110436

APD-LAP 0.736020 0.999149 0.800283 0.070196 0.770631 0.619005

APD-HEP 0.535626 0.998066 0.646568 0.137766 0.496814 0.541018

APD-AR 0.811191 0.998019 0.835521 0.111351 4.269161 0.179634

APD-MA 0.752519 0.995856 0.746852 0.170093 24.76732 0.033582

APD-ARMA 0.822540 0.997529 0.834558 0.108479 26.64355 0.031595

APD-ARIMA 0.803464 0.998261 0.836681 0.107817 11.49651 0.071495

APD-ARCH 0.801142 0.997946 0.829901 0.107119 14.58489 0.056782

APD-GARCH 0.801142 0.997946 0.829901 0.107119 14.58489 0.056782

APD-TDANN 0.753882 0.997744 0.780434 0.113581 0.142083 1.048069

APD-SRTDANN 0.744223 0.999272 0.827215 0.055086 0.163704 1.232533

7.4.1 Noise Reconstruction Algorithm Parameters

The interpolation accuracy of the NNI algorithm discussed in section 5.1.3 is illustrated

in figure 7.33. For each interpolated sample, the standard NNI approach selected the

value from the observations that is closest to the point of interest. The standard NNI

interpolation accuracy was always constant, since only two samples were considered, in

other words, the data point just before the interpolation gap and the point just after the

gap. The other two approaches depicted in figure 7.33 used the mean and median of the

kNN respectively. The mean and median approaches followed a smooth interpolation

sample sequence for large gaps. However, the standard NNI approach performed notably

better for smaller gaps, which on the other hand resulted in overall lower NRMSE than
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the mean and median techniques.
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Figure 7.33: The interpolation accuracy of the NNI for different window sizes.

The SI algorithm from section 5.1.4 searches for a sequence of n samples in a larger

window that are similar to the samples preceding and succeeding the gap to be interpolated.

Figure 7.34 illustrates the parameter space of the SI with the best performance achieved

by searching for 182 similar sequential points in a window consisting of 284 samples.
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Figure 7.34: The interpolation accuracy of SI for different window sizes.

The LI is depicted in figure 7.35 and achieved the best interpolation with a window

of 28 samples. The Lanczos kernel in equation (5.15) evaluates to zero for a small n,

since x falls outside the interval [−n, n]. The zero Lancos kernel, therefore, had a low

interpolation accuracy for windows smaller than 28 samples. Similarly, the accuracy also

decreased with larger window sizes. A larger window resulted in a zero Lancozs kernel,

since an increased number of points in equation (5.14) causes x− i to exceed n.
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Figure 7.35: The interpolation accuracy of LI for different window sizes.

The full list of optimal parameters for all interpolation algorithms is given in appendix

B in table B.2.

7.4.2 Noise Reconstruction Algorithm Comparison

The reconstruction performance of the duplication and trigonometric interpolation

algorithms for different genres is given in figure 7.36(a). CI performed best, whereas AWI

had the highest NRMSE over all genres. The corresponding results over an increasing

gap size is given in figure 7.36(b). CI achieved the most accurate interpolation over all

durations. AWI and MWI performed the worst overall, only outperforming LI for gaps of

five samples and smaller.

Figure 7.37(a) shows the interpolation accuracy of the examined polynomials over

different genres. The accuracy of standard polynomials decreased when applied in an

osculating fashion. Amongst various spline interpolation orders, linear SPS performed

best, therefore making the results equivalent to the STP. In contrast, Fourier polynomials

benefited when derivatives were included. Although OFP only had minor improvements,

Fourier splines had a substantial reduction in the NRMSE, making it the best performing

polynomial in classical music. Figure 7.37(b) shows the results of the polynomials

for different gap durations. All polynomials had a similar interpolation trend, except

FOP and OFP which showed an opposite trend where smaller gaps were more difficult

to interpolate than larger ones. When estimated over small gaps, low degree Fourier

polynomials had a high frequency which caused the interpolated signal’s amplitude to
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Figure 7.36: The interpolation accuracy of the duplication and trigonometric interpolation

algorithms for different genres and gap sizes.

oscillate between the last sample before and first sample after the gap. As the gap size

increased, the frequency of the sine and cosine waves decreased, providing a smoother

interpolation.

The performance of the time series models for different genres is given in figure 7.38(a).

The ARCH and GARCH models had the highest NRMSE, followed by the MA model.

The ARMA model had the best reconstruction, although the improvement over the AR

model were statistically insignificant. Figure 7.38(b) shows similar reconstruction trends
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Figure 7.37: The interpolation accuracy of the polynomials for different genres and gap sizes.
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for an increasing gap size. The ARIMA model’s accuracy was close to that of the AR and

ARMA models for durations shorter than ten samples, but started to diverge thereafter.

The MA performed better than the heteroskedasticity models, but their interpolation

accuracies converged as the gap size increased.
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Figure 7.38: The interpolation accuracy of the time series models for different genres and gap

sizes.

The ANN reconstruction performance for the examined genres is given in figure 7.39(a).

Classical music was almost perfectly refurbished with all ANNs achieving a NRMSE below

0.036. The IB-TDANN performed best over all genres, except for metal and rock music

which had a better reconstruction with the BI-SRTDANN. The interpolation accuracy

for an increasing gap size is given in figure 7.39(b). The ANNs followed a similar trend,

with the BI-SRTDANN performing best over gaps of 44, 46, and 47 samples and the

IB-TDANN having the best reconstruction accuracy for all other gap sizes. However,

compared to the other interpolation algorithms, the autoregressive models were able

to reconstruct gaps smaller than seven samples more accurately. More specifically, the

ARIMA model had the lowest NRMSE for durations of up to four samples. The ARMA

model performed best for gap sizes of six and seven samples, whereas the BI-SRTDANN

and the IB-TDANN had the lowest NRMSE thereafter.

Table 7.8 lists the overall interpolation accuracy, the NRMSE’s standard deviations,

the computational speed and tradeoff between the various reconstruction algorithms.

The IB-TDANN had the lowest NRMSE over all genres, followed by the BI-SRTDANN
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Figure 7.39: The interpolation accuracy the ANNs for different genres and gap sizes.

and BSB-TDANN. The AR model had the lowest sample standard deviation, indicating

a more consistent interpolation accuracy over all songs in the dataset. Although the

FI-SRTDANN had an acceptable NRMSE, some tracks were notably better refurbished

than others which is illustrated by the highest standard deviation amongst all algorithms.

The CI had the fastest computational speed, whereas the AR model was most efficient

by achieving the best tradeoff between the interpolation error and the execution speed.

The ANNs took considerably longer than the other algorithms to process the signals and

were therefore not able to execute in real-time. However, the computational speed is

not that crucial if a gramophone collection is digitized, since the interpolation accuracy

is more important and the reconstruction process has to be executed only once. The

computational speed of the SRTDANNs was much lower than the other ANNs, since

they only had one output neuron, were trained incrementally and updating the weights

was therefore much faster.

A detailed report on the reconstruction accuracy for different gap sizes, the

interpolation performance over the examined genres and the standard deviation of

the NRMSE is given in appendix D.
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Table 7.8: The reconstruction accuracy, sample standard deviation, computational time and

tradeoff of the interpolation algorithms.

Algorithm NRMSE NRMSE σ Speed (s\s) SAT

AWI 0.111371 0.027830 0.049794 0.593457

MWI 0.104806 0.025612 0.051691 0.628663

NNI 0.090748 0.027156 0.027313 0.735624

SI 0.087269 0.024434 0.054413 0.748390

LI 0.093215 0.026271 0.027908 0.716238

CI 0.081218 0.025435 0.027128 0.820088

STP 0.080057 0.024845 0.031490 0.828606

OSP 0.086014 0.025207 0.034523 0.770803

SPS 0.080057 0.024845 0.038588 0.823627

FOP 0.122412 0.031732 0.068523 0.535829

OFP 0.117923 0.029610 5.325502 0.138812

FPS 0.081493 0.023598 0.033035 0.813341

NEP 0.080058 0.024845 0.027329 0.831552

LAP 0.080057 0.024845 0.031609 0.828522

HEP 0.081066 0.025381 0.027557 0.821287

AR 0.071764 0.023160 0.092778 0.870951

MA 0.087952 0.024475 0.029541 0.757201

ARMA 0.071709 0.023178 2.435243 0.281283

ARIMA 0.080201 0.023740 6.808781 0.122321

ARCH 0.089057 0.024445 0.062245 0.729670

GARCH 0.089057 0.024445 0.062378 0.729598

FI-TDANN 0.068145 0.029736 64.46232 0.014868

BI-TDANN 0.058917 0.025292 129.0510 0.007490

FI-SRTDANN 0.069853 0.033467 2.663952 0.265745

BI-SRTDANN 0.054953 0.025194 5.237380 0.161561

FSB-TDANN 0.071659 0.029915 52.02565 0.018339

BSB-TDANN 0.058147 0.023480 104.2376 0.009259

FCB-TDANN 0.072788 0.032014 89.62463 0.010731

BCB-TDANN 0.058637 0.024168 179.7895 0.005386

IB-TDANN 0.054247 0.025009 100.0583 0.009648
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7.5 Gramophone Analysis

The results in section 7.3 were obtained by distorting music with artificial noise. The

models and algorithms were also tested on real distorted gramophone recordings. The

outlier detection comparison of the results between the artificially generated and real

gramophone noise is given in table 7.9. The two values between brackets in the second

column of table 7.9 are the standard deviations from table 7.7 subtracted from and

added to the detection MCC respectively. All algorithms performed slightly worse when

tested on real gramophone recordings. However, the difference between the detection

accuracy using artificial and real gramophone noise is statistically insignificant, since the

gramophone’s MCC falls within the standard deviation range given in the second column.

The artificially generated noise discussed in section 6.1 is therefore considered a good

estimation of real gramophone distortions.

Table 7.9: The performance comparison of the outlier detection algorithms between artificially

generated and real gramophone noise.

Algorithm Artificial Noise (MCC) Gramophone Noise (MCC)

SS 0.792384 [0.620, 0.965] 0.744230

MAD 0.740720 [0.546, 0.935] 0.710120

MHD 0.798867 [0.631, 0.967] 0.754100

NND 0.753863 [0.580, 0.928] 0.710010

MASD 0.558229 [0.474, 0.642] 0.500120

APD-ARIMA 0.836681 [0.729, 0.944] 0.797480

Only the outlier detection results are influenced differently by artificial and real

gramophone noise. The interpolation process on the other hand is unaffected by different

types of noise, since outliers are completely discarded and treated as a gap of missing

samples.

7.6 Summary

This chapter presented the empirical results of the outlier detection and interpolation

algorithms. The polynomials, time series models and ANNs were analysed according to
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their interpolation and prediction abilities. The optimal parameter configuration for all

algorithms was discussed. The outlier detection processes were compared according to

their SEN, SPE and MCC. The signal reconstruction was evaluated using the NRMSE.

In addition, the execution speed of the algorithms was measured and a tradeoff between

the accuracy and speed was calculated in order to rank the algorithms according to

efficiency. The noise detection was also benchmarked using artificially generated and real

gramophone noise.
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Chapter 8

Conclusions

This thesis investigated and empirically analysed a number of algorithms and models

to detect and reconstruct noise in gramophone recordings. This chapter presents the

conclusion to the thesis by highlighting the key findings and best performing algorithms

and models used to detect and reconstruct the noise. Future work and potential extensions

to the research is provided in the last section.

8.1 Summary

Various polynomials and models were investigated in chapter 3 in order to determine their

ability to accurately model music signals. Once the coefficients were approximated, the

models were used to interpolate a gap of missing samples or predict future samples. The

examined polynomials include the standard, Fourier, Hermite, Newton, and Lagrange

polynomials. The standard and Fourier polynomials were also applied in an osculating

fashion and by making use of splines in order to determine how the inclusion of

derivatives will affect the model accuracy. The more advanced autoregressive, moving

average, and their combinations, the ARMA and ARIMA models, were also tested. The

heteroskedasticity models, ARCH and GARCH, and a variety of artificial neural networks

also formed part of the comparative study.

Chapter 4 inspected a number of algorithms that are typically used in statistics and

DSP to detect outliers in signals or sample sequences. The outlier detectors include

157
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the standard score, median absolute deviation, Mahalanobis, nearest neighbour and the

absolute mean spectral deviation algorithm. The models from chapter 3 were used in the

absolute predictive deviation algorithm and compared to the other outlier detectors.

Chapter 5 utilized the models from chapter 3 to reconstruct the samples that

were previously flagged as noise by the outlier detectors. Besides the models,

duplication techniques were tested, including adjacent window, mirroring window, nearest

neighbour and similarity interpolation. Two trigonometric methods, Lanczos and cosine

interpolation, determined the affect of sine and cosine waves on the reconstruction process.

The parameters of the models and algorithms were optimized using fractional factorial

design. A test set of 800 songs covering eight major genres was used to benchmark

the noise detection and reconstruction accuracy. Both artificially generated and real

gramophone noise was used during benchmarking. The noise detection algorithms were

compared using their sensitivity, specificity and the Matthews correlation coefficient.

The interpolation performance was measured using the normalized root mean squared

error. The algorithms’ computational time was evaluated and the tradeoff between the

execution time and the accuracy determined the most efficient algorithm.

It was found that APD-ARIMA had the best noise detection accuracy with a MCC

of 0.8367. The NND and MHD reached the highest sensitivity and specificity at 0.8248

and 0.9998 respectively. The APD-TDANN had the lowest execution time at 0.1420 s\s
and the APD-SRTDANN achieved the best tradeoff between the detection accuracy and

computational time with a SAT score of 1.2325.

During reconstruction, the IB-TDANN interpolated most accurately with a NRMSE

of 0.0542. The ANNs performed overall better than the polynomials, time series models,

duplication and trigonometric approaches. CI was the fastest to compute at 0.0271 s\s.
The AR model achieved the best tradoff between the interpolation NRMSE and time

with a SAT score of 0.8710.

8.2 Future Work

Although this research encapsulated a large number of different polynomials, models

and algorithms to detect and reconstruct noise from gramophone records, there are still
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numerous areas that require additional and more in-depth research. Potential future

research and extensions to this study are listed below:

• This study only investigated a few outlier detection algorithms. Although some of

the algorithms have a good detection accuracy, additional research in more advanced

outlier detection algorithms, such as spectral methods, has to be conducted.

• This thesis only investigated the reconstruction of major disruptions caused by

scratches. Smaller disruptions and deviations cannot be eliminated with the

algorithms examined here. A different set of mathematical procedures, such as

smoothing filters, can be utilized to reduce these kind of distortions.

• Although multi-channel audio data can be reconstructed with the system proposed

in this study, the reconstruction process relies solely on the samples of a single

channel at a time. An extension to the examined models, especially artificial

neural networks might benefit from incorporating and combining data from multiple

channels.

• This thesis focused on the reconstruction of music from gramophone records.

However, the research can be directly applied to music and speech from any

sources. The research can also be applied to other audio mediums, such as compact

cassettes, eight-tracks or even deteriorated CDs. The examined algorithms may also

prove beneficial in other signal processing domains, such as online media streaming,

voice over IP, digital radio transmission and video and audio conversion, resampling

and refurbishment.

• Scratches on gramophone records typically disrupt less than 50 samples. If the

studied interpolators are applied to other fields of audio and speech processing, gap

sizes larger than 50 samples may also need to be probed. The characteristics of the

noise may also be significantly different compared to gramophone noise and should

be considered in future studies that do not focus on gramophone audio.

• Only the AR, MA, ARMA, ARIMA, ARCH and GARCH models were considered

in this study. Numerous extensions and improvements to these models exist, which

might prove beneficial to music data.
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• A total of 800 songs in eight different genres were used during benchmarking. Clear

divergence between different genres and even different songs in the same genre were

observed. Future research is needed to investigate which characteristics in music

and speech influences the reconstruction process. These characteristics can then

be automatically identified and classified so that the corresponding reconstruction

algorithm can be adjusted to better accommodate these features.

• The optimal model and algorithm parameters over all genres were used in this

study, ensuring that an acceptable noise detection and reconstruction accuracy

was achieved for different types of music signals. A more accurate system can be

developed that makes use of separate parameter configurations to optimize the

reconstruction of each individual genre.

• An in-depth perceptual evaluation of the audio restoration process should be

conducted. Some subjective listening has been done with a small group of

participants, but a more formal and elaborate analysis with a larger test group will

provide better and more accurate feedback.
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pages 112–116, Paris, France, December 1807.

[96] Brian L. Fox. Analysis and Dynamic Range Enhancment of the Analog-to-digital

Interface in Multimode Radio Receivers. Master’s thesis, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia, United States of America,

February 1997.

[97] John G. F. Francis. The QR Transformation A Unitary Analogue to the LR

Transformation - Part 1. The Computer Journal, 4(3):265–271, 1961.

[98] John G. F. Francis. The QR Transformation - Part 2. The Computer Journal,

4(4):332–345, 1962.

[99] Christian Francq and Jean-Michel Zakoian. GARCH Models: Structure, Statistical

Inference and Financial Applications. Wiley, Hoboken, New York, United States of

America, 2010.

[100] Bruce Fries and Marty Fries. Digital Audio Essentials. O’Reilly Series. O’Reilly,

2005.

[101] Francis Galton. Regression Towards Mediocrity in Hereditary Stature. The Journal

of the Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886.

[102] Carl Friedrich Gauss. Theoria Motus Corporum Coelestium In Sectionibus Conicis

Solem Ambientium. 1809.

[103] Carl Friedrich Gauss. Theoria Combinationis Observationum Erroribus Minimis

Obnoxiae. 1823.

[104] Hongwei Ge, Wenli Du, Feng Qian, and Yanchun Liang. A Novel Time-delay

Recurrent Neural Network and Application for Identifying and Controlling Nonlinear

Systems. In International Conference on Natural Computation, volume 1, pages

44–48, 2007.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Bibliography 172

[105] William B. Gearhart and Harris S. Shultz. The Function sin x/x. The College

Mathematics Journal, 21(2):90–99, March 1990.

[106] Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distributions,

and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 6(6):721–741, November 1984.

[107] James E. Gentle. Random Number Generation and Monte Carlo Methods. Springer,

2 edition, 2004. pp. 103.

[108] C. Lee Giles, Steve Lawrence, and Ah Chung Tsoi. Noisy time series prediction

using recurrent neural networks and grammatical inference. Machine Learning,

44(1-2):161–183, 2001.

[109] Jeff Gill and Gary King. What to do When Your Hessian is Not Invertible:

Alternatives to Model Respecification in Nonlinear Estimation. Sociological Methods

and Research, 32(1):54–87, August 2004.

[110] Geof H. Givens and Jennifer A. Hoeting. Computational Statistics. Wiley Series in

Computational Statistics. Wiley, 2 edition, 2012. pp. 155.

[111] GMP. The GNU Multiple Precision Arithmetic Library. https://gmplib.org,

2014. Accessed: 2014-10-14.

[112] S. J. Godsill and P. J. W. Rayner. Frequency-based interpolation of sampled

signals with applications in audio restoration. In IEEE International Conference

on Acoustics, Speech, and Signal Processing, volume 1, pages 209–212, April 1993.

[113] S. J. Godsill and P. J. W. Rayner. The Restoration of Pitch Variation Defects in

Gramophone Recordings. In IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics, pages 148–151, October 1993.

[114] Simon J. Godsill and Peter J.W. Rayner. Digital Audio Restoration - A Statistical

Model-Based Approach. Springer, London, United Kingdom, 1 edition, 1998.

[115] Donald Goldfarb. A Family of Variable-Metric Methods Derived by Variational

Means. Mathematics of Computation, 24(109):23–26, January 1970.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 

https://gmplib.org


Bibliography 173

[116] G.H. Golub and C. Reinsch. Singular Value Decomposition and Least Squares

Solutions. Numerische Mathematik, 14(5):403–420, 1970.

[117] B. Grill and S. Quackenbush. MPEG-2 Audio. http://mpeg.chiariglione.org/

standards/mpeg-2/audio, October 2005. Accessed: 2014-10-08.

[118] Venu G. Gudise and Ganesh K. Venayagamoorthy. Comparison of Particle Swarm

Optimization and Backpropagation as Training Algorithms for Neural Networks.

In Proceedings of the IEEE Swarm Intelligence Symposium, pages 110–117, 2003.

[119] E. J. Hannan and B. G. Quinn. The Determination of the Order of an Autoregression.

Journal of the Royal Statistical Society, 41(2):190–195, 1979.

[120] W. Keith Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

[121] M. C. Hau and H. Tong. A Practical Method for Outlier Detection in Autoregressive

Time Series Modelling. Stochastic Hydrology and Hydraulics, 3(4):241–260, 1989.
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[196] Maciej Niedźwiecki and Marcin Cio lek. Localization of Impulsive Disturbances in

Archive Audio Signals using Predictive Matched Filtering. In IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 2888–2892, May 2014.
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Appendix A

Empirical Data

This appendix provides an overview of the test data used during the empirical analysis

with the purpose of providing enough information to replicate the test results. The

data is divided into eight major genres, namely, classical, country, electro, jazz, metal,

pop, reggae and rock. Each genre consists of 100 songs which were accumulated from

a number of chart lists, specifically the United States and United Kingdom Billboard

album and singles charts and various Rolling Stones Magazine charts. The last section of

this appendix lists the gramophone albums and tracks that formed part of the second

test data set.

A.1 Classical Test Dataset

Classical music is typically composed of the string, brass, percussion, and woodwind

families of instruments and also includes opera. The genre is subdivided into medieval,

renaissance, baroque, classical, modern, and contemporary, according to the era of

composition. Classical music typically has a very narrow dynamic range with calm or

even silent fragments. The complete classical test dataset used for the empirical analysis

is given in table A.1.

Table A.1: The classical test dataset.

Title Artist Duration

23. Klavierkonzert (K. 488) - Adagio Wolfgang Amadeus Mozart 03:17

23. Klavierkonzert (K. 488) - Allegro Wolfgang Amadeus Mozart 11:07

189
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Title Artist Duration

1812 Overture Pyotr Ilyich Tchaikovsky 06:02

Adagio For Strings Samuel Osborne Barber 10:01

Adagio In Sol Minore Tomaso Giovanni Albinoni 09:52

Aida - Marcia Trionfale Giuseppe Fortunino Francesco Verdi 06:14

An Der Schönen Blauen Donau (Op. 314) Johann Strauss 10:11

Ave Maria Charles-François Gounod 02:32

Ave Maria Giulio Caccini 05:59

Ave Verum Corpus (K. 618) Wolfgang Amadeus Mozart 03:25

Boléro Maurice Ravel 14:51

Brandenburgisches Konzert Nr. 1 (BWV 1046) - Allegro Johann Sebastian Bach 04:43

Cantique De Jean Racine (Op. 11) Gabriel Urbain Fauré 06:46

Carmen - Habanera Georges Bizet 04:37

Carmina Burana - O Fortuna Carl Orff 05:20

Cavalleria Rusticana - Intermezzo Pietro Mascagni 03:36

C’era Una Volta Il West (Once Upon A Time In The West) Ennio Morricone 05:05

Concerto Pour Piano No. 1 (Op. 11) - Romance Frédéric François Chopin 04:08

Concerto Pour Piano No. 2 (Op. 21) Frédéric François Chopin 09:37

Concerto Pour Violon No. 1 (Op. 6) Niccolò Paganini 04:58

Concierto De Aranjuez - Adagio Joaqúın Rodrigo Vidre 11:31

Dank Sei Dir, Herr Aafje Heynis 04:25

Danse Macabre Charles Camille Saint-Saëns 07:11

Die Zauberflöte (K. 620) - Der Hölle Rache Kocht In Meinem Herzen Wolfgang Amadeus Mozart 03:13

Die Zauberflöte (K. 620) - Der Vogelfänger Bin Ich Ja Wolfgang Amadeus Mozart 02:52

Die Zauberflöte (K. 620) - Overture Wolfgang Amadeus Mozart 06:35

Doppelkonzert Für Zwei Violinen (BWV 1043) Johann Sebastian Bach 07:16

Eine Kleine Nachtmusik (K. 525) Wolfgang Amadeus Mozart 06:33

Exsultate, Jubilate (K. 165) Wolfgang Amadeus Mozart 05:05

Finlandia (Op. 26) Jean Sibelius 09:04

Für Elise Ludwig van Beethoven 02:53

Gymnopédie No.1 Erik Alfred Leslie Satie 03:37

Jesu, Der Du Meine Seele (BWV 78) - Wir Eilen Mit Schwachen Johann Sebastian Bach 05:19

Jesus Bleibet Meine Freude (BWV 147) Johann Sebastian Bach 03:49

Kanon In D Johann Pachelbel 04:25

Klarinettenkonzert (K. 622) - Adagio Wolfgang Amadeus Mozart 07:01

Klarinettenkonzert (K. 622) - Rondo Wolfgang Amadeus Mozart 09:29

Konzert Für Flöte, Harfe Und Orchester (K. 299) - Allegro Wolfgang Amadeus Mozart 10:30

Krönungsmesse (K. 317) - Agnus Dei Wolfgang Amadeus Mozart 03:56

La Donna Mobile Rigoletto Giuseppe Fortunino Francesco Verdi 02:23

La Traviata - Libiamo Ne’ Lieti Calici Giuseppe Fortunino Francesco Verdi 03:15

Lakmé - Duo Des Fleurs Clément Philibert Léo Delibes 05:05

Le Nozze Di Figaro (K. 492) - Voi, Che Sapete Che Cosa E Amor Wolfgang Amadeus Mozart 02:49

Le Quattro Stagioni (Op. 8, RV 269) - La Primavera Antonio Lucio Vivaldi 10:51

Le Quattro Stagioni (Op. 8, RV 293) - l’Autunno Antonio Lucio Vivaldi 11:08

Les Pcheurs De Perles - Au Fond Du Temple Saint Georges Bizet 06:13

Má Vlast - Vltava Bedrich Smetana 12:51

Matthäus Passion (BWV 244) - Erbarme Dich Johann Sebastian Bach 07:12

Matthäus Passion (BWV 244) - Kommt, Ihr Töchter Johann Sebastian Bach 09:07

Matthäus Passion (BWV 244) - Wir Setzen Uns Mit Tränen Nieder Johann Sebastian Bach 06:02

Méditation Jules émile Frédéric Massenet 05:44

Meśıcku Na Nebi Hlubokém Antońın Leopold Dvorák 05:57

Messiah (HWV 56) - For Unto Us A Child Is Born Georg Friederich Händel 04:02

Messiah (HWV 56) - Hallelujah Georg Friederich Händel 04:22

Miserere (Psalm 51) Gregorio Allegri 05:45

Mondscheinsonate (Op. 27) Ludwig van Beethoven 06:07

Nabucco - Va, Pensiero Giuseppe Fortunino Francesco Verdi 05:29

New World Symphony (Op. 95) - Largo Antońın Dvorák 04:39

Norma - Casta Diva Vincenzo Salvatore Carmelo Bellini 05:39

Orchestersuite Nr. 2 (BWV 1067) - Badinerie Johann Sebastian Bach 01:26

Orchestersuite Nr. 3 (BWV 1068) - Air Johann Sebastian Bach 05:05

Orfeo Ed Euridice Christoph Willibald Gluck 03:59

Orfeo Ed Euridice - Dance Of The Blessed Spirits Christoph Willibald Ritter von Glück 06:52

Panis Angelicus César Franck 04:05

Peer Gynt Suite No. 1 (Op. 46) - Morgenstemning Edvard Hagerup Grieg 04:01
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Title Artist Duration

Piano Concerto No. 1 (Op. 23) Pyotr Ilyich Tchaikovsky 09:00

Piano Concerto No. 2 (Op. 18) - Adagio Sostenuto Sergej Vassiljevitsj Rachmaninoff 11:59

Piano Concerto No. 2 (Op. 18) - Moderato Sergej Vassiljevitsj Rachmaninoff 11:08

Piano Concerto No. 5 (Op. 73) - Adagio Un Poco Mosso Ludwig van Beethoven 09:33

Piano Concerto No. 5 (Op. 73) - Rondo Ludwig van Beethoven 12:11

Piano Concerto No. 21 (K. 467) Wolfgang Amadeus Mozart 07:01

Requiem (K. 626) - Dies Irae Wolfgang Amadeus Mozart 01:48

Requiem (K. 626) - Domine Jesu Christe Wolfgang Amadeus Mozart 04:15

Requiem (K. 626) - Introitus Wolfgang Amadeus Mozart 05:57

Requiem (K. 626) - Kyrie Eleison Wolfgang Amadeus Mozart 02:50

Requiem (K. 626) - Lacrimosa Wolfgang Amadeus Mozart 03:09

Requiem (Op. 48) - In Paradisum Gabriel Urbain Fauré 03:49

Requiem (Op. 48) - Pie Jesu Gabriel Urbain Fauré 03:21

Rhapsody In Blue George Gershwin 16:30

Romeo And Juliet Suite No. 2 (Op. 64b) Sergei Sergeyevich Prokofiev 05:21

Serse (HWV 40) - Ombra Mai Fu Georg Friederich Händel 03:19

Solomon (HWV 67) - The Arrival Of The Queen Of Sheba Georg Friederich Händel 02:59

Spartacus - Adagio Of Spartacus And Phrygia Aram Ilich Khachaturian 09:54

Stabat Mater Giovanni Battista Pergolesi 04:18

Swan Lake (Op. 20) Pyotr Ilyich Tchaikovsky 03:14

Symphony No. 5 Gustav Mahler 06:42

Symphony No. 5 (Op. 67) Ludwig van Beethoven 07:06

Symphony No. 6 (Op. 68) Ludwig van Beethoven 10:34

Symphony No. 7 (Op. 92) Ludwig van Beethoven 14:17

Symphony No. 9 (Op. 125) Ludwig van Beethoven 12:59

Symphony No. 40 (K. 550) - Molto Allegro Wolfgang Amadeus Mozart 07:41

The Blue Danube Johann Strauss 05:44

Toccata E Fuga (BWV 565) Johann Sebastian Bach 09:23

Turandot - Nessun Dorma Giacomo Antonio Domenico Michele 03:22

Vesperae De Dominica (K. 321) - Laudate Dominum Wolfgang Amadeus Mozart 05:48

Violinkonzert Nr. 1 (Op. 26) - Adagio Max Christian Friedrich Bruch 08:42

Violinkonzert Nr. 1 (Op. 26) - Allegro Moderato Max Christian Friedrich Bruch 08:36

Wachet Auf, Ruft Uns Die Stimme (BWV 140) Johann Sebastian Bach 03:30

Wassermusik (HWV 348-350) Georg Friederich Händel 04:46

Weihnachtsoratorium (BWV 248) - Jauchzet, Frohlocket Johann Sebastian Bach 08:19

A.2 Country Test Dataset

Country music is characterised by simple harmonies accompanied by mostly string

instruments such as banjos, acoustic guitars, fiddles, and other instruments such as

harmonicas and accordions. Country can be divided into folk, swing, blues, boogie, and

gospel. The genre has a lower dynamic range than most other genres. The complete

country test dataset used for the empirical analysis is given in table A.2.

Table A.2: The country test dataset.

Title Artist Duration

A Boy Named Sue Johnny Cash 03:40

Alabam Cowboy Copas 02:17

Almost Persuaded David Houston 03:01

Always Late Lefty Frizzell 03:08

Always On My Mind Willie Nelson 03:34
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Title Artist Duration

Back In The Saddle Again Gene Autry 02:43

Boot Scootin’ Boogie Brooks and Dunn 03:18

Bouquet Of Roses Eddy Arnold 02:22

Cattle Call Eddy Arnold 02:44

Chattanoogie Shoe Shine Boy Red Foley 02:45

Coal Miner’s Daughter Loretta Lynn 03:01

Convoy CW McCall 03:48

Cool Water Sons Of The Pioneers 02:46

Crazy Patsy Cline 02:43

Crazy Arms Ray Price 02:34

Detroit City Bobby Bare 02:46

Don’t It Make Your Brown Eyes Crystal Gayle 02:31

Don’t Worry Marty Robbins 03:11

El Paso Marty Robbins 04:23

Elvira The Oak Ridge Boys 03:45

Every Which Way But Loose Eddie Rabbitt 02:54

Family Tradition Hank Williams Jr 04:01

Flowers On The Wall Statler Brothers 02:26

Folsom Prison Blues Johnny Cash 02:50

For The Good Times Ray Price 03:49

Forever And Ever Amen Randy Travis 03:35

Four Walls Jim Reeves 02:52

Friends In Low Places Garth Brooks 04:20

Golden Ring Tammy Wynette 03:06

Gone Ferlin Husky 02:25

Good Hearted Woman Waylon Jennings and Willie Nelson 03:02

Guitar Polka Al Dexter 02:42

He Stopped Loving Her Today George Jones 03:18

Heartbreak Hotel Elvis Presley 02:06

He’ll Have To Go Jim Reeves 02:23

Hello Darlin Conway Twitty 02:26

Hello Walls Faron Young 02:21

Here Comes My Baby Dottie West 02:31

I Ain’t Never Mel Tillis 02:08

I Believe In You Don Williams 04:09

I Can’t Stop Loving You Ray Charles 04:13

I Walk The Line Johnny Cash 02:44

I Want To Be A Cowboy’s Sweetheart Patsy Montana 03:08

I Was Country Barbara Mandrell 03:40

I Will Always Love You Dolly Parton 03:06

I’ll Hold You In My Heart Eddy Arnold 02:44

I’m Movin On Hank Snow 02:50

I’m So Lonesome I Could Cry Hank Williams 02:49

In The Jailhouse Now Jimmie Rodgers 03:18

In The Jailhouse Now Webb Pierce 02:03

It Was Almost Like A Song Ronnie Milsap 03:35

It Wasn’t God Who Made Honky Tonk Angels Kitty Wells 02:33

I’ve Forgotten More Than You’ll Ever Know The Davis Sisters 02:59

I’ve Got A Tiger By The Tail Buck Owens 02:14

Just Someone I Used To Know Porter Wagoner and Dolly Parton 02:24

King Of The Road Roger Miller 02:21

Kiss An Angel Good Morning Charley Pride 02:04

Lookin’ For Love Johnny Lee 03:31

Loose Talk Carl Smith 02:32

Louisiana Woman Mississippi Man Loretta Lynn and Conway Twitty 02:24

Love Without End Amen George Strait 03:03

Lovesick Blues Hank Williams Sr 02:45

Luckenbach Texas Waylon Jennings 03:16

Mountain Music Alabama 04:13

My Hang Up Is You Freddie Hart 02:06

New San Antonio Rose Bob Wills 02:39

Oh Lonesome Me Don Gibson 02:32

Okie From Muskogie Merle Haggard 02:40

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix A. Empirical Data 193

Title Artist Duration

Once A Day Connie Smith 02:19

Please Help Me I’m Falling Hank Locklin 02:53

Rhinestone Cowboy Glen Campbell 03:14

Room Full Of Roses Mickey Gilley 02:47

Rose Garden Lynn Anderson 02:58

Silver Wings Merle Haggard 02:46

Singing The Blues Marty Robbins 02:28

Sixteen Tons Tennessee Ernie Ford 02:39

Slipping Around Jimmy Wakely and Margaret Whiting 02:14

Slow Poke Pee Wee King 02:54

Smoke, Smoke, Smoke Tex Williams 03:00

So Round, So Firm, So Fully Packed Merle Travis 03:00

Stand By Your Man Tammy Wynette 02:42

Still Bill Anderson 02:56

The Battle Of New Orleans Johnny Horton 02:35

The Dance Garth Brooks 03:58

The Devil Went Down To Georgia Charlie Daniels Band 03:35

The Gambler Kenny Rogers 03:30

The Green, Green Grass Of Home Porter Wagoner 02:24

The Most Beautiful Girl Charlie Rich 02:41

The Prisoner’s Song Vernon Dalhart 03:05

The Three Bells The Browns 02:53

The Wild Side Of Life Hank Thompson 02:45

There Goes My Everything Jack Greene 03:08

Wabash Cannonball Roy Acuff 02:32

Walk On By Leroy Vandyke 02:22

Walking The Floor Over You Ernest Tubb 02:37

What’s Your Mama’s Name Tanya Tucker 03:13

White Lightning George Jones 02:30

Why Not Me The Judds 03:31

Will The Circle Be Unbroken Carter Family 03:48

Young Love Sonny James 02:31

A.3 Electronic Test Dataset

Electronic music encapsulates music generated with electronic instruments such as electric

guitars, keyboards, theremins, and sound synthesizers. A large part of this genre is

directly created through computer software. Subgenres include electro, techno, dance,

trance, and house. The genre is characterised by a very wide dynamic range with a large

number of samples reaching the extremes. The complete electronic test dataset used for

the empirical analysis is given in table A.3.

Table A.3: The electronic test dataset.

Title Artist Duration

18 mne uzhe Resource and Reflex 05:27

Adagio For Strings Tiesto 07:24

Always And Forever DJ Splash 03:45

Anima Libera DJ Raaban 03:05

Another World DJ Shog 03:54

Are You Ready Pakito 03:28
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Title Artist Duration

Baila With Me Ravekorr and Sander 05:56

Bass Is Kicking DJ Splash and B-Bass and DJ MDS 03:43

Be Alive Stian K 04:09

Better Off Alone Alice Deejay 03:36

Bounce Tune Up 03:29

Can You Feel It Dj Raaban 03:18

Can’t You See Nikita and Lance 03:31

Castle In The Sky DJ Satomi 03:15

Club Inferno Scarf 03:31

Cold As Ice Starsplash 04:41

Colors Of The Rainbow Tune Up and Italobrothers 03:29

Come Home Zoe 04:52

Cuttin’ Deep Darren Styles 02:50

Dam Dadi Doo Nightcore 02:43

Dance With My Pants Crazy Rockers 01:24

Day After Day Millennium 07:49

Days Goes By DJ Splash 03:08

Days Goes By DJ Splash 03:08

DJ Number 1 Kompulsor 03:19

Don’t Stop Till You Get Enough Eliess 05:55

Ecuador Sash! 03:35

Encanto Danijay 04:46

End Of Summer Zone Breaker 03:55

Every Single Day Benassi Bros and Dhany 03:42

Fable Robert Miles 03:54

Feel So Blue Secondtunez 04:01

Flying High DC-10 03:38

Flying High DJ Splash 02:53

Freedom DJ Mangoo 03:51

Frozen Flame Jekyll and Hyde 03:34

Funeral Song Vr00z 04:48

Hardstyle My Style Starsplash 03:40

Have You Ever Been Mellow Tune Up 03:55

I Adore DJ Breeza 03:08

I Miss You Basshunter 03:48

I Touch Myself Jan and Scarlet Wayne 03:43

If I Could Be You DJ Dean 03:19

I’m Just More Vibeout 05:43

I’m Your Basscreator Basshunter 05:25

In The Name Of Love Jet Set 03:39

It’s A Dream East Clubbers 04:46

Le Settler Project 03:26

Lektion 1 Bassrockerz 02:37

L’Esperanza Topmodelz 03:09

Like i Love you The Hitmen 03:27

Little Star Lazard 06:10

Love You Till I Die Alextc 03:43

Magic Summer Night Klubbingman 03:27

Makes Me Go Mmmm Jazmine 03:29

Me So Horny Dj Porny 03:09

Milky Way Cyrus And The Joker 10:01

Monkey Island Banana Inc 04:15

More More More East Clubbers 03:36

More Than Words Rave Allstars 03:36

Move Your Hands Up Clubraiders 06:09

Nasty Girl Renegade Masterz 03:49

New Life DJ Splash 03:08

Now You’re Gone Basshunter 02:35

Nu Ska Ni Fa Hora Gott Folk DJ Bass Rocker 03:57

Paradise on E B0UNC3 03:24

Pina Colada Boy Baby Alice 05:18

Place To Be Redwing 03:23

Por Que No United Beats 04:43
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Title Artist Duration

Professional Party People Basshunter 03:09

Project Well Beattraax 03:48

Rainbow DJ Sixty 02:56

Rave Heaven Dave McCullen 03:34

Rave Techno DJ Mangoo 03:25

Ravers fantasy Tune Up 03:30

Ride On Time Dancetech and Tune Up 04:07

Secret of Love Barcera 03:42

Secret Of Love DJ Bobo and Sandra 03:16

September 28th Atlantis 04:36

Show Me Your Love Bassrockerz 03:14

Sommaren är här Secondtunez 03:05

Summertime Sandra Gee 03:56

Sunrise Angel City 03:43

Surrender Bassrockerz and Elena 03:04

Sweet Love DJ Cargo and D-Verse 06:46

Sweetest Ass In The World Alex C and Y-Ass 03:17

Tarzan Boy Denise Lopez 03:11

Techno Rocker Base Attack 03:31

Tell Me Why Supermode 02:50

The Logical Song Rave Allstars 03:23

The Logical Song Scooter 03:52

The Power Of Pleasure DJ Carpi 04:24

This Is My Life DJ Splash 03:28

Time 4 Dance Clubnature 02:37

Tune 2 Playaz 03:27

When Love Becomes A Lie Liz Kay 03:06

When The Rain Begins To Fall Age Pee 03:43

You Special D 03:01

Youre My Angel Styles and Breeze 05:13

You’re The One That I Want Deep Spirit 03:55

A.4 Jazz Test Dataset

Jazz is typically composed using drums, guitars, pianos, and brass instruments, most

notably the trumpet and saxophone. Although not one of the main genres, jazz was

included due to the higher amplitudes from brass instruments in a mostly narrow dynamic

range. Subgenres include soul, bop, latin jazz, and often overlaps with blues and swing.

The complete jazz test dataset used for the empirical analysis is given in table A.4.

Table A.4: The jazz test dataset.

Title Artist Duration

A Night In Tunisia Ronnie Scott 03:42

A Quiet Gass Henry Mancini 03:06

Aint Misbehavin Sidney Bechet 02:54

Among My Souvenirs Louis Armstrong 02:45

As Time Goes By Tony Bennett 03:15

Autumn In New York Dexter Gordon 06:33

Baby It’s Cold Outside Buddy Clark 02:22

Baby It’s Cold Outside Dinah Shore 02:22

Begin the Beguine Artie Shaw 03:18

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix A. Empirical Data 196

Title Artist Duration

Between the Devil and the Deep Blue Sea Django Reinhardt 02:57

Bewitched,Bothered and Bewildered Eddie Lockjaw Davis 03:42

Black Coffee Ed Bentley 06:18

Blackbird Dave Valentin 06:25

Buona Sera Louis Prima 02:59

Contrasts Jimmy Dorsey 03:01

Crazy Rhythm Benny Carter 03:27

Cry Me a River Julie London 02:50

Dragnet Ray Anthony 02:49

Dream a Little Dream of Me Frankie Laine 02:49

Drummin’ Man Gene Krupa 03:04

East of the Sun Ted Heath 03:34

Embraceable You Sarah Vaughan 04:52

Fever Peggy Lee 03:20

Fly Me to the Moon Cy Coleman 02:54

Frenesi The American Patrol Orchestra 02:50

Giant Steps Candido Camero 05:38

God Bless the Child Billie Holiday 03:08

Greenbacks Ray Charles 02:56

Harlem Nocturne Jonny Cooper Orchestra 03:17

Here There And Everywhere David Benoit 04:07

Honeysuckle Rose Count Basie 03:03

I Wanna Be Loved Dinah Washington 02:53

I Wanna Be Loved By You Marilyn Monroe 02:59

In Other Words Nancy Wilson 02:54

In the Mood Glenn Miller 03:37

Is You Or Is You Ain’t My Baby Diana Krall 04:58

It Could Happen to You June Christy 02:01

I’ve Got You Under My Skin Stan Getz 03:19

Jeepers Creepers Maynard Ferguson 02:35

Jumpin’ at the Woodside Count Basie 03:13

La Mer Henry Cuesta 02:35

Let Me Off Uptown Gene Krupa 03:04

Let’s Do It, Let’s Fall In Love Eartha Kitt 03:10

Love For Sale Cannonball Adderley 07:09

Lullaby In Rhythm June Christy 02:37

Lullaby of Birdland Lionel Hampton 04:17

Lullaby of Birdland Mel Torme 04:51

Mack the Knife Lol Williams Band 03:44

Mack the Knife Louis Armstrong 03:26

Manhattan Serenade Dinah Shore 03:09

Moon River Art Blakey 05:12

Mr Bojangles Sammy Davis Jr 05:46

My Baby Just Cares For Me Nina Simone 03:33

My Funny Valentine Chet Baker 02:22

My Funny Valentine Sammy Davis Jr 03:08

My Melancholy Baby Mildred Bailey 02:53

My Old Flame Libbie Jo Snyder 06:48

Off Minor Thelonious Monk 05:15

Old Devil Moon Lena Horne 02:35

On the Sunny Side of the Street The Memphis Belle Orchestra 03:25

On the Sunnyside of the Street Dizzy Gillespie 05:41

Ornithology Charlie Parker 03:05

Patterns Ahmad Jamal 06:16

Peggy’s Blue Skylight Charles Mingus 05:20

Pennies from Heaven Jimmy Rushing 05:26

Put Off Milt Jackson 05:37

Rags to Riches Tony Bennett 02:51

Route 66 Nat King Cole 03:03

S Wonderful Mel Powell 04:16

S’ Wonderful Quincy Jones 03:15

Satin Doll Jo Jones 05:54

Sentimental Journey The Merry Macs 03:03
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Title Artist Duration

Sing Me a Swing Song Ella Fitzgerald 02:34

Sing Sing Sing Benny Goodman 05:05

Six Flats Unfurnished Benny Goodman 03:18

Skyliner Charlie Barnet 03:01

Smoke Gets In Your Eyes Lawrence Welk 02:20

So Long Eric Charles Mingus 04:35

So What Miles Davis 09:24

Softly, As In A Morning Sunrise Dave Weckl 05:01

Stairway to the Stars Bill Evans 04:51

Stolen Moments New York Voices 06:46

Strange Fruit Billie Holiday 03:18

Stranger on the Shore Acker Bilk 03:09

Strangers In the Night Billy Vaughn 01:48

Summertime Ella Fitzgerald 04:56

Take Five Dave Brubeck Quartet 03:24

Take the A Train Duke Ellington 03:01

That Old Feeling Gerry Mulligan 06:00

That’s My Desire Frankie Laine 02:52

The Entertainer Chris Barber’s Jazz Band 03:52

The Entertainer Scott Joplin 03:37

The Girl From Ipanema Stan Getz and Joan Gilberto 05:22

The Good Earth Woody Herman 02:35

The Lady Is a Tramp Erroll Garner 03:38

Toot-Toot Tootsie Sonny Rollins 04:23

Tuxedo Junction Al Hirt 02:43

Venus De Milo Miles Davis 03:12

What a Difference a Day Makes Dinah Washington 02:33

Yardbird Suite The Modern Jazz Quartet 05:15

A.5 Metal Test Dataset

Metal is characterised by loud and distorted sound generated by drums, distorted guitars,

dense bass and vigorous vocals. Although a subgenre of rock, metal was specifically

included due to the very wide dynamic range and sound distortions that are similar to

the noise caused by gramophone scratches. The genre can be divided into heavy metal,

death metal, nu metal, punk, and grunge. The complete metal test dataset used for the

empirical analysis is given in table A.5.

Table A.5: The metal test dataset.

Title Artist Duration

A Change of Seasons Dream Theater 23:09

A Question of Heaven Iced Earth 07:40

And the Mirror Cracked Disillusion 08:28

Angry Again Megadeth 03:47

Annihilation of the Wicked Nile 08:36

Battles in the North Immortal 04:12

Blood Red Skies Judas Priest 07:49

Bombtrack Rage Against the Machine 04:04

Cemetery Gates Pantera 07:02

Chemo Garden Wall 34:06
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Title Artist Duration

Chromatic Chimera Unexpect 05:52

Civil War Guns N’ Roses 07:42

Close to a World Below Immolation 08:19

Close to the Edge Yes 18:43

Code Anticode Gordian Knot 06:47

Cold Hate, Warm Blood Cryptopsy 03:55

Control and Resistance Watchtower 06:59

Decrystallizing Reason Emperor 06:23

Deep Inside Lemur Voice 09:29

Demise and Vestige Zero Hour 15:48

Disrespectfully Yours Sieges Even 03:51

Dream of a New Day Richie Kotzen 03:18

Elastic Meshuggah 15:31

Evidence of the Unseen Zero Hour 08:44

Exospacial Psionic Aura Behold The Arctopus 07:31

Expect the Unexpected Control Denied 07:18

Faceless One Hate Eternal 04:39

Faceless Ones Gorguts 03:50

Fire and Ice Yngwie Malmsteen 04:31

Follow Me Savatage 05:12

For the Love of God Steve Vai 06:03

From Bellatrix To Betelgeuse Sadist 04:44

Gridzone Nocturnus 06:07

Halo Machine Head 09:03

Helpless Corpses Enactment Sleepytime Gorilla Museum 05:57

Higher Ground Red Hot Chili Peppers 03:22

Hiking Up Feel Good Mountain Upsilon Acrux 07:47

House of Nadir Twisted into Form 06:40

I Was Made For Loving You Kiss 04:30

Ice Age Ice Age 11:09

Insect Spiral Architect 05:54

Jump Van Halen 04:26

La Idea de Borde Coprofago 02:41

Leal Souvenir Jonas Hellborg 10:55

Living in Fear Dali’s Dilemma 07:44

Madness Remains MASSACRA 05:43

Monitoring the Mind Neuraxis 03:42

Morax Arcturus 04:21

Mourning Palace Dimmu Borgir 05:12

Move Through Me In Flames 03:08

Mutha Extreme 04:52

Nevermore Beneath The Massacre 04:05

November Rain Guns N’ Roses 08:57

One Metallica 07:26

Perpetual Burn Jason Becker 03:30

Piece Of Time Atheist 04:33

Piste 2 Atrox 06:44

Polars Textures 18:25

Prognosis Enchant 07:24

Pseudo Cephalic Carnage 05:55

Pull Me Under Dream Theater 08:15

Queen of Winter, Throned Cradle of Filth 10:28

Rearviewmirror Pearl Jam 04:44

Relentless Beating Cannibal Corpse 02:17

Remind The Differences Anon Vin 04:32

Rise of the Iridescent Behemoth The Flying Luttenbachers 20:15

Rock America Danger Danger 04:54

Salome’s Dance Eldritch 05:27

Shadowkings Paradise Lost 04:42

Suicide Nation At the Gates 03:35

Symposium of Sickness Carcass 06:57

Test of Wills Power of Omens 19:58

Textures Cynic 04:42
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Title Artist Duration

The Chaos Theory Continuo Renacer 07:40

The Conquering Satyricon 07:28

The Edge of Forever Symphony X 08:59

The God That Failed Metallica 05:08

The Last Baron Mastodon 13:01

The One Brooding Warning Dark Tranquility 04:15

The Patient Tool 07:14

The Pig Keepers Daughter Psyopus 03:35

The Trooper Iron Maiden 04:11

The Truth Will Set You Free The Flower Kings 31:02

The Unknowable and Defeating Glow Canvas Solaris 10:20

The Waking Hours Sieges Even 04:43

There Goes the Neighborhood Body Count 05:50

Thorns On My Grave Emperor 05:56

Tornado of Souls Megadeth 05:22

Universal Mind Liquid Tension Experiment 07:53

Virtual Emotions Martyr 04:08

Warp Zone Martyr 03:04

Where Dead Angels Lie Dissection 05:52

Wind Of Change Scorpions 05:13

Wishmaster Nightwish 04:24

With Strength I Burn Emperor 08:18

Yankee Rose David Lee Roth 03:51

You And Me Mayadome 05:18

Youth Gone Wild Skid Row 03:18

Zambra Hacride 06:48

Zos Kia Cultus Behemoth 05:33

A.6 Pop Test Dataset

Originally derived from rock, dance and country music, pop or popular music employs

repeated choruses, melodic tunes, and hooks composed with a wide range of instruments.

Pop music typically has a medium dynamic range with higher amplitudes caused by

electric guitars, electronic beats or high-pitched vocals often repeated in refrains. The

complete pop test dataset used for the empirical analysis is given in table A.6.

Table A.6: The pop test dataset.

Title Artist Duration

2 Become 1 Spice Girls 04:05

4 Minutes Madonna and Justin Timberlake 04:04

7 Things Miley Cyrus 03:25

A Public Affair Jessica Simpson 03:22

As Long As You Love Me Backstreet Boys 03:38

Baby One More Time Britney Spears 03:32

Bailamos Enrique Iglesias 03:33

Barbie Girl Aqua 03:18

Be With You Enrique Iglesias 03:41

Beat It Michael Jackson 04:18

Because Of You 98 Degrees 03:55

Billie Jean Michael Jackson 04:54

Black Or White Michael Jackson 03:20
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Title Artist Duration

Boombastic Shaggy 04:09

Boyfriend Ashlee Simpson 03:01

Break The Ice Britney Spears 03:14

Bye Bye Mariah Carey 04:18

Bye Bye Bye NSYNC 03:21

Come On Over Christina Aguilera 03:25

Cool Gwen Stefani 03:09

Cry Me A River Justin Timberlake and Timbaland 04:49

Dirrty Christina Aguilera 04:46

Don’t Stop the Music Rihanna 04:27

Don’t Stop ’Til You Get Enough Michael Jackson 03:56

Escape Enrique Iglesias 03:29

Every Morning Sugar Ray 03:42

Everybody Backstreet Boys 04:48

Fly Sugar Ray and Super Cat 04:54

Genie In A Bottle Christina Aguilera 03:39

Give Me Just One Night 98 Degrees 03:24

God Must Have Spent A Little More Time On You NSYNC 04:43

Hollaback Girl Gwen Stefani 03:20

Hot N Cold Katy Perry 03:40

Hung Up Madonna 03:24

I Kissed A Girl Katy Perry 03:00

I Want It That Way Backstreet Boys 03:33

I Want You Savage Garden 03:52

I Want You Back NSYNC 03:23

I’m a Slave 4 U Britney Spears 03:24

I’m Too Sexy Right Said Fred 02:52

It’s Gonna Be Me NSYNC 03:13

Just Dance Lady Gaga 04:03

L.O.V.E. Ashlee Simpson 02:34

LaLa Ashlee Simpson 03:45

Larger Than Life Backstreet Boys 03:55

Let’s Take A Ride Justin Timberlake and Pharrell Williams 04:44

Livin’ La Vida Loca Ricky Martin 04:04

Lovefool The Cardigans 03:14

Milkshake Kelis 03:04

Mmm’Bop Hanson 04:01

More Than That Backstreet Boys 03:44

Music Madonna 03:44

My Happy Ending Avril Lavigne 04:03

Never Again Justin Timberlake and Brian McKnight 04:34

Never Again Kelly Clarkson 03:35

No Diggity Blackstreet 04:13

One Week Barenaked Ladies 02:49

Oops I Did It Again Britney Spears 03:32

Pop NSYNC 02:55

Quit Playing Games Backstreet Boys 03:59

Ray of Light Madonna 05:21

Rich Girl Gwen Stefani 03:57

Rock Your Body Justin Timberlake and Pharrell Williams 04:28

Say You’ll Be There Spice Girls 03:58

Scatman Scatman John 03:34

See You Again Miley Cyrus 03:11

Seorita Justin Timberlake and Pharrell Williams 04:55

SexyBack Justin Timberlake 03:14

Shake It Off Taylor Swift 03:39

Shape of My Heart Backstreet Boys 03:52

Show Me The Meaning Of Being Lonely Backstreet Boys 03:55

Since U Been Gone Kelly Clarkson 03:09

Smile Lily Allen 03:19

Smooth Criminal Michael Jackson 04:17

Someday Sugar Ray 04:05

Sometimes Britney Spears 04:07

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix A. Empirical Data 201

Title Artist Duration

Spice Up Your Life Spice Girls 02:56

Take It From Here Justin Timberlake and Pharrell Williams 06:15

Tearin’ Up My Heart NSYNC 03:32

The Way You Make Me Feel Michael Jackson 04:58

This I Promise You NSYNC 04:45

Thong Song Sysqo 04:10

Thriller Michael Jackson 05:12

To The Moon And Back Savage Garden 05:41

Touch My Body Mariah Carey 03:24

Toxic Britney Spears 03:22

Truly, Madly, Deeply Savage Garden 04:41

Unbelieveable EMF 03:31

Waiting For Tonight Jennifer Lopez 04:07

Waking Up In Vegas Katy Perry 03:19

Wannabe Spice Girls 02:55

What A Girl Wants Christina Aguilera 03:35

What Goes Around Comes Around Justin Timberlake 07:30

What Is Love Haddaway 04:30

What You Waiting For Gwen Stefani 03:42

When It’s Over Sugar Ray 03:39

Who Do You Think You Are Spice Girls 03:46

Womanizer Britney Spears 03:44

You Drive Me Crazy Britney Spears 03:20

You Rock My World Michael Jackson 04:27

A.7 Reggae Test Dataset

A genre that originates from Jamaica, reggae mainly uses guitars, hand drums, and

traditional Jamaican and African instruments. This genre was included, since reggae is

characterised by emphasizing the last note in a beat. This stands in direct contrast to

almost all western music which emphasizes the first note in a beat. Other genres that

fall in this category includes ska and rocksteady. The complete reggae test dataset used

for the empirical analysis is given in table A.7.

Table A.7: The reggae test dataset.

Title Artist Duration

Blaze Junior Kelly 04:06

Not I Junior Kelly 04:22

Africa Prepare Sizzla 03:23

Badman Place Busy Signal and Movado 03:17

Be Free Pressure 03:18

Be Strong Sizzla 03:37

Blaze Fire Blaze Sizzla 03:34

Blind To You Haters Collie Buddz 03:51

Blood Again Richie Spice 03:50

Born To Be Wild Damian Marley 04:01

Burn Down The System Collie Buddz 03:35

Call Pon Dem Chezidek 03:23

Call Up Jah Alborosie 03:22

Catch A Fire Damian Marley 04:52
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Title Artist Duration

Come Around Collie Buddz 03:47

Come Jah Coco Tea 02:19

Could You Be Loved Bob Marley 03:55

Daddy Queen Ifrica 04:11

Dem Gone Gentleman 04:02

Different Places Gentleman 03:35

Diversity Alborosie 04:10

Divide And Rule Sizzla and Jah Cure 03:29

Do You Turbulence 03:53

Don’t Haffi Dread Morgan Heritage 03:55

Dreams Riddim Pressure 03:16

Equal Share Lutan Fyah 03:39

Far From Reality Natural Black 03:02

Fire Pon Dem Turbulence 03:35

Freedom Richie Spice and Chuck Fender 04:13

Ganja Farmer Marlon Asher 03:55

Ganja In My Brain Ras Matthew 04:41

Gash Dem Chuck Fender 03:15

Ghetto Living Don Carlos 03:36

Hail The King Fantan Mojah 04:00

Herbalist Alborosie 03:09

High Grade Jah mason 03:43

Hmm Hmm Beenie Man 03:37

I Will Survive Turbulance 03:29

Inna Di Road Chezidek 03:08

It A Ring Tonto Irie 04:02

Jah Give Me Strength Junior Kelly 03:53

Jah Jah Crown Alborosie 03:37

Jah Name Daweh Congo and Ras Shiloh 04:10

Jah Works Sizzla 04:21

Lay Low Riddim Bounty Killa and Sizzla 02:41

Leave Us Alone Gentleman 03:24

Like Mountain Sizzla 03:41

Longing For Jah Cure 03:47

Loser Junior Kelly 04:16

Love And Affection Pressure 03:55

Love Chant Gentelman 04:33

Love Me Brethren Luciano 04:03

Mama I Love You Sean Paul 03:41

Mind Control Stephen Marley 04:21

Mount Zion Gentleman 03:41

Mr. Gunman Mr. Vegas 03:17

My Meditation Bushman 03:39

Neva Knew Turbulence 02:19

Never Give In C’daynger 02:28

Never Quit Natural Black 02:59

New Day Gentleman 03:35

Nuh Build Great Man Fantan Mojah and Jah Cure 03:52

Oh Jah, Can’t You See Barrington Levy 03:15

One Loaf Of Bread Damian Marley 03:18

Only Jah Love Fantan Mojah 03:31

Phantom War Lutan Fyah 03:45

Police Polizia Alborosie 03:35

Rasta Should Be Deeper Junior Kelly 03:29

Rastafari Anthem Alborosie 03:24

Rastafari Mi Salute LMS 04:03

Rastaman Cocoa Tea 04:06

Really And Truly Sizzla 03:51

Receive Junior Kelly 04:22

Redemption Song Bob Marley 03:50

Rumours Gentleman 03:21

Satan Throne Junior Kelly 03:19

See Dem Coming Gentleman 03:51
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Title Artist Duration

Send A Prayer Gentleman 03:51

Sensi Gyptian 02:44

Share The Love Gentleman and Jah Cure 04:01

Smuggling Weed Teacher Dee 03:29

Squeeze Breast Movado 02:58

Still Searching Damian Marley 05:03

Strangest Thing Mr Easy 03:49

Street Swing Riddim Sizzla, Fantan Mojah and Gyptian 13:34

Stubborn Woman Natural Black 03:59

Superior Gentleman 03:50

Tell Me How Come Morgan Heritage 03:32

The Mission Damian Marley and Stephen Marley 04:06

The Traffic Jam Stephen Marley 03:41

These Are The Fucking Days Busy Signal 03:55

This Fire Lutan Fyah 03:34

Tough Life Junior Kelly 04:06

Tribal War Alborosie and Luciano 03:48

Unknown Number Private Call Busy Signal 03:35

What Will it Take Jah Cure 03:46

Who Am I Capleton 04:02

Who Dem Capelton 03:25

Woman I Need You Sizzla 03:42

Young Girl 2 Rude Collie Buddz 03:35

A.8 Rock Test Dataset

Also known as rock and roll, this genre is typically composed with electric and acoustic

guitars, bass and drums. Rock has a wide dynamic range, but in general still smaller than

metal and electronic music ranges. Subgenres include classic, hard, punk, and alternative

rock. The complete rock test dataset used for the empirical analysis is given in table A.8.

Table A.8: The rock test dataset.

Title Artist Duration

2 Minutes to Midnight Iron Maiden 06:05

48 Crash Suzi Quatro 03:59

Angie Rolling Stones 04:35

Another Brick in the Wall Pink Floyd 04:00

Battery Metallica 05:13

Battle Hymn Manowar 06:58

Big Gun AC-DC 04:22

Black Dog Led Zeppelin 04:57

Bohemian Rhapsody Queen 05:54

Carrie Europe 04:31

Catch The Rainbow Rainbow 06:40

Child in Time Deep Purple 10:21

Crazy Aerosmith 05:18

Cryin’ Aerosmith 05:09

Desert Rose Sting 04:49

Do You Like It Kingdom Come 03:39

Dreamer Ozzy Osbourne 04:45

Eleanor Rigby The Beatles 02:09

Englishman In New York Sting 04:27
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Title Artist Duration

Ever Dream Nightwish 04:47

Fireball Deep Purple 03:25

Forgiven Within Temptation 04:53

Fragile Sting 03:57

Girl The Beatles 02:34

Goldeneye Tina Turner 04:45

Hair Of The Dog Nazareth 06:07

Hell Patrol Judas Priest 03:37

Hey Stoopid Alice Cooper 04:35

High Voltage AC-DC 04:16

Highway Star Deep Purple 06:56

Holy Diver Dio 05:55

Hotel Califonia Eagles 06:31

I Can’t Dance Genesis 06:56

I Don’t Know Ozzy Osbourne 05:14

I Don’t Want To Miss A Thing Aerosmith 05:00

I Surrende Rainbow 04:02

I Wanna Be Your Man Suzi Quatro 03:23

Immigrant Song Led Zeppelin 02:26

Iron Maiden Iron Maiden 04:22

Iron Man Black Sabbath and Dio 07:20

It’s A Heartache Bonnie Tyler 03:30

July Morning Uriah Heep 10:34

Kill The King Rainbow 04:32

Killing Machine Judas Priest 03:02

King of Rock and Roll Dio 03:43

Kings And Queens Aerosmith 03:48

Kings of Metal Manowar 03:44

Lady In Black Uriah Heep 04:43

Look At Yourself Uriah Heep 05:12

Lost In France Bonnie Tyler 03:54

Lost In Hollywood Rainbow 04:56

Love Bites Def Leppard 05:47

Magic Mirror Yngwie Malmsteen 03:54

Mama Genesis 06:51

Mama, I’m Coming Home Ozzy Osbourne 04:13

Man On The Silver Mountain Rainbow 04:40

Metal Gods Judas Priest 04:00

Metal Heart Accept 05:24

Metal Racer Doro and Warloc 03:44

Michelle The Beatles 02:48

Money Pink Floyd 06:23

Nemo Nightwish 04:39

New Kid In Town Eagles 05:04

No More Tears Ozzy Osbourne 07:25

Painkiller. Judas Priest 06:07

Paranoid Black Sabbath and Dio 03:47

Poison Alice Coope 04:30

Private Dancer Tina Turner 04:05

Razamanaz Nazareth 04:24

Rock and Roll Led Zeppelin 03:41

Rock’n’Roll Children Dio 04:33

Ruby Tuesday Rolling Stones 03:18

Satisfaction Rolling Stones 03:46

Seventh Son Of A Seventh Son Iron Maiden 09:55

Smoke on the Water Deep Purple 07:37

Somebody To Love Jefferson Airplane 04:16

Stairway to Heaven Led Zeppelin 08:03

Stand Up And Shout Dio 03:18

Still Loving You Scorpions 06:12

T.N.T. AC-DC 03:37

Telegram Nazareth 06:34

That Was Yesterday Foreigner 03:50
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Title Artist Duration

The Best Tina Turner 05:31

The Demon’s Whip Manowar 07:45

The Final Countdown Europe 05:11

The Howling Within Temptation 06:31

The Phantom Of The Opera Nightwish 04:10

The Show Must Go On Queen 04:32

The Sun Goes Down Jorn Lande 06:28

Time Pink Floyd 06:50

TV War Accept 03:29

Venus Shocking Blue 03:08

We Are The Champions Queen 03:03

We Will Rock You Queen 02:02

Whole Lotta Love Led Zeppelin 05:35

Wind of Change Scorpions 05:15

Wish You Were Here Pink Floyd 05:41

Yesterday The Beatles 02:10

You Don’t Remember, I’ll Never Forget Yngwie Malmsteen 04:31

You Make Me Feel Bonfire 04:43

A.9 Gramophone Test Set

Table A.9 lists the tracks and albums of the second test set obtained from gramophone

records. Due to the lack of availability of sealed gramophone records in mint condition,

their excessive cost and the requirement of manually flagging noisy samples, only eight

albums were used. The test dataset totals 83 songs .

Table A.9: The gramophone test dataset.

Title Artist Album Duration

Come Together The Beatles Abbey Road 04:20

Something The Beatles Abbey Road 03:03

Maxwell’s Silver Hammer The Beatles Abbey Road 03:27

Oh! Darling The Beatles Abbey Road 03:26

Octopus’s Garden The Beatles Abbey Road 02:51

I Want You The Beatles Abbey Road 07:47

Here ComesTthe Sun The Beatles Abbey Road 03:05

Because The Beatles Abbey Road 02:45

You Never Give Me Your Money The Beatles Abbey Road 04:02

Sun King The Beatles Abbey Road 02:26

Mean Mr Mustard The Beatles Abbey Road 01:06

Polythene Pam The Beatles Abbey Road 01:12

She Came In Through the Bathroom Window The Beatles Abbey Road 01:57

Golden Slumbers The Beatles Abbey Road 01:31

Carry The Weight The Beatles Abbey Road 01:36

The End The Beatles Abbey Road 02:05

First Movement: Allegro Con Brio Ludwig van Beethoven Number 3 Op. 55 Eroica 17:05

Second Movement: Marcia Funebre Ludwig van Beethoven Number 3 Op. 55 Eroica 16:11

Third Movement: Scherzo And Trio Ludwig van Beethoven Number 3 Op. 55 Eroica 05:45

Fourth Movement: Finale Ludwig van Beethoven Number 3 Op. 55 Eroica 12:25

Wanted Man Johnny Cash At San Quentin 03:24

Wreck Of The Old 97 Johnny Cash At San Quentin 01:46

I Walk The Line Johnny Cash At San Quentin 03:02

Darling Companion Johnny Cash At San Quentin 03:25
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Title Artist Album Duration

Starkville City Jail Johnny Cash At San Quentin 03:26

San Quentin Johnny Cash At San Quentin 02:48

A Boy Named Sue Johnny Cash At San Quentin 03:45

Peace In The Valley Johnny Cash At San Quentin 02:50

Folsom Prison Blues Johnny Cash At San Quentin 02:42

Is This Love Bob Marley Legend 03:50

No Woman No Cry Bob Marley Legend 07:08

Could You Be Loved Bob Marley Legend 03:57

Three Little Birds Bob Marley Legend 03:00

Buffalo Soldier Bob Marley Legend 04:18

Get Up Stand Up Bob Marley Legend 03:17

Stir It Up Bob Marley Legend 05:30

One Love Bob Marley Legend 02:52

I Shot The Sheriff Bob Marley Legend 04:40

Waiting In Vain Bob Marley Legend 04:16

Redemption Song Bob Marley Legend 03:48

Satisfy My Soul Bob Marley Legend 04:31

Exodus Bob Marley Legend 07:40

Jamming Bob Marley Legend 03:31

Miss You The Rolling Stones Some Girls 04:48

When The Whip Comes Down The Rolling Stones Some Girls 04:20

Just My Imagination The Rolling Stones Some Girls 04:38

Some Girls The Rolling Stones Some Girls 04:36

Lies The Rolling Stones Some Girls 03:11

Far Away Eyes The Rolling Stones Some Girls 04:24

Respectable The Rolling Stones Some Girls 03:06

Before They Make Me Run The Rolling Stones Some Girls 03:25

Beast Of Burden The Rolling Stones Some Girls 04:25

Shattered The Rolling Stones Some Girls 03:48

Rainy Day Women Bob Dylan Greatest Hits 04:40

Blowin’ In The Wind Bob Dylan Greatest Hits 02:51

The Times They Are A-Changin Bob Dylan Greatest Hits 03:16

It Ain’t Me Babe Bob Dylan Greatest Hits 03:38

Like A Rolling Stone Bob Dylan Greatest Hits 06:12

Mr Tambourine Man Bob Dylan Greatest Hits 05:31

Subterranean Homesick Blues Bob Dylan Greatest Hits 02:22

I Want You Bob Dylan Greatest Hits 03:09

Positively 4th Street Bob Dylan Greatest Hits 04:12

Just Like A Woman Bob Dylan Greatest Hits 04:53

The Changeling The Doors LA Woman 04:20

Love Her Madly The Doors LA Woman 03:18

Been Down So Long The Doors LA Woman 04:40

Cars Hiss By My Window The Doors LA Woman 04:10

LA Woman The Doors LA Woman 07:49

L’America The Doors LA Woman 04:35

Hyacinth House The Doors LA Woman 03:10

Crawling King Snake The Doors LA Woman 04:57

The WASP The Doors LA Woman 04:12

Riders On The Storm The Doors LA Woman 07:14

Mojo Pin Jeff Buckley Grace 05:42

Grace Jeff Buckley Grace 05:22

Last Goodbye Jeff Buckley Grace 04:35

Lilac Wine Jeff Buckley Grace 04:32

So Real Jeff Buckley Grace 04:43

Hallelujah Jeff Buckley Grace 06:53

Lover, You Should’ve Come Over Jeff Buckley Grace 06:43

Corpus Christi Carol Jeff Buckley Grace 02:25

Eternal Life Jeff Buckley Grace 04:52

Dream Brother Jeff Buckley Grace 05:26

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix A. Empirical Data 207

A.10 Summary

This appendix provided the details of the test data used during the empirical analysis. All

the benchmarked songs in the eight genres were listed in order to allow future researches

to replicate the results provided in this thesis.
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Appendix B

Parameter Configurations

This appendix provides the optimal parameter configurations that were used for the

empirical analysis. Fractional factorial design was employed to obtain the optimal

parameters. Ten songs in each of the eight genres were used for parameter tuning and the

entire set of 800 songs was used to acquire the final empirical results. The parameters that

performed best over all genres were chosen as the optimal configurations. The appendix

is divided into the optimal parameters for noise detection and interpolation purposes.

B.1 Noise Detection Parameters

Table B.1 contains the optimal parameters for the outlier detection algorithms discussed

in chapter 4.

Table B.1: The optimal parameter configurations for the noise detection algorithms.

Algorithm Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

SS Threshold: 3.28935 Window Size: 1868

MAD Threshold: 3.82218 Window Size: 1600

MHD Threshold: 3.27452 Window Size: 2248

NND Threshold: 0.68025 Window Size: 324

MASD Threshold: 8.09458 Window Size: 64 Start: 1102 Hz End: 5512 Hz

APD-STP Threshold: 0.17881 Window Size: 48 Degree: 1

APD-OSP Threshold: 0.17603 Window Size: 48 Degree: 2 Derivatives: 1

APD-FOP Threshold: 0.19603 Window Size: 64 Degree: 1

APD-OFP Threshold: 0.19728 Window Size: 64 Degree: 2 Derivatives: 1

APD-NEP Threshold: 0.15946 Window Size: 2

APD-LAP Threshold: 0.17414 Window Size: 2

APD-HEP Threshold: 0.54612 Window Size: 2

APD-AR Threshold: 0.18060 Window Size: 64 Degree: 2

APD-MA Threshold: 0.19028 Window Size: 204 Degree: 1

208
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Appendix B. Parameter Configurations 209

Algorithm Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

APD-ARMA Threshold: 0.18055 Window Size: 64 AR Degree: 2 MA Degree: 2

APD-ARIMA Threshold: 0.18160 Window Size: 48 AR Degree: 2 I Degree: 1 MA Degree: 1

APD-ARCH Threshold: 0.20162 Window Size: 8 ARCH Degree: 1

APD-GARCH Threshold: 0.20162 Window Size: 8 ARCH Degree: 1 GARCH Degree: 1

APD-TDANN Threshold: 0.07188 Input Neurons: 12 Learning Rate: 0.1

APD-SRTDANN Threshold: 0.13375 Input Neurons: 17 Learning Rate: 0.1

B.2 Interpolation Parameters

Table B.2 shows the optimal parameters for the interpolation algorithms presented in

chapter 3 and chapter 5.

Table B.2: The optimal parameter configurations for the interpolation algorithms.

Algorithm Parameter 1 Parameter 2 Parameter 3 Parameter 4

NNI Window Size: 2

SI Window Size: 284 Similar Samples: 210

LI Window Size: 28

STP Window Size: 2 Degree: 1

OSP Window Size: 6 Degree: 2 Derivatives: 1

SPS Window Size: 8 Degree: 1

FOP Window Size: 250 Degree: 1

OFP Window Size: 270 Degree: 10 Derivatives: 9

FPS Window Size: 2 Degree: 1

NEP Window Size: 2

LAP Window Size: 2

HEP Window Size: 2

AR Window Size: 1088 Degree: 9

MA Window Size: 4 Degree: 1

ARMA Window Size: 1440 AR Degree: 9 MA Degree: 2

ARIMA Window Size: 1312 AR Degree: 9 I Degree: 1 MA Degree: 4

ARCH Window Size: 8 ARCH Degree: 1

GARCH Window Size: 8 ARCH Degree: 1 GARCH Degree: 1

FI-TDANN Input Neurons: 832 Learning Rate: 0.1

BI-TDANN Input Neurons: 832 Learning Rate: 0.1

FI-SRTDANN Input Neurons: 961 Learning Rate: 0.1

BI-SRTDANN Input Neurons: 961 Learning Rate: 0.1

FSB-TDANN Input Neurons: 224 Training Epochs 50 Max. Patterns: 256 Pattern Delay: 6

BSB-TDANN Input Neurons: 224 Training Epochs 50 Max. Patterns: 256 Pattern Delay: 6

FCB-TDANN Input Neurons: 220 Training Epochs 50 Max. Patterns: 256 Pattern Delay: 8

BCB-TDANN Input Neurons: 220 Training Epochs 50 Max. Patterns: 256 Pattern Delay: 8

IB-TDANN Input Neurons: 256 Training Epochs 50 Max. Patterns: 768 Pattern Delay: 8

B.3 Summary

This appendix provided the optimal parameter configurations of the noise detection

and interpolation algorithms examined in this thesis. These parameters can be used to

reproduce the empirical results provided in chapter 7, appendix C and appendix D.
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Appendix C

Noise Detection Results

This appendix provides a detailed outline of the noise detection results for the algorithms

discussed in chapter 4. All algorithms were benchmarked with the optimal parameters

given in table B.1. Firstly, the algorithms are compared according to their sensitivity for

an increasing noise duration. The outlier detectors are then evaluated according to their

detection accuracy, sensitivity, specificity and standard deviation between various genres.

C.1 Noise Detection for Different Durations

Table C.1 shows the sensitivity of the proximity and spectral outlier detectors for an

increasing noise duration. Table C.2 and table C.3 list the corresponding sensitivity for

the predictive outlier detection using polynomials and time series models respectively.

The best performance for each noise duration is given in bold. The ARCH and GARCH

predictive algorithms have the highest sensitivity for noise durations of one through to

seven, ten and eleven samples. The APD-LAP performs best for multivariate noise of

eight and nine samples. The NND works best for noise durations of twelve samples and

longer.

Table C.1: The noise detection sensitivity of the proximity and spectral approaches for

an increasing noise duration.

Duration SS MAD MHD NND MASD

1 0.420298 0.374375 0.402291 0.496964 0.003006

2 0.759685 0.679219 0.762981 0.909732 0.012788

210

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix C. Noise Detection Results 211

Duration SS MAD MHD NND MASD

3 0.761032 0.682373 0.764518 0.910197 0.015396

4 0.704125 0.631490 0.707150 0.843917 0.023852

5 0.704366 0.631120 0.706459 0.844095 0.029533

6 0.739033 0.663367 0.741987 0.886612 0.122132

7 0.734672 0.660232 0.738446 0.886330 0.140845

8 0.708090 0.637445 0.712928 0.803063 0.124675

9 0.706984 0.636164 0.711384 0.803243 0.207968

10 0.718087 0.646179 0.723116 0.815939 0.233068

11 0.717247 0.646490 0.722066 0.816049 0.249671

12 0.706973 0.639992 0.712153 0.813846 0.285674

13 0.705809 0.638659 0.710984 0.814038 0.306277

14 0.707775 0.639886 0.712701 0.817657 0.335267

15 0.707012 0.640681 0.712181 0.817981 0.334435

16 0.701591 0.640096 0.707473 0.826685 0.325452

17 0.699296 0.637864 0.703933 0.826435 0.308720

18 0.695957 0.633855 0.701719 0.817837 0.314535

19 0.696610 0.635517 0.702897 0.817766 0.318458

20 0.696756 0.639219 0.702004 0.817896 0.329134

21 0.695353 0.638816 0.700576 0.818294 0.349178

22 0.691972 0.636388 0.696908 0.811926 0.354919

23 0.689118 0.634340 0.694385 0.812049 0.381653

24 0.691645 0.636306 0.696356 0.817882 0.378783

25 0.692169 0.637005 0.696142 0.817626 0.398737

26 0.686907 0.634270 0.692038 0.811837 0.400832

27 0.684614 0.634138 0.689939 0.812254 0.400179

28 0.687029 0.637789 0.691844 0.821299 0.402307

29 0.685069 0.636330 0.689560 0.821299 0.405193

30 0.677707 0.632046 0.683891 0.816308 0.408625

31 0.676828 0.631745 0.683116 0.816232 0.398887

32 0.680401 0.636424 0.686457 0.821795 0.401360

33 0.678730 0.636840 0.684821 0.821888 0.403911

34 0.674419 0.633044 0.679280 0.817361 0.406462

35 0.675432 0.634153 0.679970 0.817743 0.406016

36 0.678801 0.636695 0.682895 0.826523 0.407881

37 0.676734 0.635729 0.680471 0.826409 0.408549

38 0.671220 0.633236 0.674842 0.821671 0.410246

39 0.669961 0.631758 0.673418 0.821873 0.414316

40 0.670874 0.633750 0.674633 0.824214 0.416025

41 0.669112 0.633794 0.671758 0.824218 0.419248

42 0.664075 0.631198 0.667428 0.820630 0.420911

43 0.661903 0.631142 0.666512 0.820597 0.422901

44 0.662969 0.633119 0.669067 0.822345 0.424427

45 0.663179 0.632663 0.668095 0.822420 0.422228

46 0.658464 0.628823 0.662251 0.819039 0.423557

47 0.655343 0.627340 0.659575 0.819207 0.419018

48 0.660740 0.633337 0.664596 0.826148 0.425546

49 0.666130 0.634764 0.664848 0.826259 0.461071

50 0.666130 0.634764 0.664848 0.826259 0.461071

Average 0.681131 0.636569 0.685187 0.824754 0.384057

Table C.2: The noise detection sensitivity of the polynomial predictive approach for an

increasing noise duration.

Duration APD-STP APD-OSP APD-FOP APD-OFP APD-NEP APD-LAP APD-HEP

1 0.440863 0.461006 0.498810 0.498950 0.444583 0.453839 0.066696

2 0.806456 0.843320 0.911730 0.913092 0.795918 0.817468 0.476721

3 0.815072 0.847514 0.912553 0.913639 0.816104 0.825098 0.532744

4 0.756463 0.785017 0.845752 0.846109 0.761052 0.770212 0.533303

5 0.761081 0.785936 0.845956 0.845985 0.767471 0.781483 0.593304

6 0.802729 0.827253 0.888333 0.889060 0.809768 0.824468 0.598641
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Duration APD-STP APD-OSP APD-FOP APD-OFP APD-NEP APD-LAP APD-HEP

7 0.805263 0.826655 0.887598 0.888483 0.813070 0.831571 0.572766

8 0.748889 0.765337 0.814422 0.815075 0.721846 0.828770 0.559443

9 0.752255 0.765436 0.814599 0.815097 0.723765 0.831264 0.562922

10 0.764936 0.777349 0.827522 0.828240 0.714905 0.815327 0.561198

11 0.768443 0.779403 0.827582 0.828554 0.715657 0.817102 0.584525

12 0.755683 0.767038 0.796733 0.794788 0.704723 0.734714 0.579104

13 0.759902 0.768217 0.796533 0.794687 0.706928 0.736522 0.564475

14 0.759765 0.768125 0.793172 0.790415 0.707861 0.736341 0.578828

15 0.762580 0.769375 0.793310 0.790574 0.708645 0.737344 0.579461

16 0.764512 0.768071 0.797791 0.795607 0.701290 0.720667 0.540424

17 0.766617 0.768285 0.797475 0.794948 0.700992 0.721476 0.555212

18 0.762950 0.764470 0.793646 0.791500 0.701390 0.722481 0.554708

19 0.765226 0.765928 0.794004 0.791940 0.702327 0.723016 0.544193

20 0.774384 0.773273 0.799371 0.795029 0.705278 0.725074 0.527555

21 0.775536 0.774216 0.799291 0.794876 0.705263 0.725475 0.527512

22 0.770249 0.769549 0.796114 0.792180 0.706184 0.726854 0.524134

23 0.771498 0.769931 0.795774 0.791954 0.706477 0.727333 0.534853

24 0.776982 0.774596 0.796506 0.796955 0.706157 0.727666 0.527899

25 0.777940 0.775008 0.796272 0.797023 0.706717 0.727969 0.519724

26 0.772696 0.770463 0.792765 0.792705 0.707131 0.727248 0.525855

27 0.773641 0.771790 0.792609 0.792500 0.707926 0.727905 0.525803

28 0.780173 0.777233 0.795758 0.795859 0.706150 0.726552 0.523379

29 0.780454 0.778177 0.795906 0.795924 0.705780 0.726589 0.531764

30 0.776382 0.774459 0.792801 0.792679 0.704610 0.725181 0.529785

31 0.776873 0.774734 0.792775 0.792761 0.704853 0.725144 0.523114

32 0.783899 0.780867 0.798682 0.796488 0.705050 0.726586 0.528095

33 0.784934 0.781685 0.798874 0.796441 0.705103 0.726942 0.527974

34 0.779863 0.776962 0.795878 0.793457 0.703590 0.725353 0.525836

35 0.780852 0.778607 0.796020 0.793487 0.704434 0.725652 0.532616

36 0.788577 0.785320 0.797967 0.798685 0.705967 0.726564 0.531380

37 0.788189 0.784868 0.797437 0.797828 0.705674 0.726948 0.526027

38 0.783743 0.781033 0.794394 0.794552 0.704971 0.726401 0.529648

39 0.784251 0.781754 0.794510 0.794854 0.704526 0.726482 0.529416

40 0.790590 0.786564 0.796401 0.796043 0.703945 0.724941 0.527505

41 0.791208 0.787138 0.796513 0.796200 0.704157 0.724786 0.533074

42 0.787216 0.783725 0.793990 0.793545 0.703011 0.724008 0.531580

43 0.787115 0.783293 0.793528 0.793132 0.703022 0.724350 0.526938

44 0.791644 0.784291 0.795088 0.794164 0.704105 0.724471 0.526171

45 0.792426 0.785423 0.795250 0.794284 0.704963 0.724074 0.525956

46 0.789169 0.782604 0.793036 0.792448 0.705114 0.724192 0.524626

47 0.789028 0.782613 0.792272 0.791923 0.703871 0.724300 0.529554

48 0.794765 0.789929 0.797484 0.796752 0.710222 0.731298 0.532696

49 0.794997 0.790765 0.797679 0.796528 0.710296 0.731685 0.529064

50 0.794997 0.790765 0.797679 0.796528 0.710296 0.731685 0.529064

Average 0.784893 0.783452 0.802095 0.800950 0.712309 0.736020 0.535626

Table C.3: The noise detection sensitivity of the time series models and ANNs predictive

approach for an increasing noise duration.

Duration APD-AR APD-MA APD-ARMA APD-ARIMA APD-ARCH APD-GARCH APD-TDANN APD-SRTDANN

1 0.454464 0.461428 0.454909 0.440774 0.499881 0.499881 0.111071 0.008393

2 0.844119 0.842435 0.845093 0.797919 0.915240 0.915240 0.639722 0.583641

3 0.867832 0.847097 0.867055 0.828868 0.915560 0.915560 0.734566 0.705442

4 0.806982 0.784123 0.806668 0.778650 0.848801 0.848801 0.705382 0.670854

5 0.815690 0.783072 0.815346 0.792500 0.848905 0.848905 0.749936 0.711214

6 0.862928 0.822642 0.862567 0.841531 0.891541 0.891541 0.793334 0.767556

7 0.866247 0.820184 0.866323 0.848261 0.891124 0.891124 0.792644 0.788262

8 0.800005 0.753212 0.800501 0.786502 0.817693 0.817693 0.722189 0.754531

9 0.802731 0.753182 0.803333 0.791270 0.817836 0.817836 0.735025 0.766187

10 0.816436 0.764937 0.816452 0.805315 0.830864 0.830864 0.758747 0.785960
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Duration APD-AR APD-MA APD-ARMA APD-ARIMA APD-ARCH APD-GARCH APD-TDANN APD-SRTDANN

11 0.818361 0.765731 0.818312 0.808070 0.830994 0.830994 0.761885 0.793206

12 0.807956 0.742753 0.808179 0.801568 0.796872 0.796872 0.727041 0.723900

13 0.809272 0.742598 0.809359 0.803557 0.796637 0.796637 0.732275 0.728911

14 0.808494 0.740640 0.808631 0.802347 0.792087 0.792087 0.736262 0.737853

15 0.809440 0.741177 0.809601 0.803782 0.792006 0.792006 0.738087 0.742245

16 0.808867 0.743097 0.808741 0.797679 0.795982 0.795982 0.728864 0.725893

17 0.809260 0.742930 0.809124 0.798229 0.795798 0.795798 0.736486 0.730126

18 0.805480 0.739302 0.805309 0.794339 0.792360 0.792360 0.738277 0.736514

19 0.806186 0.740460 0.806174 0.794786 0.792560 0.792560 0.738054 0.739297

20 0.807459 0.746784 0.807260 0.797940 0.794182 0.794182 0.735991 0.732654

21 0.807905 0.746239 0.807404 0.798877 0.794090 0.794090 0.741125 0.735423

22 0.805147 0.743352 0.804932 0.796288 0.791315 0.791315 0.743072 0.739303

23 0.805498 0.742897 0.805425 0.796665 0.791197 0.791197 0.742370 0.740696

24 0.808266 0.746061 0.808177 0.802363 0.795330 0.795330 0.743581 0.735580

25 0.808746 0.745917 0.808694 0.802789 0.795455 0.795455 0.744726 0.736371

26 0.806036 0.741918 0.805893 0.799887 0.791909 0.791909 0.744748 0.739860

27 0.806166 0.742032 0.805839 0.799969 0.791717 0.791717 0.745411 0.740988

28 0.809597 0.746608 0.809186 0.801048 0.795406 0.795406 0.744988 0.735384

29 0.809888 0.747787 0.809616 0.801439 0.795523 0.795523 0.747901 0.737258

30 0.807550 0.744372 0.807425 0.798992 0.792591 0.792591 0.747819 0.740110

31 0.807861 0.744186 0.807827 0.799021 0.792616 0.792616 0.748259 0.741630

32 0.810265 0.748593 0.810221 0.804642 0.796498 0.796498 0.750317 0.737656

33 0.810348 0.748792 0.810187 0.804750 0.796544 0.796544 0.752059 0.738885

34 0.808313 0.745378 0.808147 0.802329 0.793802 0.793802 0.751711 0.740658

35 0.808494 0.746502 0.808260 0.802397 0.793843 0.793843 0.753024 0.740973

36 0.809497 0.751400 0.809226 0.804397 0.797835 0.797835 0.755837 0.739168

37 0.809586 0.750549 0.809407 0.804112 0.797288 0.797288 0.756523 0.739738

38 0.807894 0.747340 0.807431 0.801952 0.794457 0.794457 0.755318 0.740899

39 0.807980 0.747922 0.807675 0.802096 0.794563 0.794563 0.755129 0.742039

40 0.807597 0.751070 0.807427 0.801660 0.793909 0.793909 0.755339 0.739275

41 0.807658 0.750748 0.807453 0.801558 0.794022 0.794022 0.757131 0.740205

42 0.805977 0.747977 0.805895 0.799965 0.791965 0.791965 0.756509 0.741367

43 0.805960 0.747883 0.805701 0.799080 0.791930 0.791930 0.755891 0.742584

44 0.802528 0.748829 0.801864 0.798023 0.793420 0.793420 0.756125 0.740033

45 0.802569 0.749354 0.801969 0.798534 0.793508 0.793508 0.757974 0.740762

46 0.800126 0.747267 0.800067 0.796351 0.791310 0.791310 0.756912 0.742199

47 0.800020 0.746773 0.799937 0.795385 0.790927 0.790927 0.756671 0.741860

48 0.805702 0.752618 0.805891 0.794122 0.798509 0.798509 0.760296 0.744676

49 0.805496 0.753590 0.805638 0.793757 0.798537 0.798537 0.760980 0.744628

50 0.805496 0.753590 0.805638 0.793757 0.798537 0.798537 0.760980 0.744628

Average 0.811191 0.752519 0.822540 0.803464 0.801142 0.801142 0.753882 0.744223

C.2 Noise Detection for Different Genres

Table C.4 shows the noise detection accuracy (MCC) of the evaluated outlier detection

algorithms for different genres. The corresponding sensitivity and specificity for the

various genres is given in table C.5 and table C.6 respectively. The MAD performed best

for classical music. Noise in country and electronic music was most accurately detected

using the APD-ARIMA and APD-SRTDANN respectively. Outliers in jazz music were

best detected using the MHD, whereas the APD-LAP had the leading performance in

the metal, pop and reggae genres. The APD-OFP had the highest detection accuracy in
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Appendix C. Noise Detection Results 214

rock. The best performing algorithm for each genre is given in bold.

Table C.4: The noise detection accuracy (MCC) for different genres.

Algorithm Classical Country Electro Jazz Metal Pop Reggae Rock

SS 0.951926 0.873877 0.607356 0.886052 0.707332 0.724012 0.713421 0.875098

MAD 0.962271 0.824588 0.537702 0.822593 0.658377 0.653664 0.627439 0.839129

MHD 0.955160 0.878473 0.616193 0.889799 0.714632 0.734291 0.723507 0.878881

NND 0.909140 0.829856 0.602421 0.845456 0.709829 0.614396 0.668494 0.851308

MASD 0.608033 0.598760 0.521788 0.595016 0.541185 0.492498 0.512974 0.595583

APD-STP 0.890176 0.822822 0.746661 0.852363 0.787955 0.750420 0.697524 0.866243

APD-OSP 0.873373 0.837015 0.737313 0.861959 0.791422 0.734935 0.724041 0.869901

APD-FOP 0.883528 0.853576 0.767727 0.865233 0.811626 0.763926 0.747050 0.854538

APD-OFP 0.895254 0.860299 0.763816 0.859296 0.806712 0.765350 0.727298 0.883528

APD-NEP 0.882419 0.856964 0.761798 0.851209 0.825618 0.801457 0.791315 0.853573

APD-LAP 0.884826 0.863891 0.790151 0.855927 0.843132 0.819096 0.804737 0.860507

APD-HEP 0.917257 0.660361 0.516832 0.652523 0.631021 0.528816 0.600382 0.665352

APD-AR 0.954877 0.879215 0.776779 0.878765 0.808909 0.776253 0.756497 0.852870

APD-MA 0.874753 0.842858 0.592617 0.848724 0.707013 0.621438 0.660757 0.826653

APD-ARMA 0.954944 0.877964 0.776087 0.879280 0.806389 0.779852 0.753114 0.848835

APD-ARIMA 0.956025 0.889603 0.759254 0.879509 0.813750 0.775763 0.755577 0.863971

APD-ARCH 0.899874 0.864925 0.779141 0.863870 0.828926 0.781369 0.756995 0.864109

APD-GARCH 0.899874 0.864925 0.779141 0.863870 0.828926 0.781369 0.756995 0.864109

APD-TDANN 0.887571 0.832427 0.683407 0.830236 0.759126 0.702497 0.716537 0.831674

APD-SRTDANN 0.912702 0.837436 0.790940 0.832761 0.815509 0.800253 0.793073 0.835042

Average 0.897699 0.832492 0.695356 0.835722 0.759869 0.720083 0.714386 0.834045

Table C.5: The noise detection sensitivity for different genres.

Algorithm Classical Country Electro Jazz Metal Pop Reggae Rock

SS 0.911838 0.802164 0.427616 0.810507 0.575321 0.569827 0.557476 0.794302

MAD 0.936132 0.762565 0.369910 0.754064 0.518042 0.512647 0.484098 0.755094

MHD 0.917242 0.804163 0.433373 0.812101 0.579726 0.576562 0.561225 0.797105

NND 0.830590 0.830613 0.809440 0.830266 0.825881 0.821288 0.820223 0.829736

MASD 0.377569 0.380596 0.391508 0.380595 0.387199 0.387321 0.386530 0.381136

APD-STP 0.903775 0.801417 0.723307 0.788626 0.783271 0.716827 0.743508 0.818417

APD-OSP 0.907183 0.813099 0.704234 0.803653 0.767666 0.706913 0.745800 0.819069

APD-FOP 0.900288 0.811598 0.761364 0.810573 0.783216 0.753541 0.784370 0.811812

APD-OFP 0.890830 0.807908 0.768479 0.815457 0.782810 0.748966 0.791721 0.801432

APD-NEP 0.883489 0.743956 0.658701 0.743824 0.703708 0.686700 0.696121 0.741970

APD-LAP 0.894877 0.756584 0.708890 0.754653 0.733489 0.718875 0.727181 0.753613

APD-HEP 0.962933 0.513660 0.406255 0.509786 0.491484 0.409068 0.491687 0.500131

APD-AR 0.958606 0.831916 0.763110 0.823202 0.773417 0.754258 0.773737 0.811286

APD-MA 0.903140 0.806733 0.608221 0.799413 0.719700 0.680518 0.700524 0.801900

APD-ARMA 0.958070 0.840038 0.751977 0.844596 0.780815 0.769668 0.801897 0.833256

APD-ARIMA 0.962897 0.833799 0.747747 0.832991 0.755027 0.735295 0.764148 0.795803

APD-ARCH 0.887921 0.802530 0.779016 0.813659 0.780375 0.758427 0.785453 0.801757

APD-GARCH 0.887921 0.802530 0.779016 0.813659 0.780375 0.758427 0.785453 0.801757

APD-TDANN 0.860354 0.779407 0.676259 0.782282 0.758385 0.671351 0.714878 0.788137

APD-SRTDANN 0.886542 0.740274 0.703511 0.737808 0.728497 0.701593 0.722917 0.732645

Average 0.881110 0.763277 0.648597 0.763086 0.700420 0.671904 0.691947 0.758518
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Appendix C. Noise Detection Results 215

Table C.6: The noise detection specificity for different genres.

Algorithm Classical Country Electro Jazz Metal Pop Reggae Rock

SS 0.999952 0.999689 0.999681 0.999763 0.999791 0.999725 0.999681 0.999810

MAD 0.999907 0.999172 0.999133 0.999094 0.999769 0.999210 0.999063 0.999614

MHD 0.999959 0.999758 0.999723 0.999819 0.999829 0.999807 0.999794 0.999851

NND 0.999973 0.997191 0.984196 0.998319 0.989958 0.986715 0.989629 0.998220

MASD 0.999944 0.999779 0.996648 0.999702 0.997603 0.996491 0.996839 0.999705

APD-STP 0.997848 0.997877 0.996953 0.999285 0.996471 0.997661 0.994900 0.998953

APD-OSP 0.997242 0.998039 0.996979 0.999303 0.997198 0.997323 0.995713 0.999142

APD-FOP 0.997663 0.998624 0.995894 0.999127 0.997775 0.997022 0.995132 0.998755

APD-OFP 0.998265 0.998885 0.995527 0.998808 0.997594 0.997146 0.993000 1.000000

APD-NEP 0.997950 0.999923 0.998021 0.999770 0.999794 0.999497 0.999123 0.999878

APD-LAP 0.997742 0.999913 0.997771 0.999722 0.999775 0.999446 0.998946 0.999878

APD-HEP 0.998092 0.999031 0.995270 0.998783 0.998576 0.997679 0.997786 0.999308

APD-AR 0.999418 0.999238 0.996317 0.999371 0.997910 0.997421 0.995827 0.998652

APD-MA 0.997261 0.998370 0.992789 0.998795 0.995028 0.992914 0.993689 0.997999

APD-ARMA 0.999407 0.998895 0.997636 0.998805 0.997743 0.996991 0.993068 0.997685

APD-ARIMA 0.999423 0.999508 0.995984 0.999249 0.998528 0.997864 0.996189 0.999345

APD-ARCH 0.998748 0.999207 0.995864 0.999023 0.998484 0.997479 0.995499 0.999267

APD-GARCH 0.998748 0.999207 0.995864 0.999023 0.998484 0.997479 0.995499 0.999267

APD-TDANN 0.999187 0.998988 0.995050 0.998850 0.996965 0.997349 0.996768 0.998799

APD-SRTDANN 0.999419 0.999604 0.998589 0.999510 0.999278 0.999320 0.998811 0.999645

Average 0.998807 0.999045 0.996194 0.999206 0.997828 0.997227 0.996248 0.999189

Table C.7 lists the sample standard deviations of the detection MCC for each algorithm.

The lower deviation indicates that outliers were detected consistently over all songs in

the dataset. A higher deviation shows that the difference in the noise detection accuracy

between different tracks was greater.

Table C.7: The sample standard deviation of the noise detection accuracy (MCC) for

different genres.

Algorithm Overall Classical Country Electro Jazz Metal Pop Reggae Rock

SS 0.172186 0.010540 0.089910 0.171585 0.045580 0.232925 0.134128 0.131467 0.094543

MAD 0.194504 0.022404 0.107859 0.164119 0.080978 0.249580 0.141627 0.136741 0.127736

MHD 0.168352 0.010849 0.090463 0.165907 0.045625 0.227273 0.130521 0.128360 0.094616

NND 0.174360 0.004774 0.119865 0.175926 0.079717 0.187380 0.154034 0.157564 0.098061

MASD 0.083418 0.001300 0.015285 0.106033 0.027732 0.095755 0.101322 0.093690 0.026282

APD-STP 0.124437 0.109828 0.108410 0.117317 0.041370 0.144875 0.095515 0.128900 0.083222

APD-OSP 0.121825 0.120870 0.107796 0.118644 0.043204 0.130831 0.102895 0.122705 0.072063

APD-FOP 0.116617 0.113252 0.086946 0.139766 0.066791 0.105108 0.107369 0.127656 0.082290

APD-OFP 0.120362 0.110504 0.085447 0.140407 0.069019 0.105679 0.107098 0.130065 0.074525

APD-NEP 0.074389 0.100529 0.015880 0.114862 0.033011 0.040960 0.044999 0.065104 0.023070

APD-LAP 0.070196 0.106235 0.011468 0.110718 0.036378 0.028729 0.041525 0.066291 0.017905

APD-HEP 0.137766 0.091676 0.042119 0.113791 0.057128 0.070190 0.079390 0.078376 0.037563

APD-AR 0.111351 0.046820 0.055935 0.130685 0.048220 0.101511 0.101549 0.120324 0.087649

APD-MA 0.170093 0.119742 0.097394 0.162843 0.085998 0.166121 0.151513 0.144697 0.111871

APD-ARMA 0.108479 0.046096 0.050632 0.133931 0.051179 0.092192 0.096670 0.118502 0.073920

APD-ARIMA 0.107817 0.039847 0.040251 0.134196 0.053511 0.086478 0.093849 0.114792 0.058951

APD-ARCH 0.107119 0.082598 0.065604 0.140275 0.070998 0.088092 0.103289 0.126195 0.059377

APD-GARCH 0.107119 0.082598 0.065604 0.140275 0.070998 0.088092 0.103289 0.126195 0.059377

APD-TDANN 0.113581 0.030141 0.039986 0.152619 0.046891 0.111846 0.098700 0.106656 0.052752

APD-SRTDANN 0.055086 0.026180 0.012363 0.081343 0.027426 0.036886 0.032513 0.054226 0.011208

Overall 0.145164 0.105584 0.102411 0.168196 0.092814 0.155583 0.138505 0.135786 0.102119
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Appendix C. Noise Detection Results 216

C.3 Summary

This appendix provided the detailed results of the noise detection algorithms that were

examined in this thesis. The outlier detectors were evaluated according to their sensitivity

for an increasing multivariate noise duration, followed by a detailed report on the detection

accuracy, sensitivity, specificity and standard deviation between different genres.
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Appendix D

Interpolation Results

This appendix provides comprehensive results for the polynomials, models and algorithms

used to interpolate music as discussed in chapter 3 and chapter 5. All algorithms were

benchmarked with the optimal parameters given in table B.2. Firstly, the ANNs are

analysed according to their performance using different training algorithms, activation

functions, learning rates and learning momentums. The interpolation accuracy is then

evaluated according to the reconstructed gap size. The different reconstruction algorithms

are compared by assessing their interpolation accuracy and the standard deviations of

the NRMSEs over different music genres.

D.1 Artificial Neural Network Configurations

Figure D.1 shows the training NRMSE for the FSB-TDANN, FCB-TDANN and

IB-TDANN. Standard batch backpropagation and quickprop had a lower error compared

to the iRprop algorithms when trained for a short period. However, iRprop− performed

best for all three ANNs when trained for 38 epochs or longer. iRprop− had a slightly

lower error than iRprop+ for all ANNs. The deviation in the output error between the

two variates of iRprop increased as the training continued over more epochs.

Figure D.2 illustrates the affect of the learning rate and momentum on the interpolation

performance of incrementally trained ANNs. Lower rates and momentums performed

better with both ANNs achieving the best learning with a rate of 0.1 and without a

217
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(b) The training NRMSE of the FCB-TDANN

for different training algorithms.
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(c) The training NRMSE of the IB-TDANN

for different training algorithms.

Figure D.1: The training NRMSE of the batch trained ANNs for different training algorithms.
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Figure D.2: The interpolation NRMSE of the incrementally trained ANNs for different learning

rates and momentums.
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momentum.

Table D.1 shows the interpolation accuracy of the examined ANNs using different

activation functions. The corresponding execution speed is given in table D.2. All ANNs

performed best with the symmetric Elliot activation function, except the FI-SRTDANN

which benefited more from the hyperbolic tangent activation function. The Elliot function

was slightly faster to compute than the hyperbolic tangent function.

Table D.1: The interpolation NRMSE of the ANNs for different activation functions.

Activation Function FI-TDANN FI-SRTDANN FSB-TDANN FCB-TDANN IB-TDANN

Symmetric Elliot 0.071308 0.079066 0.080021 0.080626 0.058749

Hyperbolic Tangent 0.075551 0.072680 0.080583 0.080856 0.058816

Bounded Linear 0.079348 0.074298 0.081192 0.081005 0.058820

Symmetric Gaussian 0.122094 0.106832 0.422160 0.195167 0.341095

Symmetric Sine 0.077475 0.073495 0.080711 0.080937 0.059552

Symmetric Cosine 0.105983 0.119519 0.348429 0.122637 0.257964

Table D.2: The execution speed of the ANNs for different activation functions.

Activation Function FI-TDANN FI-SRTDANN FSB-TDANN FCB-TDANN IB-TDANN

Symmetric Elliot 64.46232 2.502488 52.02565 89.62463 100.0583

Hyperbolic Tangent 64.85891 2.546073 53.08238 94.03838 101.5186

Bounded Linear 64.11473 2.540985 51.74124 92.23812 98.67043

Symmetric Gaussian 64.66294 2.577210 53.25786 94.30679 101.2180

Symmetric Sine 63.17457 2.515352 53.45751 94.54052 101.9032

Symmetric Cosine 64.73592 2.532297 54.59695 95.07163 102.9752

D.2 Interpolation Accuracy for Different Gap Sizes

Table D.3 contains the interpolation results of the duplication and trigonometric

interpolation algorithms. Table D.4 and table D.5 lists the performance of the various

polynomials and time series models. Table D.6 and table D.7 show the reconstruction

results of the nine ANNs that were examined. The best performing algorithm for each

gap duration is given in bold. The averages at the bottom of the tables do not represent
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the mean NRMSEs over all gap sizes, but were calculated on a per-sample basis over

the entire dataset, where each sample in the signals carried the same weight. The

ARIMA model was able to most accurately reconstruct gap sizes between one and four

samples. The ARMA model performed best for five to six samples and the BI-SRTDANN

interpolated gaps of 44, 46, and 47 samples most accurately. All other gap sizes were

best reconstructed using an IB-TDANN.

Table D.3: The interpolation accuracy (NRMSE) of the duplication and trigonometric

algorithms for different gap sizes.

Gap Size AWI MWI NNI SI LI CI

1 0.024182 0.023755 0.050233 0.024182 0.080049 0.024183

2 0.051816 0.051138 0.047004 0.040778 0.081182 0.034901

3 0.064632 0.064600 0.057035 0.049482 0.081125 0.041618

4 0.077341 0.076040 0.061598 0.056770 0.083943 0.047820

5 0.087097 0.084285 0.067258 0.062474 0.083819 0.052110

6 0.097235 0.092484 0.071411 0.068302 0.086010 0.057344

7 0.105553 0.099535 0.076535 0.073689 0.088860 0.062220

8 0.111533 0.104464 0.079820 0.078255 0.090861 0.066186

9 0.115020 0.107531 0.083350 0.081803 0.091822 0.069310

10 0.118085 0.111665 0.086383 0.085143 0.093479 0.072736

11 0.119813 0.114209 0.088269 0.087063 0.094321 0.074593

12 0.122366 0.117296 0.091073 0.089882 0.096845 0.077757

13 0.125291 0.120533 0.093741 0.091943 0.098625 0.080264

14 0.128146 0.122261 0.095665 0.094225 0.100864 0.082364

15 0.129597 0.124409 0.098478 0.095747 0.102882 0.084398

16 0.134299 0.128319 0.101192 0.098723 0.105848 0.087262

17 0.134947 0.128495 0.102619 0.099742 0.106628 0.088982

18 0.136323 0.129888 0.103508 0.100966 0.108142 0.089841

19 0.138543 0.131752 0.105399 0.102121 0.109871 0.091384

20 0.140625 0.132513 0.106617 0.103902 0.111034 0.092707

21 0.142352 0.133039 0.108848 0.105423 0.112986 0.094605

22 0.143404 0.135574 0.109953 0.106407 0.114675 0.096243

23 0.144053 0.136446 0.111039 0.107307 0.115377 0.097221

24 0.145446 0.136816 0.111570 0.108312 0.117003 0.098010

25 0.146818 0.137378 0.113138 0.109447 0.118328 0.099222

26 0.148229 0.138362 0.114765 0.111119 0.121022 0.100965

27 0.149092 0.139758 0.115365 0.112022 0.121698 0.101879

28 0.149662 0.140381 0.115803 0.112214 0.122512 0.102353

29 0.150980 0.141814 0.117992 0.114095 0.124505 0.104580

30 0.152186 0.142292 0.119020 0.115143 0.124614 0.105707

31 0.153215 0.144045 0.120501 0.116572 0.126163 0.107122

32 0.152997 0.144016 0.119657 0.115908 0.126277 0.106396

33 0.153669 0.144004 0.121361 0.117265 0.126724 0.107929

34 0.152647 0.143373 0.121020 0.116619 0.126807 0.107796

35 0.153086 0.143477 0.122576 0.118636 0.127486 0.109557

36 0.153380 0.143809 0.122934 0.119152 0.127838 0.110079

37 0.153882 0.144354 0.124074 0.119945 0.128484 0.111169

38 0.154925 0.146060 0.125415 0.120622 0.129342 0.112163

39 0.154649 0.145013 0.125764 0.121226 0.128971 0.112728

40 0.154669 0.145006 0.125635 0.121251 0.128844 0.112692

41 0.155374 0.145256 0.126961 0.121838 0.129747 0.113928

42 0.156788 0.146087 0.128186 0.123358 0.130407 0.115073

43 0.156390 0.146721 0.128209 0.123267 0.129937 0.115188

44 0.155382 0.145681 0.129469 0.124313 0.130838 0.116749

45 0.157333 0.147092 0.130278 0.124940 0.131562 0.117232

46 0.154515 0.145449 0.130409 0.124752 0.130278 0.117593
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Gap Size AWI MWI NNI SI LI CI

47 0.156665 0.146228 0.131478 0.126028 0.131123 0.118450

48 0.155316 0.146252 0.130982 0.125759 0.130860 0.118112

49 0.155616 0.146102 0.131818 0.126474 0.131411 0.119064

50 0.154249 0.145989 0.131595 0.125987 0.130053 0.118853

Average 0.093215 0.081218 0.111371 0.104806 0.090748 0.087269

Table D.4: The interpolation accuracy (NRMSE) of the polynomials for different gap

sizes.

Gap Size STP OSP SPS FOP OFP FPS LAP NEP HEP

1 0.024185 0.050500 0.024185 0.214348 0.194620 0.076628 0.024182 0.024185 0.024182

2 0.034486 0.057235 0.034486 0.207632 0.188423 0.077827 0.034484 0.034486 0.034729

3 0.041023 0.061946 0.041023 0.201194 0.183046 0.078081 0.041021 0.041023 0.041447

4 0.047030 0.067480 0.047030 0.197992 0.181043 0.080265 0.047029 0.047030 0.047638

5 0.051387 0.070553 0.051387 0.192817 0.176477 0.081013 0.051385 0.051387 0.051936

6 0.056583 0.074853 0.056583 0.191177 0.175568 0.082617 0.056583 0.056583 0.057171

7 0.061532 0.079553 0.061532 0.188020 0.173631 0.084810 0.061532 0.061532 0.062058

8 0.065523 0.082715 0.065523 0.185570 0.171893 0.086330 0.065523 0.065523 0.066029

9 0.068714 0.084692 0.068714 0.185031 0.171646 0.087653 0.068714 0.068714 0.069161

10 0.072032 0.087350 0.072032 0.183779 0.170517 0.088919 0.072032 0.072032 0.072579

11 0.073926 0.088311 0.073926 0.181129 0.168554 0.089807 0.073925 0.073926 0.074443

12 0.076986 0.091274 0.076986 0.178969 0.166921 0.091141 0.076986 0.076986 0.077600

13 0.079408 0.092442 0.079408 0.177840 0.166642 0.092968 0.079408 0.079408 0.080102

14 0.081506 0.094422 0.081506 0.176909 0.165903 0.093410 0.081506 0.081506 0.082201

15 0.083300 0.095783 0.083300 0.176152 0.165095 0.095002 0.083300 0.083300 0.084215

16 0.086174 0.098542 0.086174 0.174222 0.163667 0.096448 0.086174 0.086174 0.087079

17 0.087826 0.099398 0.087827 0.173700 0.163559 0.097449 0.087826 0.087826 0.088797

18 0.088731 0.099982 0.088731 0.173051 0.163321 0.097896 0.088731 0.088731 0.089659

19 0.090146 0.101336 0.090146 0.171011 0.162035 0.098856 0.090146 0.090146 0.091191

20 0.091521 0.102777 0.091521 0.169743 0.160803 0.099259 0.091521 0.091521 0.092518

21 0.093283 0.103796 0.093283 0.170271 0.161911 0.100406 0.093283 0.093283 0.094404

22 0.094903 0.105395 0.094903 0.169333 0.160984 0.101525 0.094903 0.094903 0.096045

23 0.095843 0.105534 0.095843 0.167074 0.159047 0.101797 0.095843 0.095843 0.097020

24 0.096704 0.106837 0.096704 0.167587 0.159631 0.102306 0.096704 0.096704 0.097815

25 0.097820 0.107662 0.097820 0.167267 0.159357 0.102844 0.097820 0.097820 0.099019

26 0.099542 0.109055 0.099542 0.167246 0.159938 0.104350 0.099542 0.099542 0.100760

27 0.100549 0.109849 0.100549 0.165871 0.158860 0.104462 0.100549 0.100549 0.101685

28 0.100946 0.109946 0.100946 0.165109 0.158265 0.104847 0.100946 0.100946 0.102153

29 0.103112 0.111908 0.103112 0.165842 0.159017 0.106238 0.103112 0.103112 0.104377

30 0.104242 0.113070 0.104242 0.165060 0.158692 0.107090 0.104242 0.104242 0.105504

31 0.105629 0.114202 0.105629 0.164620 0.158290 0.107992 0.105629 0.105629 0.106918

32 0.104938 0.114036 0.104938 0.164139 0.158179 0.107525 0.104938 0.104938 0.106195

33 0.106399 0.114909 0.106399 0.162975 0.157185 0.108274 0.106399 0.106399 0.107722

34 0.106206 0.114261 0.106206 0.162576 0.156772 0.108118 0.106206 0.106206 0.107586

35 0.108077 0.115918 0.108077 0.163092 0.157781 0.109045 0.108078 0.108077 0.109358

36 0.108620 0.116283 0.108620 0.162619 0.157214 0.109630 0.108620 0.108620 0.109882

37 0.109662 0.117243 0.109662 0.161131 0.155822 0.110424 0.109662 0.109662 0.110969

38 0.110514 0.117716 0.110514 0.162034 0.157205 0.111304 0.110514 0.110514 0.111950

39 0.111133 0.119156 0.111133 0.160848 0.156293 0.111391 0.111134 0.111133 0.112522

40 0.111125 0.118631 0.111125 0.160379 0.155989 0.111285 0.111125 0.111125 0.112488

41 0.112224 0.119927 0.112224 0.160864 0.156576 0.112309 0.112224 0.112224 0.113713

42 0.113421 0.120852 0.113421 0.161597 0.157224 0.113024 0.113422 0.113421 0.114863

43 0.113512 0.120847 0.113512 0.160427 0.156479 0.113038 0.113512 0.113512 0.114976

44 0.115043 0.122434 0.115043 0.159884 0.155838 0.114204 0.115043 0.115043 0.116537

45 0.115499 0.122878 0.115499 0.159891 0.156381 0.114733 0.115499 0.115499 0.117017

46 0.115811 0.122250 0.115811 0.159405 0.156069 0.114580 0.115811 0.115811 0.117375

47 0.116694 0.123970 0.116694 0.160245 0.156732 0.115318 0.116694 0.116694 0.118231

48 0.116393 0.123512 0.116393 0.158635 0.155433 0.114801 0.116394 0.116393 0.117898

49 0.117338 0.123978 0.117338 0.159289 0.155984 0.115763 0.117338 0.117338 0.118850
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Gap Size STP OSP SPS FOP OFP FPS LAP NEP HEP

50 0.117086 0.123505 0.117086 0.157785 0.154695 0.115204 0.117086 0.117086 0.118636

Average 0.080057 0.086014 0.080057 0.122412 0.117923 0.081493 0.080058 0.080057 0.081066

Table D.5: The interpolation accuracy (NRMSE) of the time series models for different

gap sizes.

Gap Size AR MA ARMA ARIMA ARCH GARCH

1 0.012090 0.038977 0.012064 0.011472 0.055553 0.055553

2 0.023240 0.049116 0.023224 0.022835 0.061829 0.061829

3 0.031401 0.055699 0.031378 0.031183 0.066702 0.066702

4 0.039034 0.062640 0.039000 0.038859 0.072819 0.072819

5 0.044383 0.067433 0.044353 0.044671 0.076337 0.076337

6 0.049486 0.072941 0.049439 0.050077 0.081198 0.081198

7 0.053896 0.078193 0.053858 0.054822 0.085909 0.085909

8 0.057950 0.082463 0.057926 0.059033 0.089290 0.089290

9 0.061695 0.085409 0.061655 0.063194 0.091275 0.091275

10 0.064818 0.088390 0.064770 0.066671 0.093568 0.093568

11 0.066804 0.089986 0.066739 0.068935 0.094672 0.094672

12 0.069088 0.092676 0.069045 0.071632 0.097093 0.097093

13 0.071763 0.094239 0.071701 0.074592 0.098116 0.098116

14 0.073821 0.096329 0.073769 0.077189 0.100111 0.100111

15 0.075696 0.097828 0.075648 0.079232 0.101377 0.101377

16 0.078213 0.100716 0.078174 0.082469 0.104248 0.104248

17 0.079126 0.101620 0.079077 0.083755 0.104862 0.104862

18 0.080961 0.102745 0.080901 0.085608 0.105747 0.105747

19 0.081593 0.103949 0.081519 0.086967 0.106924 0.106924

20 0.083082 0.105584 0.083005 0.089006 0.108355 0.108355

21 0.084626 0.106876 0.084566 0.091017 0.109341 0.109341

22 0.086224 0.107964 0.086137 0.092219 0.110434 0.110434

23 0.086151 0.108615 0.086088 0.093114 0.110782 0.110782

24 0.088078 0.109675 0.088019 0.094992 0.112087 0.112087

25 0.088494 0.110643 0.088411 0.096548 0.112849 0.112849

26 0.090165 0.112349 0.090097 0.098371 0.114525 0.114525

27 0.090628 0.113247 0.090541 0.099782 0.115256 0.115256

28 0.091265 0.113417 0.091174 0.100149 0.115479 0.115479

29 0.092474 0.115142 0.092400 0.101991 0.117028 0.117028

30 0.093698 0.116324 0.093666 0.103746 0.118083 0.118083

31 0.094632 0.117564 0.094539 0.105007 0.119198 0.119198

32 0.094713 0.116975 0.094641 0.105186 0.118821 0.118821

33 0.095714 0.118260 0.095633 0.106925 0.119712 0.119712

34 0.095660 0.117566 0.095569 0.106576 0.119004 0.119004

35 0.096353 0.119379 0.096242 0.108356 0.120578 0.120578

36 0.097311 0.119935 0.097235 0.109134 0.121140 0.121140

37 0.098398 0.120664 0.098311 0.110472 0.121756 0.121756

38 0.098979 0.121235 0.098889 0.111221 0.122387 0.122387

39 0.099129 0.122015 0.099060 0.112434 0.123282 0.123282

40 0.099813 0.121889 0.099697 0.113090 0.122975 0.122975

41 0.100543 0.122601 0.100446 0.113744 0.123731 0.123731

42 0.101371 0.124084 0.101272 0.115470 0.125192 0.125192

43 0.101177 0.123848 0.101088 0.115462 0.124839 0.124839

44 0.101810 0.124968 0.101721 0.116357 0.126017 0.126017

45 0.103121 0.125642 0.103028 0.117488 0.126815 0.126815

46 0.102979 0.125387 0.102888 0.117474 0.126400 0.126400

47 0.103650 0.126709 0.103542 0.119033 0.127756 0.127756

48 0.103371 0.126311 0.103287 0.119253 0.127218 0.127218

49 0.104235 0.127051 0.104162 0.119870 0.127981 0.127981

50 0.103905 0.126447 0.103812 0.119929 0.127119 0.127119

Average 0.071764 0.087952 0.071709 0.080201 0.089057 0.089057
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Table D.6: The interpolation accuracy (NRMSE) of the incrementally trained ANNs

for different gap sizes.

Gap Size FI-TDANN BI-TDANN FI-SRTDANN BI-SRTDANN

1 0.064341 0.048505 0.046167 0.029160

2 0.068988 0.056130 0.054733 0.039738

3 0.073577 0.060262 0.060756 0.046170

4 0.079014 0.064817 0.065844 0.051428

5 0.075746 0.063787 0.069009 0.054092

6 0.081003 0.068413 0.071620 0.056627

7 0.084191 0.071369 0.074539 0.059583

8 0.087173 0.074068 0.076410 0.061178

9 0.087765 0.073542 0.078175 0.062242

10 0.085225 0.072189 0.079559 0.063900

11 0.087632 0.074628 0.079980 0.063923

12 0.085693 0.072685 0.080682 0.064858

13 0.087118 0.074933 0.081087 0.065520

14 0.085492 0.071986 0.082458 0.065934

15 0.087985 0.075084 0.082872 0.066583

16 0.087178 0.074008 0.085006 0.067817

17 0.088889 0.075352 0.085146 0.068030

18 0.088731 0.075652 0.084874 0.067915

19 0.090285 0.076603 0.085237 0.067981

20 0.085545 0.072112 0.086180 0.068497

21 0.088263 0.074814 0.086260 0.068529

22 0.089625 0.075554 0.086236 0.068979

23 0.085283 0.073467 0.086134 0.068696

24 0.088811 0.076296 0.087509 0.069659

25 0.090021 0.075305 0.087773 0.069711

26 0.090130 0.075688 0.088223 0.069972

27 0.087396 0.074131 0.088238 0.070132

28 0.089771 0.075537 0.088485 0.070345

29 0.089306 0.075386 0.090092 0.071186

30 0.088711 0.074826 0.089695 0.071097

31 0.088081 0.075357 0.090586 0.071609

32 0.087434 0.074608 0.090716 0.071663

33 0.089166 0.075135 0.091750 0.072357

34 0.088673 0.075169 0.090577 0.071283

35 0.093202 0.077748 0.091893 0.072199

36 0.089253 0.075874 0.091600 0.072355

37 0.087558 0.075270 0.091290 0.072072

38 0.091033 0.076525 0.091742 0.072555

39 0.085883 0.072818 0.092287 0.072637

40 0.087458 0.074644 0.092187 0.072728

41 0.089726 0.075728 0.092963 0.073206

42 0.089169 0.075555 0.093626 0.073699

43 0.090313 0.076152 0.094099 0.073919

44 0.090979 0.075084 0.094264 0.073545

45 0.089909 0.075338 0.094599 0.074268

46 0.090529 0.075918 0.094153 0.073662

47 0.090139 0.075330 0.094951 0.074327

48 0.088643 0.074660 0.095126 0.074174

49 0.090683 0.075653 0.095342 0.074637

50 0.090197 0.076468 0.094757 0.074279

Average 0.068145 0.058917 0.069853 0.054953

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix D. Interpolation Results 224

Table D.7: The interpolation accuracy (NRMSE) of the batch trained ANNs for different

gap sizes.

Gap Size FSB-TDANN BSB-TDANN FCB-TDANN BCB-TDANN IB-TDANN

1 0.047136 0.036573 0.043489 0.035030 0.032756

2 0.058490 0.046845 0.053782 0.043340 0.036360

3 0.063257 0.050598 0.059745 0.046904 0.040966

4 0.068352 0.055034 0.066382 0.052619 0.045005

5 0.071084 0.056673 0.069896 0.054966 0.047311

6 0.074983 0.061926 0.073910 0.058921 0.049732

7 0.078467 0.063185 0.076502 0.061831 0.052767

8 0.079936 0.065601 0.078516 0.062752 0.054172

9 0.081079 0.066100 0.080136 0.065266 0.055024

10 0.082828 0.065365 0.081831 0.064295 0.056675

11 0.083932 0.068610 0.083344 0.068032 0.058227

12 0.083839 0.068341 0.084113 0.067688 0.059241

13 0.085721 0.070191 0.085582 0.068802 0.060640

14 0.085221 0.068420 0.085429 0.067789 0.061084

15 0.086061 0.069405 0.086098 0.068930 0.061479

16 0.088751 0.071049 0.088130 0.069989 0.063120

17 0.087625 0.071686 0.088387 0.071052 0.063473

18 0.087470 0.070771 0.087767 0.070520 0.063625

19 0.088075 0.072356 0.088767 0.072029 0.064893

20 0.088585 0.070627 0.089554 0.069538 0.064720

21 0.090001 0.072827 0.090135 0.072815 0.065461

22 0.089914 0.072707 0.090687 0.072407 0.066153

23 0.090468 0.073716 0.091153 0.073969 0.066835

24 0.090341 0.073431 0.091340 0.073607 0.066708

25 0.091400 0.074080 0.092161 0.074091 0.068051

26 0.091442 0.074412 0.091922 0.074126 0.067322

27 0.091023 0.073149 0.092025 0.073430 0.067650

28 0.091698 0.075105 0.092795 0.074671 0.068235

29 0.092740 0.075089 0.093912 0.074661 0.068970

30 0.092434 0.075130 0.093359 0.075565 0.068849

31 0.092664 0.075139 0.093821 0.075034 0.069449

32 0.093482 0.074548 0.094187 0.074494 0.070173

33 0.094470 0.075724 0.095431 0.076111 0.070473

34 0.093596 0.075719 0.094637 0.076330 0.069810

35 0.094278 0.077315 0.095666 0.077709 0.071298

36 0.094822 0.077439 0.095712 0.077622 0.071768

37 0.094193 0.076154 0.095773 0.076857 0.071430

38 0.095381 0.077380 0.095782 0.077793 0.072156

39 0.094370 0.076025 0.095520 0.075980 0.072012

40 0.093749 0.075942 0.095068 0.076415 0.071900

41 0.096048 0.076602 0.096819 0.076697 0.072759

42 0.095617 0.077073 0.097103 0.077575 0.073146

43 0.096827 0.077457 0.098155 0.077724 0.073698

44 0.096662 0.077900 0.097645 0.078616 0.073754

45 0.095486 0.079022 0.097521 0.079204 0.074136

46 0.097245 0.079783 0.098228 0.079394 0.074074

47 0.097731 0.077903 0.098972 0.078110 0.074391

48 0.095561 0.076980 0.096798 0.077210 0.073205

49 0.096952 0.078424 0.098065 0.079276 0.074027

50 0.096029 0.078156 0.096948 0.078570 0.073468

Average 0.071659 0.058147 0.072788 0.058637 0.054247
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D.3 Interpolation Accuracy for Different Genres

Table D.8 shows the interpolation accuracy of different algorithms for the eight genres

examined in this thesis. Amongst all algorithms, the IB-TDANN interpolated all genres

most accurately, except for metal and rock music, which was best reconstructed using a

BI-SRTDANN. The lowest interpolation NRMSE for each genre is given in bold.

Table D.8: The interpolation accuracy (NRMSE) for different genres.

Algorithm Classical Country Electro Jazz Metal Pop Reggae Rock

AWI 0.094831 0.112448 0.119919 0.117352 0.112000 0.111454 0.122570 0.100393

MWI 0.082085 0.100996 0.114205 0.105853 0.107922 0.105229 0.110541 0.094273

NNI 0.065920 0.085024 0.105180 0.087931 0.103765 0.094996 0.098086 0.085083

SI 0.067175 0.083507 0.099116 0.086747 0.095450 0.090004 0.095424 0.080727

LI 0.064791 0.085723 0.111587 0.089531 0.105977 0.099367 0.101492 0.087248

CI 0.058249 0.075599 0.094691 0.077718 0.093754 0.085322 0.088126 0.076281

STP 0.057997 0.074762 0.093071 0.076897 0.091734 0.083901 0.087085 0.075014

OSP 0.065010 0.082054 0.097175 0.084630 0.096641 0.088736 0.093376 0.080489

SPS 0.057997 0.074762 0.093071 0.076897 0.091734 0.083901 0.087085 0.075014

FOP 0.085755 0.118242 0.141207 0.123283 0.137256 0.132658 0.122470 0.118423

OFP 0.084521 0.113369 0.136857 0.118546 0.130239 0.126993 0.120449 0.112408

FPS 0.056885 0.074597 0.097833 0.077936 0.093035 0.086956 0.088596 0.076109

LAP 0.057997 0.074762 0.093071 0.076897 0.091734 0.083901 0.087085 0.075014

NEP 0.057997 0.074762 0.093071 0.076897 0.091734 0.083901 0.087085 0.075014

HEP 0.058174 0.075469 0.094503 0.077584 0.093540 0.085153 0.087980 0.076127

MA 0.068295 0.084632 0.099053 0.087845 0.095938 0.090286 0.096153 0.081411

AR 0.044684 0.063066 0.089517 0.063907 0.083930 0.079821 0.079634 0.069552

ARMA 0.044558 0.063004 0.089505 0.063807 0.083903 0.079800 0.079607 0.069484

ARIMA 0.057269 0.074376 0.096327 0.075326 0.087477 0.085975 0.090019 0.074839

ARCH 0.070394 0.086568 0.099060 0.089795 0.096041 0.090729 0.097582 0.082284

GARCH 0.070394 0.086568 0.099060 0.089795 0.096041 0.090729 0.097582 0.082284

FI-TDANN 0.031090 0.051052 0.090200 0.049207 0.093168 0.091573 0.073144 0.065724

BI-TDANN 0.026660 0.042709 0.079468 0.041094 0.080332 0.081278 0.063294 0.056501

FI-SRTDANN 0.031740 0.052813 0.095891 0.051151 0.092425 0.089477 0.081454 0.063870

BI-SRTDANN 0.024608 0.041309 0.075553 0.039394 0.074140 0.069712 0.063043 0.051867

FSB-TDANN 0.032444 0.055585 0.096158 0.053605 0.096645 0.089199 0.075290 0.074350

BSB-TDANN 0.026225 0.044085 0.080297 0.041578 0.080555 0.073196 0.060170 0.059070

FCB-TDANN 0.031616 0.055558 0.099710 0.052884 0.098522 0.092059 0.076620 0.075334

BCB-TDANN 0.025598 0.043566 0.083219 0.040344 0.081443 0.075228 0.060567 0.059130

IB-TDANN 0.021309 0.040269 0.074772 0.038974 0.074652 0.069089 0.058380 0.056536

Average 0.054076 0.073041 0.097745 0.074447 0.095058 0.089687 0.087666 0.076995

Table D.9 lists the sample standard deviation of the interpolation NRMSEs. A lower

deviation indicates that the algorithm interpolated more consistently over all tracks

in the dataset. A higher deviation shows that some songs were substantially easier to

reconstruct than others. The lowest standard deviation for each genre is given in bold.
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Table D.9: The sample standard deviation of the interpolation accuracy (NRMSE) for

different genres.

Algorithm Overall Classical Country Electro Jazz Metal Pop Reggae Rock

AWI 0.027830 0.021977 0.025992 0.025797 0.027925 0.034479 0.023339 0.027803 0.022458

MWI 0.025612 0.019451 0.022385 0.023925 0.024159 0.032351 0.021383 0.024223 0.020598

NNI 0.027156 0.018514 0.020438 0.024590 0.025018 0.035671 0.022596 0.022999 0.022331

SI 0.024434 0.017924 0.019646 0.022185 0.022904 0.032031 0.020756 0.022229 0.019842

LI 0.026271 0.016855 0.019174 0.021913 0.021426 0.032989 0.021531 0.021475 0.020751

CI 0.025435 0.017649 0.019010 0.022818 0.023978 0.033301 0.021079 0.021148 0.021051

STP 0.024845 0.017472 0.018748 0.022334 0.023524 0.032539 0.020660 0.020905 0.020517

OSP 0.025207 0.018437 0.020034 0.021958 0.024279 0.033520 0.021538 0.022165 0.020974

SPS 0.024845 0.017472 0.018748 0.022334 0.023524 0.032539 0.020660 0.020905 0.020517

FOP 0.031732 0.020708 0.028263 0.029136 0.026987 0.034315 0.025310 0.026830 0.026586

OFP 0.029610 0.019942 0.026099 0.027087 0.024894 0.032453 0.023675 0.025453 0.024462

FPS 0.023598 0.015326 0.016937 0.020754 0.019538 0.029945 0.018893 0.019331 0.018587

NEP 0.024845 0.017472 0.018748 0.022334 0.023524 0.032539 0.020660 0.020905 0.020517

LAP 0.024845 0.017472 0.018748 0.022334 0.023524 0.032539 0.020660 0.020905 0.020517

HEP 0.025381 0.017630 0.018981 0.022773 0.023938 0.033230 0.021038 0.021117 0.021004

AR 0.023160 0.013137 0.014368 0.020051 0.018080 0.027782 0.018036 0.018227 0.017639

MA 0.024475 0.018163 0.019910 0.021891 0.023203 0.032223 0.020992 0.022503 0.019955

ARMA 0.023178 0.013130 0.014350 0.020048 0.018057 0.027775 0.018041 0.018232 0.017648

ARIMA 0.023740 0.014976 0.017033 0.021513 0.020492 0.029226 0.020192 0.021518 0.018992

ARCH 0.024445 0.018577 0.020361 0.021629 0.023599 0.032207 0.021148 0.022908 0.019935

GARCH 0.024445 0.018577 0.020361 0.021629 0.023599 0.032207 0.021148 0.022908 0.019935

FI-TDANN 0.029736 0.009670 0.013119 0.015460 0.016634 0.033871 0.021230 0.023098 0.021299

BI-TDANN 0.025292 0.008247 0.010688 0.013068 0.013821 0.028632 0.017259 0.018722 0.017926

FI-SRTDANN 0.033467 0.013758 0.022707 0.025079 0.023273 0.038085 0.024917 0.025082 0.023359

BI-SRTDANN 0.025194 0.008713 0.012190 0.020789 0.012168 0.031315 0.018042 0.016631 0.016623

FSB-TDANN 0.029915 0.012148 0.013994 0.022367 0.016567 0.035695 0.018239 0.019075 0.021185

BSB-TDANN 0.023480 0.003864 0.007748 0.011416 0.014179 0.017373 0.015536 0.022611 0.015321

FCB-TDANN 0.032014 0.012998 0.014479 0.028073 0.017276 0.036482 0.019136 0.019281 0.022339

BCB-TDANN 0.024168 0.003866 0.007552 0.011044 0.014780 0.017768 0.015851 0.023013 0.015598

IB-TDANN 0.025009 0.009071 0.011340 0.018668 0.013205 0.030338 0.015063 0.015693 0.017860

Overall 0.030439 0.024684 0.026887 0.027121 0.030219 0.035047 0.025333 0.026630 0.024851

D.4 Summary

This appendix provided the detailed results of the interpolation algorithms examined

in this thesis. The ANNs performance was analysed with different parameters. The

interpolation algorithms were evaluated according to their ability to reconstruct gaps of

different durations, followed by a detailed report on the reconstruction accuracy and the

standard deviation of the NRMSE for each genre.
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Appendix E

Acronyms

The important acronyms used throughout the thesis are listed below in alphabetical order.

The acronyms are given in bold on the left-hand side with the corresponding description

on the right-hand side.

ACF Autocorrelation Function

ADC Analogue-To-Digital

AIC Akaike Information Criterion

AICC Akaike Information Criterion Corrected

AN Artificial Neuron

ANN Artificial Neural Network

APD Absolute Predictive Deviation

AR Autoregressive

ARCH Autoregressive Conditional Heteroskedasticity

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

227

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix E. Acronyms 228

AWI Adjacent Window Interpolation

BCB-TDANN Bidirectional Complete Batch TDANN

BFGS Broyden-Fletcher-Goldfarb-Shanno

BHHH Berndt-Hall-Hall-Hausman

BI-SRTDANN Bidirectional Incremental SRTDANN

BI-TDANN Bidirectional Incremental TDANN

BIC Bayesian Information Criterion

BSB-TDANN Bidirectional Separate Batch TDANN

CANN Cascade Artificial Neural Network

CI Cosine Interpolation

CML Conditional Maximum Likelihood

COF Connectivity Based Outlier Factor

DAC Digital-To-Analogue

DFP Davidon-Fletcher-Powell

DFT Discrete Fourier Transform

DIC Deviance Information Criterion

DSP Digital Signal Processing

DTFT Discrete Time Fourier Transform

EML Exact Maximum Likelihood

FBOD Feature Bagging for Outlier Detection

FCB-TDANN Forward Complete Batch TDANN
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FFANN Feed Forward Artificial Neural Network

FFT Fast Fourier Transform

FI-SRTDANN Forward Incremental SRTDANN

FI-TDANN Forward Incremental TDANN

FIC Focused Information Criterion

FN False Negatives

FOP Fourier Polynomial

FP False Positives

FPS Fourier Polynomial Splines

FSB-TDANN Forward Separate Batch TDANN

FT Fourier Transform

GARCH Generalized Autoregressive Conditional Heteroskedasticity

HEP Hermite Polynomial

HQIC Hannan-Quinn Information Criterion

IB-TDANN Interpolation Batch TDANN

IFT Inverse Fourier Transform

INFLO Influenced Outlierness

IUOS Interpreting and Unifying Outlier Scores

kNN k Nearest Neighbour

L-BFGS Limited Memory Broyden-Fletcher-Goldfarb-Shanno

L-BFGS-B Limited Memory Broyden-Fletcher-Goldfarb-Shanno Bounded
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LAP Lagrange Polynomial

LI Lanczos Interpolation

LLS Linear Least Squares

LOCI Local Correlation Integral

LOF Local Outlier Factor

LoOP Local Outlier Probability

LPCM Linear Pulse Code Modulation

MA Moving Average

MAD Median Absolute Deviation

MASD Median Absolute Spectral Deviation

MCC Matthews Correlation Coefficient

MHD Mahalanobis Distance

MLE Maximum Likelihood Estimation

MSE Mean Squared Error

MWI Mirroring Window Interpolation

NEP Newton Polynomial

NLS Nonlinear Least Squares

NN Nearest Neighbour Deviation

NN Nearest Neighbour

NNI Nearest Neighbour Interpolation

NRMSE Normalized Root Mean Squared Error
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O-LBFGS Online Limited Memory Broyden-Fletcher-Goldfarb-Shanno

OFP Osculating Fourier Polynomial

OPG Outer Product of Gradients

OSP Osculating Standard Polynomial

PACF Partial Autocorrelation Function

PAPR Peak-To-Average-Power Ratio

PCC Pearson Correlation Coefficient

PCM Pulse Code Modulation

PDF Probability Density Function

PPM Pulse Position Modulation

PSO Particle Swarm Optimization

PWM Pulse Width Modulation

RMS Root Mean Square

RMSE Root Mean Squared Error

RSS Residual Sum of Squares

SAT Speed-Accuracy Tradeoff

SEN Sensitivity

SI Similarity Interpolation

SNR Signal-To-Noise-Ratio

SOM Self Organizing Maps

SPE Specificity
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SPS Standard Polynomial Splines

SQNR Signal-To-Quantization-Noise Ratio

SRANN Simple Recurrent Artificial Neural Network

SRTDANN Simple Recurrent Time Delay Artificial Neural Network

SS Standard Score

STP Standard Polynomial

SVD Singular Value Decomposition

SVR Support Vector Regression

TDANN Time Delay Artificial Neural Network

TN True Negatives

TP True Positives

TSS Total Sum of Squares
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Appendix F

Symbols

This appendix provides a list of important mathematical symbols and notations used

throughout the thesis. The symbols are categorized according to the chapters they first

appear in and are ordered according to their appearance in the chapters. The symbols

are given on the left-hand side with the corresponding description on the right-hand side.

F.1 Chapter 2: Gramophones and Audio Processing

Hz Hertz, the unit measurement of frequencies

kHz Kilohertz, equal to 1000 hertz

dB Decibel, the logarithmic unit to express the ratio between two values

xi The ith time delay of a times series

yi The ith amplitude of a times series

f The frequencies as a result of a Fourier transform

XT The transpose of a matrix X

X−1 The inverse of a matrix X

X+ The Moore-Penrose pseudoinverse of a matrix X

X∗ The conjugate transpose of a matrix X

E[y] The expected value of a random variable y

σ́2 The biased population variance

233

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix F. Symbols 234

σ́2
y The biased sample variance

σ2 The unbiased population variance

σ2
y The unbiased sample variance

µy The population mean of a series y

ȳ The sample mean of a series y

var(y) The unbiased sample variance of series y, equivalent to σ2

cov(y, z) The unbiased covariance between series y and z

cov(y) The unbiased covariance of series y with itself, equivalent to var(y)

acov(yt, ys) The unbiased autocovariance of series y at time delay t and s

cor(y, z) The crosscorrelation between series y and z

acor(yt, ys) The autocorrelation of series y at time delay t and s

σ́ The biased sample standard deviation

σ The unbiased sample standard deviation

(f ∗ g) The convolution between function f and g

(f ? g) The crosscorrelation between function f and g

y∗ The complex conjugate of series y

F.2 Chapter 3: Models

αi The ith coefficient of the first set of model coefficients

βi The ith coefficient of the second set of model coefficients

εi The ith error term

f ‘(x) The first derivative of function f(x)

f i(x) The ith derivative of function f(x)

f(x−) The left limit of function f(x)

f(x+) The right limit of function f(x)

N (µ, σ2) A normal distribution

P(y|β) The probability density function of series y and coefficients β

L(β|y) The likelihood function, the inverse problem of P(y|β)
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`(β|y) The log-likelihood function, equivalent to lnL(β|y)

H A Hessian matrix

Hi A Hessian matrix at the ith iteration during the BFGS optimization

R2 The coefficient of determination

R2
a The adjusted coefficient of determination

L The lag operator for ARIMA models

Q The Q-test for ARCH models

net The net input for an ANs activation function

F.3 Chapter 4: Noise Detection

η A noise map

η̆i The ith value of a noise mask generated from a noise map η

F.4 Chapter 5: Noise Reconstruction

sinc(x) The normalized sine function
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Appendix G

Derived Publications

This appendix provides a list of publications derived from the research of this thesis.

• Christoph F. Stallmann and Andries P. Engelbrecht. A Comparison of Interpolation

Algorithms for Gramophone Record Sound Reconstruction. In International

Conference on Signal Processing and Integrated Networks, pages 14–19, New Delhi,

India, February 2014.

• Christoph F. Stallmann and Andries P. Engelbrecht. Gramophone Noise

Reconstruction: A Comparative Study of Interpolation Algorithms for Noise

Reduction. In 12th International Conference on Signal Processing and Multimedia

Applications, Colmar, France, July 2015. Accepted.

• Christoph F. Stallmann and Andries P. Engelbrecht. Digital Noise Detection in

Gramophone Recordings. In 23rd ACM International Conference on Multimedia,

Brisbane, Australia, October 2015. In review at time of publication.

• Christoph F. Stallmann and Andries P. Engelbrecht. Automated Gramophone

Noise Detection and Reconstruction using Neural Networks. IEEE Transactions on

Systems, Man and Cybernetics, 2015. In review at time of publication.
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