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ABSTRACT 
Integrating variable generation sources such as utility-scale 

photovoltaic (PV) plants into the electric grid is desirable with 
the increasing quest for cleaner sources of electric power 
generation and reducing cost of utility-scale PV. As a result, 
solar market in the United States has more than doubled over 
the past two to three years, but looking ahead, systemic 
challenges to growth loom both in the near term. Real-time grid 
operators are especially concerned about large-scale PV 
systems operating under cloudy conditions and large 
disturbances. This paper provides an overview of the 
computational and optimization research carried out at the 
Real-Time Power and Intelligent Systems Laboratory to 
address some of the grid operational concerns with high levels 
of PV penetrations. 

 
INTRODUCTION 

The solar energy market has been growing rapidly during 
the last decade, especially in the grid-tied photovoltaic (PV) 
market sector. Over the past few years, solar PV has moved 
light years ahead of where it stood in the first half of 2012. 
Between 2012 and 2014 in the United States (U.S.), cumulative 
residential and non-residential installations have both doubled 
while cumulative utility PV installations have more than 
quadrupled. With renewable energy regulation passed in many 
countries including Australia, Canada, China, Germany and 
U.S., utility-scale PV plants ranging from 5 MW to more than 
250 MW are in either operation or planned to be in the near-
term [1,2]. 

The most straightforward way to reduce carbon footprints is 
to simply use less power.  By its distributed nature and 
presence, solar allows utilities to employ ‘smart grid’ 
technologies more efficiently including distributed energy 
storage. 

Although the U.S. solar market has more than doubled over 
the past two years, looking ahead, systemic challenges to 
growth loom both in the near term. If PV penetration become 
significant fractions of the connected generation, it is no longer 
appropriate for the PV generators to be considered as a 

"negative load". They must take part in the operation of the 
power system. A major challenge in integrating high 
penetrations (>20%) of solar-energy rests in a grid’s ability to 
handle the intrinsic variability of solar power.  

The reliable and secure operation of power systems with a 
high penetration of renewable energy resources raises concerns. 
High photovoltaic (PV) penetration levels can significantly 
affect both the stability of the systems since the sun does not 
shine on demand [3]. In order to maximize the penetration of 
renewable energy, alternative power or demand side 
management technologies are needed. These sources could 
include energy storage, a tie to a neighbouring power system 
with excess generation, preferably from clean sources, etc.  PV 
power is difficult to predict and depends primarily on weather 
conditions and cloud movements. A cloud cover passing over a 
PV plant is like a loss of a generator of the size of the PV plant. 
Furthermore, PV plants usually are connected to the grid 
through power electronic converters, which reduces the system 
inertia unlike conventional generators [4]. The power and 
frequency fluctuations in systems with large MW PV plants 
raise dynamic and transient stability concerns [5, 6]. The rate of 
change of frequency (ROCOF) is increased as a result. When a 
frequency event occurs, the conventional synchronous 
machines will inject or absorb kinetic energy into or from the 
grid to counteract the frequency deviation. It is therefore 
critical to have dependence on power and energy sources that 
have fast charge and discharge characteristics. Ideally, battery 
energy storage and super capacitors will be perfect but this is 
only feasible for smaller power systems. 

The development of revolutionary technologies such as 
distributed high-energy and high-power storage devices to 
handle the intrinsic variability of photovoltaic plant generation 
and enable high penetration levels while maintaining secure 
real-time grid operations are needed. Distributed energy 
generation/harnessing and distributed energy storage will 
revolutionize the way the electricity infrastructure is currently 
operated.  

Real-time grid operators are therefore especially concerned 
about large-scale PV systems operating under cloudy 
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conditions and large disturbances. Many of the concerns/issues 
with real-time grid operations will disappear as the bulk power 
generation supplies a constant load. 

A recent advanced research projects agency – energy 
(ARPA-E) funding opportunity announcement was on network 
optimized distributed energy systems (NODES) [7]. The 
NODES program aspiration is to enable renewables penetration 
at the 50% or greater, by developing transformational grid 
control algorithms and architectures that optimize the usage of 
flexible load and DERs (distributed energy resources). The 
challenge is to reliably manage, locally or globally, while 
having minimal impact on customer quality of service (QoS).  

Optimal power flow (OPF), or its security-constrained 
version, is based on steady-state optimization without 
considering local controller and load dynamics, and its optimal 
solutions are obtained based on inaccurate forecasts. Although 
the OPF provides optimal dispatches for the next forecasted 
period, any unforeseen real-time load/generation variation or 
post-contingency operation between two dispatch instants 
(typically 5 minutes apart) are handled by simple linear 
controllers or some predefined reactions with little, if any, 
system-wide optimization. For real-time active power 
balancing, the proportional-integral-controller-based AGC is 
typically used [8]. For reactive power support, locally-
controlled reactive resources are typically used for voltage 
regulation, such as large generators equipped with automatic 
voltage regulators (AVRs), switched capacitor banks, on-load 
tap changing (OLTC) transformers, and flexible AC 
transmission system (FACTS) devices [8].  

The present day separate secondary control loops for 
frequency and voltage are developed based on the assumption 
that only small variations and uncertainty exist in power 
systems during a short period of time, and long-term large 
variations are handled by sequential steady-state optimizations 
(e.g., OPF). This assumption is true when the only uncertain 
factor in a power system is the load, which varies relatively 
slow at the transmission level and is well predictable because of 
its cycling characteristics. However, in an environment with 
high variability and uncertainty, significant power flow 
redistribution may occur in a short period. With the present 
frequency and voltage control schemes, power line overloading 
and bus over/under-voltage may occur due to the limited 
control capability of AGC and limited local reactive power 
resources. A system-wide active and reactive power 
coordinated control algorithm is thus necessary in a high-
variability environment. With the global dynamic information 
available through synchronized phasor measurement units 
(PMUs), advanced wide-area control schemes become possible 
to improve grid dynamics. The design of a system-wide 
automatic power flow controller to dynamically control a 
power system to its optimal operating point has received little 
attention to-date. 

This paper presents a summary of the on-going research at 
the Real-Time Power and Intelligent Systems (RTPIS) 
Laboratory at Clemson University [9] on how to reliably and 
efficiently operate an electric grid in an environment with a 
high level of PV penetrations without impacting the customer’s 
quality of service. The emphasis of the research at RTPIS lab in 

this area is in applying computational methods to power 
systems with PV plants in order to enhance grid operation. The 
rest of the paper presents studies on modelling and 
characterization of PV systems, prediction of PV power, tie-
line bias control with large PV plants and optimal control of 
grid-independent PV systems. 

 

CHARACTERIZATION AND MODELLING OF A GRID-
CONNECTED PV SYSTEM  

It is possible to estimate the power output of a PV system 
with use of predictive models when a set of meteorological 
inputs are available. In the United States, the most prominent 
set of weather data is the Typical Meteorological Year data 
(TMY2 or TMY3), and these data sets are parsed for data 
relevant to the particular model being used (e.g., irradiance, 
temperature, snow cover). The data are used in a predictive 
model to estimate system output parameters such as DC power, 
AC power, and module temperature. The predictive models 
may also be used to determine if a PV system is operating as 
expected, allowing system operators to determine maintenance 
schedules. In addition, they could be used to predict the 
performance of an existing system for calculation of expected-
performance incentive rebates. 

Existing modelling techniques require the characterization 
of a number of system components in order to produce model 
parameters. Characterization may be a lengthy process, 
depending on the model used. The characterization assumes 
that all components in the system are similar to the components 
which were tested to generate model parameters. Thus, current 
techniques have difficulty in quantifying unit-to-unit variation 
of each component, degradation of components, and other 
small factors such as resistive wire losses and shading. 

A dynamic neural network such as a recurrent neural 
network (RNN) may be used as an alternative method of 
characterizing and modelling performance from a specific PV 
system. The RNN is able to use simultaneously sampled 
weather data and performance data over a period of time to 
learn the input/output relationships between weather and 
system performance. The RNN requires no information about 
the specific components of the modeled PV system. Instead, the 
RNN learns the relationship between input (weather) data and 
system performance by training itself on a data set with 
concurrent weather and performance data. The RNN may then 
make predictions about system performance when given 
weather data, even if the weather data was not in the training 
data set. Thus, the RNN method models the PV system in a 
holistic manner, rather than modeling individual components, 
and includes system loss factors such as those described earlier. 
However, since a set of concurrent weather and performance 
data is required, the RNN technique may only be used to model 
systems which are already in operation. 

Detail modeling and characterization studies using RNNs is 
described in [10, 11]. Figure 1 and 2 shows the PV system 
studied and estimated versus measured AC power for one day 
with high variability, respectively. 
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Figure 1 A typical grid-connected PV system [9] 

 

 

Figure 2 Estimated and measured AC PV power for day 
with high irradiance variability [9] 

 
It is possible that the RNN characterization method may be 

altered to predict other output parameters (e.g. DC power, DC 
voltage, DC to AC efficiency) by simply adding additional 
output neurons. Additional data may be given to the RNN to 
increase the predictive power; useful data parameters may 
include solar time, airmass (or spectrum), or sun position. 

 

PREDICTION OF PV POWER 
Unexpected large variations of PV plant output can cause 

dynamic and transient stability concerns which may lead to the 
collapse of a power system. This increases operating costs for 
the electricity system and potential risks to the reliability of 
electricity supply. Predicting variations of the PV power 
generation is a potential solution to overcome these challenges. 
Very short term PV power forecasts for prediction intervals 
ranging from few seconds to a minute plus are very important 

in making decisions and improving performance of grid 
operations in electric utility control centers. 

There are several methodologies proposed for long term and 
short term prediction of PV power. These methods include 
using mathematical equations, regression analysis and linear 
time series models [12-14]. These approaches are not accurate 
for PV power prediction, as independent variables changes in a 
non-linear stochastic manner. Most recent studies from the 
RTPIS Lab has shown that echo state networks (ESNs), a class 
of RNNs, developed by Jaeger [15] perform better  and 
overcome neural network training difficulties. ESN has been 
used in predicting short to medium range prediction of solar 
irradiance [16] and PV power [17]. 

The study used in this study at the RTPIS Lab. is shown in 
Figure 3. A 200 MW PV plant made up of four 50 MW PV 
plants is connected to a two-area, four-machine system [8]. The 
50 MW PV plants are connected to a 230 kV utility 
transmission grid through a double converter and transformer 
stage. The entire system, which consists of the power system, 
the PV plants (integrated in Area 2), frequency monitoring 
using phasor measurement units (PMUs), and the controls, is 
modeled in real-time using the Real-Time Digital Simulator 
(RTDS) for power systems. The 200MW distributed PV 
modelling (area of 4.24 kilometres by 1.81 kilometres) is 
represented by four 50 MW PV plant equivalents in the RTDS 
simulation.  

 

Figure 3 Two-area four machine power system with a 
200MW PV plant connected at bus 12 in Area 2. Each power 

system area is equipped with an automatic generation 
controller. Automativ generation control (AGC) in Area 1 
performs tie-line bias control and AGC in Area 2 performs 

frequency control 

A real-time prediction is carried is carried out using ESN 
with multiple predicted PV power outputs as shown in Figure 4. 
The RTPIS Lab weather is used to study natural behavior of the 
200 MW PV plant and the power system’s reaction to the PV 
power fluctuations. A typical prediction result of the PV power 
90s ahead is shown in Figure 5. More details on this study can 
be found in [17]. The next section describes how the predicted 
power is used in enhanced automatic generation control. 
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Figure 4 Schematic diagram of a real-time similation of a 
large PV plant consisting of four 50 MW PV plants with 

actual weather at the RTPIS Lab., Clemson, SC, USA 

 

Figure 5 PV power prediction  90s ahead by an ESN 

TIE-LINE BIAS CONTROL WITH LARGE PV POWER 
PLANTS 

For bulk power systems with large PV plants, energy 
storage technologies are expensive. An integrated approach of 
hybrid technologies is the way forward to absorb high levels of 
renewables penetration. A supplementary or alternative 
approach to energy storage systems is to identify in multi-area 
interconnected power systems, potential areas for integration of 
large PV plants and other areas with excess generation and 
appropriate control technologies for balancing power and 
frequency fluctuations in the system as a result of large variable 
and uncertain PV penetration. The system in Figure 3 is one 
such system where Area 1 supplies the load in Area 2. 
Automatic generation control with tie-line power flow control 
was implemented in Area 1 to maintain the desired system 
frequency and to minimize power fluctuations [8]. 

In order to leverage interconnected systems to maximize 
high levels of PV penetration, accurate PV power predictions in 
short term into the AGC systems of supporting areas is 
necessary as shown in Figure 6. AGC is capable of 
increasing/decreasing power outputs of conventional generators 
(G1 and G2) in Area 1, varying the tie-line power flow to 
balance the PV power variability and achieve maximum 
penetration of PV power in Area 2. The optimal frequency 
bandwidth of the AGC is determined by simulating the system 
with different PV power prediction time steps. Phasor 
measurement units (PMUs) are used to provide input signals to 
the automatic generation controllers in the two area power 
system. Figure 7 shows the result of enhanced AGC on tie-line 
power flow during day time operation recorded on August 22th, 
2014 with the ESN model based prediction. The predicted PV 

power is 35s ahead (optimal time step) in this case study. This 
study has demonstrated that it is possible to implement a 
dynamic tie-line bias control to sustain short-term high PV 
power variability. More details on this study can be found in 
[18]. 

 
Figure 6 Block diagram of automatic generation controller 

in Area 1 of the power system in Figure 3 showing 
measured/predicted PV power utilized as control input 

 

Figure 7 Tie-line power flow during day time operation 
recorded on August 22th, 2014 with the ESN model based 

prediction 

OPTIMAL CONTROL OF PV SYSTEMS 
Traditionally, PV energy dispatch controllers have been 

simple devices that do not assign priority to various loads. 
Instead, they attempt to power all loads all of the time, and if 
there is any excess energy, then that excess energy is used to 
charge the batteries. Researchers including those of RTPIS Lab 
have reported on improving the efficiency of photovoltaic 
systems by carrying out optimal control of PV systems [19-21]. 

The objective of the optimal energy dispatcher is on always 
meeting the critical load, followed by keeping the charge of the 
battery as high as possible so as to be able to power the critical 
load in cases of extended low output from the PV array, and 
lastly to power the non-critical load in so far as to not interfere 
with the first two objectives. Figure 8 and 9 shows a grid 
independent PV system and a schematic diagram of the 
simulated system on the RTDS in an energy management study 
at the RTPIS Lab, respectively [22]. An intelligent energy 
management demand response controller (IEMDC) is 
developed to meet the above mentioned objectives. Figures 10 
and 11 show selective battery state of charge (SOC) operating 
performances of three controllers under different weather 
conditions. Herein, two types of fuzzy logic controllers have 
been developed to control the PV-battery system taking into 
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some operating constraints in terms of power factors. One is an 
optimized fuzzy logic controller using mean-variance 
optimization [23] and the other is not. 

 
Figure 8 A PV-battery system with IEMDC [22] 

 

 

Figure 9 Schematic diagram of PV system simulated on 
the RTDS for energy management studies [22] 

 

Figure 10 SOC of the battery on a moderate day [22] 

Another optimal energy management controller approach is 
the adaptive critic designs (ACDs) [24]. A block diagram of the 
ACD approach is shown in Figure 12. An optimal energy 
dispatch controller was developed for a PV system similar to 
that in Figure 8 [21] and Figure 13 shows the battery state of 
charge for a PV system operating in Springfield, MO for the 
period of late fall and early winter using both a traditional PV-

priority controller as well as the ACD based optimal PV 
controller developed using data from Caribou, Maine. 

 

Figure 11 SOC of the battery on a cloudy day [22] 

 

Figure 12 A block diagram of the ACD approach 

 
Figure 13 Battery SOC for a PV system operating in 

Springfield, MO for the period of late fall and early winter 

As a result of optimal control systems, it is possible that a 
smaller (and cheaper) overall PV system utilizing optimal 
energy dispatch controllers would be suitable for meeting the 
same loads as a larger more expensive system not using an 
optimal controller. The maintenance and replacement cost of 
the battery is also reduced by approximately the same 
proportions as the life expectancy increase, since the battery 
will need to be replaced less often. 
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CONCLUSION  
This paper has provided the potential of computational and 

optimization tools to address some of the grid operational 
concerns with high levels of PV penetrations. With modelling, 
predictions and optimal control of PV systems and its outputs, 
real time smooth operation of electric power systems with large 
PV power variability and uncertainty is possible.  
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