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ABSTRACT 
 
In this work, we have led an analysis of different global solar 
radiation forecasting models errors according to the global solar 
radiation variability. 
Different predictions models were performed such as machine 
learning techniques (Neural Networks, Gaussian processes and 
support vector machines) in order to forecast the Global 
Horizontal solar Irradiance (GHI). We also include in this study 
a simple linear autoregressive (AR) model as well as two naïve 
models based on persistence of the GHI and persistence of the 
clear sky index (denoted herein scaled persistence model).  
The models are calibrated and tested with data from three French 
islands: Corsica (42.15°N ; 9.08°E), Guadeloupe (16.25°N ; 
61.58°W) and Reunion (21.15°S ; 55.5°E). Guadeloupe and 
Reunion are located in a subtropical climatic zone whereas 
Corsica is in a tempered climatic zone hence, the global solar 
radiation variation differs significantly. 
The output error of the different models was quantified by the 
normalized root mean square error (nRSME). 
In order to quantify the influence of the global solar radiation 
variability on the forecasting models error we performed a 
classification of typical days. Each class of day is defined by a 
global solar radiation variability rate. For each class and for each 
location, forecasting models were performed and the error was 
quantified. 
With this analysis, global solar radiation forecasting models can 
be selected according to the location, the global solar radiation 
fluctuations and hence the meteorological conditions. 
 

  
 

1.INTRODUCTION 
Large and frequent variations of solar radiation can be observed 
in tropical climates with amplitudes reaching 800 W/m² and 
occurring within a short time interval, from few seconds to few 
minutes, according to the geographical location. Such 
fluctuations can be due for example to the dynamic of clouds 

which can be very complex and depend on cloud type, size, 
speed and spatial distribution and, more generally, due to some 
specific local meteorological conditions. 

Thus, solar energy forecasting, a process used to predict the 
amount of solar energy available in the current and near terms, 
might be a difficult task. Some of the best predictors found in 
literature are Autoregressive and moving average (ARMA) 
[5,7,8], Bayesian inferences [9,10], Markov chains [11], k-
Nearest-Neighbors predictors [12] or artificial intelligence 
techniques as Artificial Neural Network (ANN) [9-11]. 
Although these methodologies are potentially good in many 
areas, we observed in our previous studies on global radiation 
prediction [9,13,14] that the simple model based on the 
persistence of the clear sky index gives often very good results 
with acceptable errors [15,16,17] for short term forecasting time 
horizon (<= 1 hour). The goal of this paper is to determine the 
influence of solar radiation variability regarding different classes 
of days on the expected error provided by different forecasting 
methods that the modeller can possibly implement. 

The paper is organized as follows: Section 2 describes the 
data we have used. Section 3 exposes the classification 
methodology and the results obtained for the three studied 
locations. In the two following sections, the forecasting methods 
are exposed, the forecasting errors for each location and for each 
class of days are exposed. 

 
 

2.GLOBAL SOLAR RADIATION DATA 
 
To validate this study, three insular sites where chosen (1 in the 
northern hemisphere, 1 in the northern tropical zone and 1 in the 
southern tropical zone). The three Islands are: 
-Reunion Island; it exhibits a particular meteorological context 
dominated by a large diversity of microclimates. Two main 
regimes of cloudiness are superposed: the clouds driven by the 
synoptic conditions over the Indian Ocean and the orographic 
cloud layer generated by the local reliefs. The data used to build 
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the models are measured at the meteorological station of St 
Pierre (21°20’S ; 55°29’E, 75m a.s.l) located in the southern part 
of Reunion Island. Measurements are available on an hourly 
basis and two years of data (2011 and 2012). 
-Guadeloupe Island, we have used a two years database of GHI 
measured on an hourly basis at the meteorological station of le 
Raizet (16°26N, 61°24W, 11 m a.s.l.) located in the middle of 
the island.  
-Corsica Island, the data used to build the models, are GHI 
measured at the meteorological station of Ajaccio (41°55’N, 
8°44’E, 4m a.s.l.) and Bastia (42°42’N, 9°27’E, 10m a.s.l.). They 
are located near the Mediterranean Sea and nearby mountains 
(1000 m altitude at 40km from the sites). This specific 
geographical configuration makes nebulosity difficult to 
forecast. Mediterranean climate is characterized by hot summers 
with abundant sunshine and mild, dry and clear winters. The data 
representing the global horizontal solar radiation were measured 
on an hourly basis from 1998 to 2009 (eleven years). As for all 
experimental acquisitions, missing values are observed, here, 
this represents less than 2% of the data. A classical cleaning 
approach is then operated in order to identify and remove this 
data. 
 

3.CLASSIFICATION OF TYPICAL DAYS 
 

A k-means clustering, or Lloyd's algorithm [2] was applied 
to the dataset of each location. This method will partition each 
daily signal of global solar radiation into k mutually exclusive 
clusters, and returns the index of the cluster to which it has 
assigned each observation n (in our case a daily global solar 
radiation signal). Unlike hierarchical clustering, k-means 
clustering operates on actual observations (rather than the larger 
set of dissimilarity measures), and creates a single level of 
clusters. The distinctions mean that k-means clustering is often 
more suitable than hierarchical clustering for large amounts of 
data. Each cluster in the partition is defined by its member 
objects and by its centroid, or center. The centroid for each 
cluster is the point to which the sum of distances from all objects 
in that cluster is minimized.  

k-means uses an iterative algorithm that minimizes the sum 
of distances from each object to its cluster centroid, over all 
clusters.  
Previous studies [2,6,12,22] for these locations have shown that 
4 classes of typical days were generally found: 

• Clear sky days 
• Mid clear sky days 
• corMid cloudy sky days 
• Cloudy sky days 

We have initialised the k-means algorithm with the assumption 
of the typical classes mentioned above. 
 
The results for the different locations are shown in the following 
figures. Table 1 summarize the number of days in each class for 
the different locations. 
 
 
 

Case of Corsica : 
 

 
Figure 1 : the four classes of typical days for Corsica Island 

 
 
Case of Reunion : 
 
 

 

 
Figure 2 : the four classes of typical days for Réunion Island 
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Case of Guadeloupe : 
 

 
Figure 3 : the four classes of typical days for Guadeloupe Island 

 
 

  Class 1 Class 2 Class 3 Class 4 
Corsica Number of 

days 1210 930 1115 760 

percentage 30,14% 23,16% 27,77% 18,93% 
Réunion Number of 

days 232 262 104 132 

percentage 31,78% 35,89% 14,25% 18,08% 
Guadeloupe Number of 

days 253 218 138 121 

percentage 34,66% 29,86% 18,90% 16,58% 
      

Table 1: ponderation of each class for the different locations 

 

4.DESCRIPTION OF THE PREDICTION TECHNIQUES 
 
In this section, we present the three different prediction 
methodologies evaluated in this study: naïve models, linear 
model and non-linear models. 
 
naïve methods 
 
Two naïve predictors are studied in this work. The first is the 
simple persistence model defined by the following equation : 
𝐼𝐼𝑔𝑔�(𝑡𝑡 + ℎ) = 𝐼𝐼𝑔𝑔(𝑡𝑡)    Equation 4 
It simply states that future values of GHI are equal to GHI 
observed at time t (i.e. the atmospheric conditions remain 
unchanged between current time t and future time t+h. One way 
to improve this simple model is to take into account the sun path 
by using a clear sky model and define persistence on the clear 
sky index i.e  
 𝑘𝑘𝑡𝑡∗� (𝑡𝑡 + ℎ) = 𝑘𝑘𝑡𝑡∗(𝑡𝑡). The corresponding GHI forecast can be 
obtained through equation 5. 

𝐼𝐼𝑔𝑔�(𝑡𝑡 + ℎ) = 𝐼𝐼𝑔𝑔(𝑡𝑡).
𝐼𝐼𝑔𝑔,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡+ℎ)

𝐼𝐼𝑔𝑔,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)
    Equation 5 

In the rest of the paper, this persistence on the clear sky index 
model will be called scaled persistence. 
 
Linear model: autoregressive process (AR) 
 
In an AR model (Chatfield, 2004), the future value of a variable 
namely 𝑘𝑘∗�(𝑡𝑡 + ℎ) is assumed to be a linear combination of 
several past observations as shown in the equation 6. 
 
𝑘𝑘∗�(𝑡𝑡 + ℎ)=𝜙𝜙0 + ∑ 𝜙𝜙𝑖𝑖+1𝑘𝑘∗(𝑡𝑡 − 𝑖𝑖)𝑝𝑝

𝑖𝑖=0 + 𝜖𝜖𝑡𝑡 ,  Equation 6 
 
Where 𝜖𝜖𝑡𝑡  is a white noise with variance 𝜎𝜎2. The model’s 
parameters are the{Φ𝑖𝑖}𝑖𝑖=0,1,⋯𝑝𝑝+1and p is called order (or 
autoregressive order) of the model. One key challenge in the 
building of an AR model is to determine the appropriate model 
order. Methods based on the autocorrelation coefficients (ACF) 
and partial autocorrelation coefficients (PACF) analysis are 
proposed to select the best orders [34]. In this study, the 
complexity of the model governed by the autoregressive order p 
is determined with the auto mutual information factor. 
 
Neural network models (NN) 
 
A NN with d inputs, m hidden neurons and a single linear output 
unit defines a non-linear parameterized mapping from an input 
vector x to an output y given by the relationship: 
 
𝑦𝑦 = 𝑦𝑦(𝐱𝐱;𝐰𝐰) = ∑ 𝑤𝑤𝑗𝑗𝑚𝑚

𝑗𝑗=1 𝑓𝑓�∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑑𝑑
𝑖𝑖=1 𝑥𝑥𝑖𝑖�.  Equation 7 

 
Each of the m hidden units are related to the tangent hyperbolic 
function 𝑓𝑓(𝑥𝑥) = (𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥) (𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥)⁄ .  The parameter vector 
𝐰𝐰 = ��𝑤𝑤𝑗𝑗�, �𝑤𝑤𝑗𝑗𝑗𝑗�� wich governs the non-linear mapping, is 
estimated during the training or learning phase. During this 
phase, the NN is set up using the dataset 𝒟𝒟. The second phase, 
called the generalization phase, consists of evaluating on the 
another dataset 𝒟𝒟∗, the ability of the NN to give correct outputs 
when it is confronted with examples that were not seen during 
the training phase. 
For our application, the relationship between the output 
𝑘𝑘∗�(𝑡𝑡 + ℎ)and the inputs {𝑘𝑘∗(𝑡𝑡), 𝑘𝑘∗(𝑡𝑡 − 1),⋯ ,𝑘𝑘∗(𝑡𝑡 − 𝑝𝑝)} has 
the form given by equation 8. 
 
𝑘𝑘∗�(𝑡𝑡 + ℎ) = ∑ 𝑤𝑤𝑗𝑗𝑚𝑚

𝑗𝑗=1 𝑓𝑓 �∑ 𝑤𝑤𝑗𝑗𝑗𝑗
𝑝𝑝
𝑖𝑖=0 𝑘𝑘∗(𝑡𝑡 − 𝑖𝑖)�. Equation 8 

 
As shown by equations 7 and 8, the NN model is equivalent to a 
nonlinear autoregressive (AR) model for time series forecasting 
problems. As for the AR model, the number of past input values 
p is calculated with the auto mutual information factor. Careful 
attention must be put on the model structure assumptions. A too 
complex NN will easily overfit the training data. The NN 
complexity is in relation with the number of hidden units or 
conversely the dimension of the vector w. Several techniques 
like pruning [32] or Bayesian regularization [29] can be 
employed to control the NN complexity. In the present study, the 

  
  

441



NN model has been computed with the Matlab© software and its 
Neural Network toolbox. The Levenberg-Marquardt 
(approximation to the Newton’s method) learning algorithm with 
a max fail parameter before stopping training equal to 3 was used 
to estimate the NN model’s parameters. The max fail parameter 
corresponds to a regularization tool limiting the learning steps 
after a characteristic number of predictions failures and 
consequently allow to control the model complexity. 
 
 
Gaussian Process model 
 
Gaussian Processes (GPs) are a relatively recent development in 
non-linear modelling [25]. GPs are generally stated as kernel-
based method. Indeed, it can be shown (Rasmussen, 2006) that, 
given n training samples, the prediction (for an input test vector 
x∗) can be seen in terms of a linear combination of n kernel 
functions; each one centered on a training point. Therefore, the 
forecasted clear sky index is given by the equation 9. 
 
𝑘𝑘∗�(t + h) = ∑ αin

i=1 𝑘𝑘𝑠𝑠𝑠𝑠(xi, x∗).   Equation 9 
 
Where 𝑘𝑘𝑠𝑠𝑠𝑠denotes the squared exponential covariance function 

𝑘𝑘se�xp, xq� = σf2exp �−�xp−xq�
2

2l2
� and 𝐱𝐱𝐢𝐢 is the ith input training 

vector. 𝜎𝜎𝑓𝑓2 and l are called hyperparameters of the covariance 
function. They control the model complexity and can be learned 
(or optimized) from the training data at hand [25]. The 
coefficients αi are obtained by a matrix multiplication between a 
covariance matrix (resulting from the application of the 
covariance function on all the training data points) and the vector 
of the n training output samples y. 
 
Support vector machine 
 
Support vector machine is another kernel based machine 
learning technique used in classification tasks and regression 
problems [24]. Support vector regression (SVR) is based on the 
application of support vector machines to regression problem 
[26]. This method has been successfully applied to time series 
forecasting tasks. As for the GPs, the prediction calculated by a 
SVR machine for an input test case 𝑥𝑥∗ is given by equation 10. 
 
𝑦𝑦� = ∑ 𝛼𝛼𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖 , 𝑥𝑥∗) + 𝑏𝑏,    Equation 10 
 
with the commonly used RBF kernel [26] defined by equation 
11. 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟�𝑥𝑥𝑝𝑝 , 𝑥𝑥𝑞𝑞� = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝑥𝑥𝑝𝑝−𝑥𝑥𝑞𝑞�
2

2𝜎𝜎2
�.   Equation 11 

 
The parameter b (or bias parameter) is derived from the 
preceding equation and some specific conditions.  
In the case of SVR, the coefficients 𝛼𝛼𝑖𝑖 are related to the 
difference of two Lagrange multipliers, which are the solutions 
of a quadratic programming (QP) problem. Unlike NNs, which 
are confronted with the problem of local minimum, here the 
problem is strictly convex and the QP problem has a unique 

solution. In addition, it must be stressed that, not all the training 
patterns participate to the preceding relationship. Indeed, a 
convenient choice of a cost function i.e. Vapnik’s  𝜀𝜀 −insentive 
function [26] in the QP problem allows obtaining a sparse 
solution. The latter means that only some of the coefficients 𝛼𝛼𝑖𝑖 
will be nonzero. The examples that come with non-vanishing 
coefficients are called Support Vectors. In our work, given the 
training dataset 𝒟𝒟 = {𝐱𝐱i,𝑦𝑦𝑖𝑖}i=1n and a test input vector 𝐱𝐱∗, we can 
compute the forecasted clear sky index for a specific horizon h: 
 
𝑘𝑘∗�(𝑡𝑡 + ℎ) = ∑ 𝛼𝛼𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝐱𝐱𝑖𝑖, 𝐱𝐱∗) + 𝑏𝑏.  Equation 12 
 
In the present study, regarding the implementation of the support 
vector regression, we used the LibSVM library [30]. Like in the 
NN case, other kinds of support vectors methodologies were 
tested e.g.  the multi-class SVMs [30,33,35]. The corresponding 
results were systematically worse than those from SVR, thereby, 
we prefer to not develop it in order to make the paper more 
readable. 
 

5.RESULTS 
 
We have performed the different forecasting methods and 
algorithm exposed before to the different data set composed of a 
given typical class of days for each location. 
For each location we have ploted the nRMSE obtained for each 
typical class from the different forecasting models. 

 
- The Normalized root -mean-square error is computed 
-  
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Where:  - G(h) is global solar radiation measured  

  - )(~ hG is the predicted solar radiation predicted 
  - M is the number of hours considered 
 

 
Figure 4: nRMSE obatained for the different class in Corsica 
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Figure 5: nRMSE obtained for the different class of Reunion 

 
 

 
Figure 6 : nRMSE obtained for the typical class of Guadeloupe 

 
The analysis of the figure 4 to 6 shows clearly that the 

forecasting errors increase with the variability of the considered 
class of days. This results is verified regardless the forecasting 
models used and regardless the considered location. 

 
When comparing the results between locations we can 

observe some differences in the forecasting errors. Indeed in 
Corsica and Reunion the lowest nRMSE is obtained for the clear 
sky conditions (class 1 ) and for the Bayesian NN model. In 
Guadeloupe we observe the same tendency but the nRMSE is 
0,2.  

6.CONCLUSION  
 

In this study we have analysed the influence of the global 
solar variability upon the forecasting error of different models: 
persistence, scaled persistence, Support vector machine, 
Gaussian Process, Bayesian neural network and ARMA model. 

We have used a global solar radiation data set from three 
different locations: Reunion Island, Corsica Island and 
Guadeloupe Island. For each of these location we have 
performed a classification of typical days using a k-means 
algorithm. We have then established a data set of 4 classes of 
typical days for each location. 

One of the main result of the study is that the forecasting 
error, whatever the model used, is much higher (up to 3 to 4 time) 
when considering cloudy days than considering clear sky days.  

.  
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