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Abstract

We present a theory for the coupled flow of ice, subglacial water, and sub-
glacial sediment, which is designed to represent the processes which occur at
the bed of an ice sheet. The ice is assumed to flow as a Newtonian viscous
fluid, the water can flow between the till and the ice as a thin film, which may
thicken to form streams or cavities, and the till is assumed to be transported,
either through shearing by the ice, squeezing by pressure gradients in the till,
or by fluvial sediment transport processes in streams or cavities.

In previous studies, it was shown that the dependence of ice sliding veloc-
ity on effective pressure provided a mechanism for the generation of bedforms
resembling ribbed moraine, while the dependence of fluvial sediment transport
on water film depth provides a mechanism for the generation of bedforms re-
sembling mega-scale glacial lineations (MSGL). Here we combine these two
processes in a single model, and show that, depending largely on the granulom-
etry of the till, instability can occur in a range of types which range from ribbed
moraine through three-dimensional drumlins to mega-scale glacial lineations.

Keywords: Drumlins, ribbed moraine, mega-scale glacial lineations, instability.

1 Introduction

Drumlins are small, rounded hills which occur in swarms. On the ground they give
rise to a typically rolling landscape, which can, for example, be found in large parts of
Ireland (where they were first distinctively observed). Where they become inundated,
they are particularly remarkable, as the individual hills then stand out, as shown in
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Figure 1: A view from Westport harbour, Co. Mayo, Ireland, of some of the drumlins
of Clew Bay.

figure 1, which is a view from Westport harbour in Co. Mayo of the drumlins of Clew
Bay.

The aspect of pattern which is evident on the ground in many drumlin fields
is particularly noticeable in satellite photographs, or even better in digital elevation
models such as that in figure 2, which shows that the drumlins of north central Ireland
blanket the entire landscape.

The origin of these landforms has been a subject of discussion for well over a
hundred years. Early investigators such as Bryce (1833) correctly perceived of drum-
lins as being formed by the transport of sediments. Bryce was able to determine,
by examination of the kinds of rocks in the till which formed drumlins in Northern
Ireland, that they had formed through the action of a current which had swept down
from the northwest. Those being diluvial times, Bryce assumed this was a current of
water. It was not until Agassiz’s glacial theory that opinion changed, and Kinahan
and Close (1872), describing the drumlins in the vicinity of Clew Bay, associated
them squarely with the flow of the great ice sheets of the ice age. Over the following
century, the debate on origin largely centred on the alternative concepts of erosional
or depositional origin (e. g., Gravenor 1953), but this period is remarkable by its ab-
sence of any quantitative theory. It was with the work by Smalley and Unwin (1968),
Menzies (1979a) and Boulton (1987), that the rôle of deforming till was explicitly
considered; but still there was no descriptive theory. Only with the landmark paper
of Hindmarsh (1998) was the interaction between ice flow and deformable sediment
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Figure 2: A digital elevation model of the drumlins of north central Ireland. The
drumlins are the small scale asperities which cover the landscape. Donegal Bay is
visible at top left, and Lough Neagh at top right. Width of field is about 150 km.

formulated mathematically, with the result that instability could be predicted to oc-
cur with wavelengths of several hundred metres, corresponding to those which are
observed.

Hindmarsh’s numerical study was followed by an analytic study by Fowler (2000),
which yielded similar conclusions. This promising beginning has since run into the-
oretical obstacles, as described in the studies by Schoof (2007a,b). There are three
issues which arise. The first is a practical one: as the bedforms grow, they soon reach
an amplitude where the ice separates from the till bed, forming lee-side cavities.
Cavitation is not in itself a problem, but it raises severe difficulties in continuing the
numerical evolution of the bedforms. Schoof circumvented this by seeking travelling
wave solutions, and suggested that the resulting bedforms would be of insignificant
elevation compared to the tens of metres which can be obtained.

A second difficulty is that the instability described by Hindmarsh (1998) and
Fowler (2000) is fundamentally two-dimensional in nature. The difficulty here is that
drumlins are three-dimensional objects, although it is not at all necessary that the
initial instability be three-dimensional. Despite this, the search for three-dimensional
waveforms has been elusive. Schoof (2007a) thought that the two-dimensional nature
of the instability represented a serious obstacle to the theory, a view taken on trust
by Pelletier (2008). Consideration of this issue represents one of the purposes of the
present paper.

A third consideration concerns the stratigraphy of drumlins. While many consist
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of an essentially homogeneous mass of till, there are certain fields of drumlins which
provide evidence of stratification, and at first sight this seems incompatible with
a formation mechanism which involves deformation of the till; the point has been
emphasised by Hart (2005, p. 194) and Hiemstra et al. (2011), for example. A little
thought shows that this is not a real objection in net-erosive environments, and indeed
most of the principal stratigraphic constituents of drumlins can be plausibly explained
(Stokes et al. 2013a).

The first difficulty alluded to above, and in effect also the third, was addressed
by Fowler (2009), who devised a method to compute the evolution of drumlins after
cavitation occurred. He incidentally found that the resulting waveforms became sta-
tionary, thus allowing the erosional mechanism of Stokes et al. (2013a) to provide an
explanation for layered stratigraphy. The present paper addresses the second issue
discussed above, that of the formation of three-dimensional bedforms.

It is a long-standing concept in theories of subglacial bedform genesis (e. g., Sug-
den and John 1976) that drumlins form part of a continuum traversed as some critical
parameter varies, between the extremes of ribbed moraine (Dunlop and Clark 2006)
and MSGL (Clark 1993). This attractive idea is predicated on the notion that one sin-
gle mechanism can encompass the whole variety of bedforms, but it is by no means
obvious that this is the case. Indeed, apart from the Hindmarsh–Fowler instabil-
ity theory, a number of alternative explanations have been put forward to explain
ribbed moraine, drumlins and MSGL (e. g., Fisher and Shaw (1992), Kleman and
Hättestrand (1999), Hättestrand and Kleman (1999), Lindén et al. (2008), Lundqvist
(1969), Möller (2006), Möller (2010) and Schoof and Clarke (2008)). An early review
of drumlin formation theories is that of Menzies (1979b), and a more recent one is
that of Clark (2010).

Schoof’s (2007a) comments drove Dunlop et al. (2008) to the defensive position of
advocating the instability theory only in connection with ribbed moraine formation,
with the implicit recognition that ribbed moraine and drumlins were somehow differ-
ent, and this informal distinction has gained a certain currency. It is not, however,
one that we espouse, and indeed the principal purpose of the present paper is to
show that a suitable model describing combined ice, sediment and water flow can in-
deed plausibly explain the whole spectrum of bedforms, from ribbed moraine through
drumlins to MSGL. Before we commence this however, we need to describe and dis-
tinguish the various components of the instability theory as it has been developed
thus far.

Hindmarsh (1998), Fowler (2000) and Schoof (2007a) all developed a theory based
on the Stokes flow of ice near the bed (i. e., the ice surface is far away, so that the
ice thickness is effectively infinite), with the ice assumed to be Newtonian viscous,
and an underlying motion of water-saturated deformable till, described by an Exner
equation for the ice/till interface, in which the till flux q is assumed to depend on
basal shear stress τ and effective pressure N . The effective pressure is defined by

N = pi − pw, (1.1)

where pi is ice pressure, which can be assumed known, and pw is the basal water
pressure at the ice/till interface, which must be determined. Hindmarsh, Fowler and
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Schoof all assume this water pressure is in hydrostatic equilibrium, presumably with
a subglacial drainage system at a (locally) constant effective pressure.

Fowler (2010a) extends the theory to ice of finite depth, and also treats three-
dimensional perturbations, something also done by Schoof (2007a). An evolution of
the theory is offered by Fowler (2010b), who finally considers the water flow as an
active contributor to the model. That edition of the theory concerns MSGL, which
are found via an instability analogous to the Smith–Bretherton theory of sub-aerial
rivulet formation (Smith and Bretherton 1972). Fowler describes water flow either as
a groundwater flow through porous till, or as a separated Poiseuille-like flow. When
the water layer is absent, till deforms as before, but when the water layer is present,
sediment transport occurs as interfacial bedload, and it is this latter which drives the
rill-like instability.

In order to formulate a meaningful instability problem, Fowler adopted the stance
of Creyts and Schoof (2009) that a possible subglacial drainage mechanism is that
of a thin film trickling at the base of a glacier. The concept circumvents the Walder
(1982) instability problem by allowing clast sizes larger than the film thickness. In
retrospect, this seems the obvious basic flow, which takes account of the roughness of
the bed. In the present paper, we adopt this viewpoint from the outset, thus allowing
a sediment layer and a water layer to exist everywhere under the ice. The Fowler
(2010b) MSGL model is thus modified by replacing through-till porous flow by a
distributed film flow. The hydraulic potential in this water layer is to be determined,
and in particular the stream system becomes part of the problem to be solved; and in
fact, there is no theoretical distinction to be made between stream and cavity; they
are both simply regions of separated flow.

The structure of the remainder of the paper is as follows. In section 2 we re-
expound the Hindmarsh instability theory in its present form. Our presentation is
a compact summary of the successive constituent sub-models of ice flow, water flow,
sediment transport and ice closure, the last of these being a new development con-
sequent on our assumption of a Creyts–Schoof water film. These sub-models are
wiritten dimensionlessly, dimensionless parameters are estimated, and an asymptoti-
cally simplified model is then presented, combining the four sub-models.

Section 3 provides a uniform steady solution, and its linear stability is analysed;
it is shown that the growth rate is determined by the solution of a quadratic equa-
tion, whose roots are plotted in terms of horizontal and transverse wavenumbers as
functions of a critical parameter Π. Section 4 forms the conclusions of the study, in
which also the meaning and interpretation of the results are discussed.

2 The instability theory

The Hindmarsh instability theory is built around a description of ice, water and
sediment flow on a local horizontal scale of kilometres. The geometry of the flow
is shown in figure 3. The coordinates are x, y, z, with z vertical, and x in the
downstream ice flow direction. The ice surface is at z = zi, the ice base and water
surface at z = s, and the water base and sediment surface is at z = b. The water
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Figure 3: Schematic representation of model geometry (colour online). Ice with
surface z = zi lies above sediment and water. The sediment surface is denoted by
z = b, and the water surface (also the base of the ice) is denoted z = s. The x
axis points down the ice upper surface, in the direction of flow. The view is from
downstream, and represents a configuration consisting of subglacial streams in the
troughs between glacial lineations. The inset shows the detail of the small scale
roughness in the Creyts–Schoof water film.

depth is thus
h = s− b. (2.1)

In the following subsections, we briefly describe the model equations for ice, water
and sediment flow. Much of this can be found in the papers by Fowler (2010a,b), to
which further reference should be made. For a more general introduction to models
of ice flow, sediment transport and rivulet dynamics, see Fowler (2011), chapters 5,6
and 10.

2.1 Ice flow

The Stokes flow equations for the flow of ice, treated as a Newtonian viscous fluid,
are given by (2.5) of Fowler (2010a), and are

∇.u = 0,

0 = −∇P − ρig∇zi + ηi∇2u, (2.2)

where P is reduced pressure (ice pressure minus cryostatic pressure), u is ice velocity,
ρi is ice density, g is the acceleration due to gravity, and ηi is the assumed constant
ice viscosity. Defining the horizontal shear stress vector as

τ = (τ1, τ2), (2.3)
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(τ1 = τ13 and τ2 = τ23 are the two horizontal components of shear stress), the surface
boundary conditions are the stress balance and kinematic conditions

P − τnn = 0, τ = 0,

w = zi,t + uzi,x + vzi,y − a at z = zi, (2.4)

where subscripts t, x, y denote partial derivatives, a is the accumulation rate, and u =
(u, v, w). The basal boundary conditions are then the sliding law and the kinematic
boundary condition (ignoring the relatively small melting term), thus

τ =
f(ub, N)ub

ub

,

w = st + usx + vsy, at z = s, (2.5)

where ub = (u, v), evaluated at z = s, and called the sliding velocity; N is the effective
pressure introduced in (1.1). To be specific, we will assume a generalised Weertman
sliding law of the form

f(ub, N) = RN buc
b, (2.6)

where R is a roughness coefficient (Bindschadler 1983).
The Stokes equations require two boundary conditions at top and bottom, so that

the kinematic condition in (2.4) determines zi, and we see from (2.5) that if s, st and
N are known then the ice flow is fully determined. Before proceeding to water and
sediment flow, we complete an approximate solution for the ice flow, based on the
assumption of small basal ice slope, |∇s| � 1, which is an accurate assumption.

Non-dimensionalisation

Following Fowler (2010a), we define the bedform elevation scale dD, the till deforma-
tion scale dT and the bedform length scale lD, by

dD =
τb

∆ρwig
, dT =

τb
∆ρswg(1− φ)

, lD =

(
ηiu0dD

τb

)1/2

=

(
ηiu0

∆ρwig

)1/2

, (2.7)

where u0 and τb are velocity and stress scales (defined below), φ is sediment porosity,
and

∆ρwi = ρw − ρi, ∆ρsw = ρs − ρw, (2.8)

with ρs being the sediment particle density and ρw the water density. This is equiv-
alent to Fowler (2010a) if his effective pressure scale Nc = τb.

The aim of the instability theory is to study perturbations about a uniform state,
which we take to be the shear profile

u =

[
u0 +

τb
ηi

(
z − z2

2di

)]
i, (2.9)

where

τb = ρigdiS, S = −∂zi

∂x
. (2.10)
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Here di is the ice depth; obviously this varies over the scale of the ice sheet, but can
be taken as a constant on the much smaller bedform length scale lD. The values of
u0 and the downstream ice surface slope S (or τb) are determined from the ice sheet
model at a much larger length scale, and can be taken to be given in the present
context.

We now scale the ice flow equations by writing

s ∼ dD, x = lDx∗, pe, N, P, τnn, τ, f ∼ τb, zi = di[1− σSx∗ + SH], a ∼ Su0,

u =

[
u0ū+

τb
ηi

(
z − z2

2di

)]
i + νu0u

∗, ub ∼ u0, t ∼ tD =
dDlD
dTu0

≡ ∆ρsw(1− φ)lD
∆ρwiu0

,

(2.11)
where the bed aspect ratio ν and corrugation parameter σ are defined by

ν =
dD

lD
, σ =

lD
di

. (2.12)

The asterisks on u∗ and x∗ are omitted in the sequel. The dimensionless mean basal
velocity ū, which equals one in the basic shear flow, does not necessarily remain so,
as the development of bedforms will alter it. Note that with the sliding law of the
form (2.6), the dimensionless sliding law is

f(ub, N) = R∗uc
bN

b, (2.13)

where R∗ is defined by

R∗ =
Ruc

0

τ 1−b
b

. (2.14)

For small ν, the bed conditions at z = νs can be linearised to apply at z = 0, and
because S � 1, the ice surface conditions can be linearised to apply at z = 1. The
perturbed ice flow thus satisfies the biharmonic equation in the strip 0 < z < 1 and
can be solved by Fourier transform using the prescribed stress conditions at the ice
surface, together with the sliding law and the normal stress at the bed. Specifically,
if we define

Φ = P − τnn +H, F = f(ū, N)− 1 (2.15)

(Fowler (2010a) wrote Φ = −Θ), then the kinematic conditions at the bed and the
ice surface take the dimensionless form

αst + ūsx = w, λHt = Ξ (2.16)

(Fowler wrote w = K), where

α =
dT

dD

≡ ∆ρwi

∆ρsw(1− φ)
, λ =

αS

νσ
≡ (∆ρwi)

2

ρi∆ρsw(1− φ)
, (2.17)

and w and Ξ can be written as linear combinations of H, F and Φ; additionally ū is
defined by the horizontal force balance

f(ū, N) = 1; (2.18)
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the overline denotes a spatial average (so ū is a function of time only). It follows from
this and (2.13) that

f(ū, N) = N b/N b. (2.19)

In detail, defining the Fourier transform of a function

f̂(k) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)eik1xeik2y dx dy, (2.20)

where k = (k1, k2), and k1 and k2 are downstream and transverse wave numbers,
respectively, we obtain

Φ̂ = − 2k

∆5

[
2Ĥ + 2G23F̂ − (G21 +G22)ŵ

]
,

Ξ̂ = G27Ĥ +G28F̂ +G29ŵ, (2.21)

where the various coefficients are defined by Fowler (2010a)). Since λ ∼ 10−2 is small,
we can put Ξ = 0, and simplification of (2.21) yields an expression for ŵ:

ŵ =
S2

h

2k(j + ShCh)
Φ̂ +

ik1j

2k2(j + ShCh)
F̂ , (2.22)

where

j =
k

σ
, k = (k2

1 + k2
2)1/2, Sh = sinh j, Ch = cosh j. (2.23)

In summary, the calculation of ice flow over the bed yields a dimensionless evolution
equation for s of the form

αst + ūsx = w = J ∗ Φ + L ∗ F, (2.24)

where the asterisk denotes the Fourier convolution, and the transforms of J and L
are

Ĵ =
S2

h

2k(j + ShCh)
, L̂ =

ik1j

2k2(j + ShCh)
. (2.25)

2.2 Water flow

In dimensional terms, the hydraulic potential can be shown to be

ψ = ρig(zi − di) + ∆ρwigs−N + P − τnn. (2.26)

The earliest versions of the instability theory assumed constant ψ; this is possible,
but as we shall see, unlikely.

Slow water flow through a thin film or stream of depth h is given by a local
Poiseuille flow, and takes the form

ht = ∇.

[
h3

12ηw

∇ψ

]
+ Γ, (2.27)
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where ηw is water viscosity and Γ is the local water source due to internal melting in
the basal ice, and is given approximately by

Γ =
G+ τbu0 − qT

ρwL
; (2.28)

here G is geothermal heat flux, qT is heat flux into the ice, and L is latent heat. The
dependence of Γ on ice flow may have a dynamical effect on a large scale (Kyrke-Smith
et al. 2014), but in fact Γ is negligible on the small length scale of concern here.

We scale these equations using values in (2.11), and in addition

ψ ∼ τb, h ∼ h0, (2.29)

where h0 is a typical size of the water film depth, prescribed below; this leads us to
the dimensionless forms,

ψ = −σx+ s−N + Φ,

εωht = ∇.
[
h3∇ψ

]
+ ω. (2.30)

The definitions of the parameters are best framed in terms of the order of magnitude
qw of the basal water flux, given by

qw = Γli =
h3

0τb
12ηwli

, (2.31)

where li is a relevant horizontal length scale for the large scale ice flow. (2.31) thus
defines a mean film thickness

h0 =

(
12ηwl

2
i Γ

τb

)1/3

, (2.32)

as well as the parameters

ε =
h0

ΓtD
, ω =

l2D
l2i

; (2.33)

tD was defined in (2.11).

2.3 Sediment flow

Next, we write a suitable Exner equation (describing conservation of the mobile sed-
iment) for the evolution of the sediment surface z = b. This amalgamates the till
flux terms described in the original instability theory, e. g., Fowler (2010a), and the
sediment transport terms appropriate for fluvial flow described by Fowler (2010b).
We take it in the form

bt + ∇.

[
1
2
u0ūhAi− h3

A

12ηs

∇N

]
= −E −∇.

[
Q(τe)

τe
τ e

]
,

τ e = −
{

1
2
h∇ψ + ∆ρswgDs∇b

}
. (2.34)
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The flux term on the left comprises an advective term representing a shearing by the
overlying ice flow, and a diffusive term representing till squeezing in a relatively thin
layer; hA is the thickness of the deforming till, which is limited by the yield stress
µN , thus (Fowler 2009)

hA =

[
τ

µ
−N

]∣∣∣∣
+

∆ρsw(1− φ)g
, (2.35)

where µ is the coefficient of friction; here τ = f(ū, N) is the basal shear stress. As
often, the till flux assumes here an effective viscosity ηs, corresponding to a yield
stress material with the normal flow rule, and as always, this does not imply the till
is viscous, but the application of more likely rheologies (e. g., Henann and Kamrin
2013) is an uncertain distraction to the present purpose.

The terms on the right represent net suspended sediment erosion (E), which
we take to be zero, indicating a balance between suspended sediment erosion and
deposition. The term inside square brackets represents bedload sediment transport
Q, and is generally non-zero and increasing downstream, as the glacier strips its
bed away. The second equation defines the effective stress τ e transmitted by the
water flow to the bed, consisting of the actual viscous stress in the water plus a term
representing the propensity of sediment grains to roll downhill: Ds is the sediment
grain size. b in this equation was written as s in equation (2.19) of Fowler (2010b), on
the basis that h is small; (2.34) is the correct form, however; cf. Fowler et al. (2007),
equation (2.3). The bedload Q will generally be a nonlinear function of this effective
stress, but the slow conditions underneath a glacier do not necessarily suggest the
use of a sub-aerial correlation. However, Fowler (2010b) found that the streaming
instability relied on the existence of a yield stress, something that is essentially also
necessary in the sub-aerial case. Our more general results here belie this conclusion.

We non-dimensionalise the equations as previously, with the extra choices

b ∼ dD, hA = 2dTA, Q ∼ qb, τ e ∼
h0τb
2l

, (2.36)

where qb is a typical value of bedload sediment flux. It follows that the dimensionless
sediment model is

A = 1
2

[
τ

µ
−N

]
+

, τ = f(ū, N), τ e = −h∇ψ − θ∇b, (2.37)

and
bt + ∇. [Aūi] = β∇.

[
A3∇N

]
− γ∇. [B(τe)τ e] , (2.38)

where we define

B(τe) =
Q(τe)

τe
, (2.39)

and the parameters are defined by

β =
2d2

T τb
3ηslDu0

, γ =
qb
dTu0

, θ =
2∆ρswDs

∆ρwih0

; (2.40)
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we also define for later use
κ = θγ. (2.41)

The geometric relation between the ice base and sediment floor is

b = s− δh, (2.42)

where

δ =
h0

dD

. (2.43)

2.4 Ice closure

Counting equations, we see that (since b = s − δh) (2.30) and (2.38) provide two
equations for the three unknowns N , s, h, bearing in mind that from (2.30), (2.21),
(2.16) and (2.15), ψ = ψ(N, s, st). An extra equation is necessary to close the system.
In the classical stability theory (Hindmarsh 1998, Fowler 2000), this is taken to be
the condition of constant hydraulic potential, ψ = −Nc, but in the present context,
that is not enough, because we have explicitly introduced the water layer thickness
h. Fowler (2009) accommodated h > 0 (the formation of cavities) with the extra
statement:

h = 0 if N > 0;

N = 0 if h > 0, (2.44)

and required nothing else.
In the present case, we need an extra equation, because we allow non-zero film

thickness even when N > 0. This extra condition is the film closure condition, and can
be proposed by analogy with the corresponding condition in Röthlisberger’s (1972)
drainage theory. The necessity for an extra condition occurs because the presence of
a partially clast-supported film implies that at the clast separation scale (say metres),
a uniform normal (effective) stress in the ice above the bed is partitioned between
supporting clasts and the intervening film where it is zero. Thus (Creyts and Schoof
2009) the ice will sink into the film at a rate (for a Glen law model) KlcN

n, where
K would be proportional to the Glen flow law constant, and lc is clast spacing. This
closure is offset by the production of melt, which thus leads to the closure model

ht =
ρwΓ

ρi

−KlcNn. (2.45)

In this expression, the inter-clast spacing lc is an increasing function of h, which we
may suppose tends to infinity at a critical value hc, which properly defines a stream
(or a cavity), where h > hc. It may be perverse to assume a nonlinear rheology here
when ice is considered Newtonian elsewhere, and thus it may be preferable instead
to pose the closure condition

ht =
ρwΓ

ρi

− lcN

ηi

. (2.46)
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Symbol Meaning Typical value
a accumulation rate 0.5 m y−1

b exponent in sliding law 0.3
di ice depth 103 m
Ds grain size 80 µm
g gravity 9.8 m s−2

G geothermal heat flux 0.06 W m−2

k ice thermal conductivity 2.1 W m−1 K−1

li ice sheet length scale 103 km
L latent heat of ice 3.3× 105 J kg−1

qb bedload transport <∼ 0.3 m2 y−1

qT heat flux to ice 0.06 W m−2

S ice surface slope 10−3

u0 ice velocity 100 m y−1

∆ρsw ρs − ρw 1.6× 103 kg m−3

∆ρwi ρw − ρi 83 kg m−3

∆T surface to base temperature change 20 K
ηi ice viscosity 1014 Pa s
ηw water viscosity 1.8× 10−3 Pa s
ηs notional sediment viscosity 2.7× 109 Pa s
µ coefficient of friction 0.6
ρi ice density 0.9× 103 kg m−3

ρw water density 103 kg m−3

ρs sediment density 2.6× 103 kg m−3

φ sediment porosity 0.4

Table 1: Assumed constants in the model.

We will use this expression in what follows.
To non-dimensionalise this, we define a typical clast spacing when h ∼ h0 to be

l∗c , and then we write

lc =
l∗c

N∗(h)
, (2.47)

where h is dimensionless and N∗ ∼ O(1), so that (2.46) becomes in dimensionless
terms

εrht = 1− ΠN

N∗(h)
, (2.48)

where

r =
ρi

ρw

, Π =
ρil
∗
cτb

ρwηiΓ
. (2.49)

The choice of the function N∗(h) is largely one of convenience. We should have
N∗ ≈ 0 for h� 1, N∗ ∼ O(1) for h ∼ 1, and N∗ >∼ O(1) for h = 0. In fact, it is best
to have N →∞ as h→ 0, since in reality the small neglected melting term in (2.30)2

13



Symbol Meaning Typical value
dD drumlin depth 11 m
dT till deformation depth 1 m
h0 water film thickness 6 mm
lD drumlin length 640 m
l∗c clast spacing 1.2 m
qw water flux 3× 103 m2 y−1

r density ratio 0.9
tD time scale 74 y
Γ melt rate 3 mm y−1

τb basal shear stress 0.9× 104 Pa

Table 2: Derived values of scales.

precludes the film completely disappearing as long as ω > 0. A simple choice which
satisfies these constraints is

N∗ =
1

h
, (2.50)

and we use this henceforth. The closure equation thus takes the form

εrht = 1− ΠhN. (2.51)

2.5 Parameter estimation

The values of the constants which are assumed in the model are given in table 1. Some
of these are typical values, and some are intelligent guesses, so that the constant values
of the scales in table 2 and table 3 are also representative.

The value of the bedload transport qb is estimated as follows. Values of qb/qw
for a turbulent Alpine proglacial stream are of order 10−4 (Collins, 1979). We might
suppose a similar or lower fraction for the (mostly) slower flow under an ice sheet.
The assumption qb/qw <∼ 10−4 then leads to qb <∼ 0.3 m2 y−1, hence the estimate in
table 1.

The simplest way to estimate Ds is to determine it by the critical Shields stress
for sediment transport (Fowler 2011, p. 273). The Shields stress is given by

τ ∗ =
τw

∆ρswgDs

, (2.52)

where

τw = 1
2
h|∇ψ| ∼ h0τb

2l
(2.53)

is the water film stress. Sediment transport occurs for τ ∗ > τ ∗c , where τ ∗c has a typical
value of 0.06, but it depends on the particle Reynolds number

Rep =
ρwu∗Ds

ηw

, (2.54)
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Symbol Typical value
α 0.09
β 1.04× 10−3

γ 0.3× 10−2

δ 0.54× 10−3

ε 2.7× 10−2

θ 0.62
κ 1.9× 10−3

λ 0.78× 10−2

ν 1.7× 10−2

Π ∼ O(1)?
σ 0.64
ω 0.41× 10−6

Table 3: Approximate dimensionless parameter values.

where the friction velocity is

u∗ =

(
τw
ρw

)1/2

. (2.55)

If we first calculate Ds based on τ ∗ = τ ∗c ≈ 0.06, we find Ds ≈ 43 µm, but then
Rep ∼ 0.14, and at such low values, τ ∗c ≈ 0.1/Rep, which indicates sediment transport
if τw >∼ 0.2 Pa; however, our estimate for τw is just 0.04 Pa.

The simple conclusion is that sediment transport need not occur in the millimetric
water film, but rather in the cavities which are formed behind growing ribbed moraine.
This is essentially the picture portrayed by Fowler (2009) and Chapwanya et al.
(2011), and is consistent with an absence of streams. In this case a suitable value
of γ is zero, and the specification of Ds is irrelevant. On the other hand, we know
that streams do occur, and indeed that floods occur between subglacial lakes (e. g.,
Engelhardt and Kamb 2013, Sergienko and Hulbe 2011), so some mechanism to form
streams must exist. This can be due either to the Walder (1982) thermal mechanism,
or due to the pre-emptive formation of cavities and their evolution to a linked cavity
system. However, there is also another mechanism which does not rely on fluvial
transport. A local thickening of the water film causes a reduction of N , and thus (in
a developed rib system, Fowler (2009)) an increase in till deformation depth and thus
till flux. This also appears to be a destabilising mechanism. Fowler’s (2010b) stream
formation mechanism relied on bedload transport, but in that paper the sliding law
dependence was explicitly excluded. In either event, we will choose a value of grain
size commensurate with transport by a developed stream of depth hs = 20 cm. This
gives a water stress of ∼ 1.3 Pa, and the Shields criterion suggests Ds = 80 µm.

The choice of cooling rate qT is based on a conductive heat flux k∆T/di, enhanced
by horizontal advection; the value in table 1 is enhanced by 1.5. The viscosity ηi

would have a normal value of 2 × 1013 Pa s at a shear stress of 105 Pa, but two
orders of magnitude higher at the lower stress of 104 Pa; however this is offset by the
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enhancement of shear stress induced by flow over the induced bedforms, so we choose
an intermediate value. The ‘viscosity’ ηs of till is an effective viscosity, if we suppose
a normal flow rule. Our estimate is based on the definition

τb =
ηsu0

dT

, (2.56)

which leads to the value in table 1, unsurprisingly consistent with other estimates of
this effective value (Paterson 1994, p. 170). It follows from (2.40) that

β =
2dT

3lD
, (2.57)

whence the value in table 3.
The values in table 2 are computed from expressions given in the text. The choice

of typical clast spacing l∗c in table 2 is an essentially arbitrary choice, chosen so that
Π ≈ 1. In reality, it should depend on the granulometry of the till, being small for
fine grained sediments, and larger for coarser till. However, it should also depend
on the small scale roughness of the bed, since if streams form, it would seem that l∗c
should be comparable to stream width.

2.6 A reduced model

The model consists of the equations (2.15), (2.18), (2.16), (2.21), (2.30), (2.37), (2.38),
(2.42) and (2.48), which determine b, h, s, ψ, N together with the subsidiary variables
A, Φ, Ξ, w, F , ū and H. For simplicity, we define

ψ = −σx+ Ψ. (2.58)

If we simply proceed with a simplification based on the smallness of the parameters
λ and ω, we obtain a reduced model in the form

σ(h3)x = ∇.[h3∇ψ],

Ψ = s−N + Φ,

A = 1
2

[
f(ū, N)

µ
−N

]
+

,

εrht = 1− ΠhN,

b = s− δh,

bt + ∇.[Aūi] + σγ[B(τe)h]x = β∇.[A3∇N ] + γ∇. [B(τe){h∇Ψ + θ∇b}] ,

τ e = σhi− {h∇Ψ + θ∇b},

αst + ūsx = w(Φ, N). (2.59)

We have kept the small terms in β and γ to facilitate the discussion below.
This reduced model can be sensibly compared with that of Fowler (2009). It is

in fact the same if σ = 0 (the apparently inconsequential limit of deep ice) whence
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we can take ψ = −1 as constant, and neglect β, γ and δ. Consulting (2.59), it seems
this is a perfectly good solution. It allows water to trample roughshod over hills, the
Creyts–Schoof water film allowing easy passageway.

It can also be compared to Fowler’s (2010b) analysis of stream and MSGL forma-
tion, which takes δ = A = 0, and replaces (2.51) with the assumption N = 0, which
would follow from the assumption that Π� 1. It is reasonable to anticipate that the
model without both sets of simplifications will admit both forms of the instability.

3 Linear stability

The steady uniform solution of (2.59) is given by

h = 1, N =
1

Π
, b = 0, s = δ, Φ = 0, Ψ = δ − 1

Π
, A = 1

2

[
1

µ
− 1

Π

]
. (3.1)

Note that this state is actually neutrally stable, since the base levels of h and b are
not fixed by the reduced equations. In practice, therefore, it is best to fix the uniform
state by means of two specific upstream boundary conditions, for example for two of
h, Ψ and b.

Linear stability analysis proceeds along the same lines as in Fowler (2009, 2010b).
We write

h = 1 + h̄, N =
1

Π
+ N̄ , s = δ + s̄, Ψ = δ − 1

Π
+ Ψ̄; (3.2)

linearisation then yields the equations, after some algebra,

3σh̄x = ∇2Ψ̄,

Ψ̄ = s̄− N̄ + Φ,

εrh̄t = −h̄− ΠN̄ ,

s̄t − δh̄t + ūA′N̄x = βA3∇2N̄ + γ
[
BΨ̄yy + C(Ψ̄xx − σh̄x)

]
,

+κ
[
B(s̄yy − δh̄yy) + C(s̄xx − δh̄xx)

]
,

αs̄t + ūs̄x = J ∗ Φ + fNL ∗ N̄ , (3.3)

where A, A′ = A′(N) and fN = ∂f/∂N are evaluated at the basic state (3.1), κ was
defined in (2.41), and

C = B + σB′. (3.4)

For the sliding law in (2.19), we have

fN = bΠ. (3.5)

Note that, using (2.39),
C = Q′, (3.6)
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whereQ is the dimensionless bedload flux, evaluated at the base state τe = σ. Defining
the Fourier transform f̂ of f̄ as in (2.20) and taking f̂ = f̃ eΣt, we find

3σik1h̃ = k2Ψ̃,

Ψ̃ = [M + 2kUαΣ]s̃− (1 + fNV )Ñ ,

εrΣh̃ = −h̃− ΠÑ ,

(Σ + T )(s̃− δh̃)− SÑ = EΨ̃, (3.7)

where we define

E = γ[(1
3
C −B)k2

2 − 2
3
Ck2

1],

T = κ(Bk2
2 + Ck2

1),

M = 1− 2ik1kūU,

S = ik1ūA
′ − βA3k2,

U =
1

2kĴ
=

j + ShCh

S2
h

,

V =
L̂

Ĵ
=

ik1j

kS2
h

(3.8)

(cf. (2.25)). The zero determinant condition for a solution of these yields a quadratic
equation for the growth rate Σ:

f2Σ2 + f1Σ + f0 = 0, (3.9)

where

f2 = [εrP + 2δαΠkU ]k2,

f1 = −3σik1ΠW + k2[P − εr{SM − (1 + fNV )T}+ δΠ(M + 2αkUT )],

f0 = M(3σik1ΠE − k2S) + T{(1 + fNV + δΠM)k2 − 3σik1Π}, (3.10)

and also

W = 1− 2αkUE,

P = 1 + fNV − 2αkUS. (3.11)

The two roots are given by

Σ± =
±(f 2

1 − 4f0f2)1/2 − f1

2f2

, (3.12)

and we shall primarily be interested in Σ+.
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Simplification of (3.9) follows from neglecting the small coefficients β, κ (thus also
T ) and δ; then the quadratic takes the simpler form

εrPk2Σ2 − [3σik1ΠW − k2(P − εrSM)]Σ +M(3σik1ΠE − k2S) = 0. (3.13)

Because also ε � 1, there is a fast root (which is Σ−) of O

(
1

ε

)
, which is easily

found to be stable (it represents the rapid relaxation of the film closure equation to
equilibrium), and a slow root, which for ε→ 0, is given by

Σ =
M(3σik1ΠE − k2S)

3σik1ΠW − k2P
. (3.14)

This expression generalises the stability analyses of Fowler (2009) and Fowler (2010b).
In particular, the ribbing instability result (2.16) of Fowler (2009),

Σ =
MS

P
=
ik1ūA

′(1− 2ik1kū)

1− 2ik1kαūA′
, (3.15)

is regained in the limits σΠ = 0 and j →∞ (deep ice, thus U = 1 and V = 0), under
the identification

R = ūA′, (3.16)

while the MSGL result (3.11) of Fowler (2010b) is regained in the limits σΠ → ∞
and j →∞:

Σ =
ME

W
=

(1− 2ik1kū)E

1− 2αkE
. (3.17)

(The coefficient D in the 2010 paper is absent as it arises from the neglected terms
in T in (3.10).)

A question of some interest is how the maximal growth rate depends on k1 and
k2. Remember, this was one of the issues concerning the instability theory: there
seemed to be no genuine three-dimensional instabilities. Figure 4 shows contour
maps of growth rate in conditions of instability, when R = ūA′ > 0. Ribs, drumlins
or MSGL are the preferred mode depending on the value of Π. Specifically, transverse
ridges (ribbed moraine) are preferred for small values of Π, while longitudinal ridges
(lineations) are preferred for large Π; and for intermediate values, the maximal growth
rate occurs for genuinely three-dimensional drumlinoid shapes.

A comment on these results is necessary. Firstly, while the approximate result
(3.14) is indeed valid as ε → 0, it is actually not accurate for our estimated value
ε = 2.7× 10−2, apparently because the maximal growth rates occur for k >∼ 3 (so εk2

is not small). With the selected parameter values, accuracy ensues for ε <∼ 0.5×10−3,
although lower values of Π make the approximate result more robust. One noteworthy
comment is that the MSGL instability criterion of Fowler (2010b) required C > 3B
in order that E > 0. In the present combined theory, this criterion is not necessary.
Indeed, approximation of the values of Σ+ taking β = γ = δ = κ = 0 has minimal
effect on the results.
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Figure 4: Contour plots of Re Σ+ as defined in (3.12), for parameter values α = 0.1,
β = 10−3, γ = 0.3 × 10−2, δ = 0.5 × 10−3, ε = 2.7 × 10−2, κ = 2 × 10−3, µ = 0.6,
σ = 0.64, b = 0.3, C = 1, B = 1, ū = 1, R = ūA′ = 1, and with values Π = 0.7
(top left), = 2 (top right), and = 10 (bottom), corresponding to ribs, drumlins and
MSGL respectively. The negative growth rates are truncated at Re Σ+ = −1 in order
to enhance the colour contrast. Note the different wavenumber scales in the MSGL
figure, and the different colour scales in each figure.

Plotting of these results in terms of length and width (defined as half-periods)
is of potential use in comparison with observed data, although it must be borne in
mind that linear stability results do not necessarily bear close relation to observed
finite amplitude results. An example of such a plot is in figure 5, where the regions
of maximal growth lie close to observed ranges of actual bedforms (Clark et al. 2009,
Stokes et al. 2013b, Ely 2014), though the mega-ribs of Greenwood and Kleman (2010)
and the similarly-sized traction ribs of Sergienko and Hindmarsh (2013) are somewhat

20



Figure 5: As for figure 4, but plotted in terms of logarithms to the base ten of
dimensional length L and width W (in metres), defined in terms of k1 and k2 by

L =
πlD
k1

, W =
πlD
k2

, lD = 640 m. This enables comparison with similar plots of

corresponding observed bedforms (Clark et al. 2009, Stokes et al. 2013b, Ely 2014).
The small blue regions at the bottom left are numerical artefacts, due to Matlab’s
unwillingness to calculate sinh2 j for j > 355.

larger. In particular, the suggestion of our theory that ribs, drumlins and lineations
all form through a single process appears to be consistent with observed length-width
distributions of these various bedforms, which appear to form overlapping clusters in
parameter space (Ely 2014).

Of possible interest, or possible concern, is the retention of the ribbing mode as
Π increases, although it becomes weaker. By comparison with figure 4, this may be
associated with the fact that Re Σ+ decreases slowly to zero as k increases, and does
not become negative at large wave number. We suspect this may be associated with
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oversimplified physics, which does not provide a stabilising mechanism at large wave
number, and we expect this may be associated with an over-simple closure relation,
which lacks any spatial derivatives.

However, we should also point out the danger of trying to over-interpret figure
5. It is merely a linear stability diagram, and can only give hints of finite amplitude
observations. Ribbed moraine has a fairly definite preferred width to length ratio of
about three to four (Ely 2014). Infinitely wide ribs do not occur, and this may be
due to the necessity to provide a passageway for the downstream flow of water .

4 Conclusions

In this paper we have provided a theoretical model for the coupled evolution of ice,
water and sediment at the base of an ice sheet. The theory is a development of earlier
more rudimentary versions, and the principal theoretical development presented here
lies in the consideration of the water in a Creyts–Schoof water film. This concept
securely allows a water film at the base without the associated unrealities of flotation
and vanishing stress.

The model consists essentially of four partial differential equations, representing
evolution of basal ice surface (2.24), conservation of water mass (2.30), conservation
of sediment (2.38), and ice closure (2.48). The first three of these are securely based
on physical principles, but the provenance of the closure equation is less clear, despite
its familiarity in the case of Röthlisberger channels, since it seems that the ice surface
kinematic equation (2.24) ought to represent the same physical process. The argument
that both equations are necessary is based on scale: the closure equation represents ice
motion at the microscale of the water film, while the kinematic equation represents
the macroscopic ice motion associated with flow over the bed. The distinction is
similar to the scale separation used in determining the sliding law (Fowler 1981).

The earliest versions of the instability theory assumed a passive, hydrostatic water
system. In this latest edition of the model, we have included a fully integrated water
system in the form of a Creyts–Schoof film, with the included ability to describe both
streams and cavities. Analysis of the instability of the uniform state of the system
shows that the preferred mode of spatial growth (and thus what might correspond
to the actual observed pattern) ranges from ribbed moraine pattern through drumlin
pattern to glacial lineation pattern as a single critical dimensionless parameter Π
increases from 0.7 to 10. In fact, consultation of (3.10) suggests (since δ is small)
that it is the product σΠ which is important.

The fact that this parameter is a product suggests a complicated combination
of stability-determining circumstances. In particular, the fact that σ is the ratio of
the drumlin length scale lD to the ice depth scale di suggests that, in contradiction
to earlier results (e. g., Fowler 2009), ice depth is an important quantity. Actually,
this appears not to be the case, and it is better to view σΠ as a single controlling
parameter. From (2.7), (2.12), (2.49) and (2.10), it is defined by

σΠ =
ρ2

i

ρw

(
g

∆ρwi

)1/2
l∗c
Γ

(
u0

ηi

)1/2

, (4.1)
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where also the basal melting term Γ is defined in (2.28), and we see that it is in fact
independent of ice depth. A simple rescaling in (2.10) and (2.11) using lD instead of
di would lead to the parameter defined above appearing in the closure equation.

The principal dependence of σΠ is on the clast spacing l∗c , and if we had to make a
prediction based on this definition, it would be that fine-grained sediments (large l∗c)
would promote lineations, while coarser tills (small l∗c) promote ribs or drumlins. The
dependence on ice velocity is relatively weak; we might take Γ ∼ τbu0 and ηi ∝ τ−2

b ,

in which case σΠ ∼ u
−1/2
0 , but the consequent variation of σΠ is rather small.

The dependence of the results of this analysis on the clast spacing is intriguing
but also frustrating. The closure equation is the least satisfactory part of the model,
and a sensible definition of l∗c necessarily hard to tie down. Earlier we chose l∗c = 1.2
m, ostensibly so that Π ∼ 1. A more intelligent choice would be such that the
dimensional equilibrium value N = τb/Π corresponds to observed values, commonly
thought to be 0.5 bar = 5 × 104 Pa beneath Whillans Ice Stream (Blankenship et
al. 1987). Using the value of τb in table 2, this suggests Π = 0.18, corresponding
to a choice l∗c = 0.21 m. Note, however, that we require τb > µN is the till is to
deform, corresponding to Π > µ. The issue is clouded in practice by the observation
that much of the resistance in Antarctic ice streams is provided by lateral drag, as
opposed to the basal drag as asssumed here (Van der Veen 1999).

This discussion is not very encouraging, because it suggests (see figure 4) that
high values of l∗c , perhaps of order 10 m, are necessary to form MSGL, and this seems
unlikely for fine-grained till. Nor, however, is it very conclusive. Indeed, we consider
it likely in reality that water flow over fine-grained till will form shallow streams,
whose width will then become the measure of effective clast spacing.

So we think that the rôle of the clast spacing, and the provision of the closure equa-
tion, will require an increasing sophistication in future development of this theory;
in particular, while the present form may be reasonable for ice flow over a macro-
scopically flat bed, we suspect that a more elaborate version will be necessary in the
presence of streams or bed topography. One possible development may involve the
prescription of lc as a non-local function of film thickness h, to allow for the situation
where full stream separation occurs. A related point may be the slow decay of growth
rate in figure 4. Using the approximation (3.14), the growth rate is

Re Σ =
k2

1(3σΠE − k2R)(3σΠW + 2αk3R− 2k3ū)

k4 + k2
1(3σΠW + 2αk3R)2

, (4.2)

which shows that Re Σ ∼ O

(
1

k

)
as k → ∞. In a well-posed model, one hopes

for diffusive decay of growth rate at large wave number, e. g., Re Σ ∼ −k2, and it
is possible that more sophisticated closure models will allow this. In particular, it
is likely that this slow decay is a contributor to our present problems in providing
numerical solutions of the model.
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