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ABSTRACT 
The characterization of the solar radiation variability is a 

fundamental step before prediction and is crucial to transform 
an intermittent source of energy into a stable one. As solar 
irradiance result from a nonlinear and non-stationary process, 
we use a multifractal approach based on the Hilbert-Huang 
Transform (HHT) consisting of an empirical mode 
decomposition (EMD) followed by a spectral analysis. In this 
paper, we will briefly introduce the HHT data analysis method. 
Such a recent adaptive data analysis method has been applied to 
Reunion Island global solar radiation time series of 
measurements with a sampling rate of 1/60 Hz over six years. 
Through the EMD, daily global solar radiation data were 
decomposed into several intrinsic mode functions (IMF). For 
each IMF, we estimate the amplitude, instantaneous frequency 
and Hilbert spectrum for the original data. From the 
comparison of Hilbert Spectrum and Fourier Spectrum, we find 
the calculated solar radiation power spectrum follows a power 
law behavior close to the Kolmogorov law. The method 
described in this paper provides an amplitude frequency 
representation of the global solar radiation sequences resulting 
in a probability density function and a scaling coefficient. The 
multifractal approach allows to extract parameters connected to 
the multifractal properties of the global solar radiation. 

 
INTRODUCTION 

With the rapid development of the global economy and 
society, requirements for renewable energy increase remarkably. 
Solar energy is considered as one of the most promising 
alternative energy resources. However,  the spatial and 
temporal variability of solar radiation over various time scales 
is difficult for computing, controlling and balancing. Solar 
radiation shows the characteristics, nonlinear, nonstationary 
and intermittency in various process [1].  

Intermittency is the irregular alternation of phases of 
apparently periodic and chaotic dynamics or different forms of 
chaotic dynamics (crisis-induced intermittency) [2 3]. In the 
area of solar radiation, Tarroja et al. give the concept of 
intermittency the same meaning that to the concept of 
fluctuation, defining the severity of the intermittency as the 
change in the magnitude of the total irradiation on a surface 
over a given time interval [4]. Thus, this meaning is agreed 
with the concept of variability. On the contrary, Davis et al. 
import the notion of intermittency from turbulence, though they 
analyze radiation data artificially generated from cloud data [5]. 
This one is the sense given to the concept of intermittency in 
the present work, that is, intermittency refers to the changes of 
the variability of daily solar radiation according to the scale 
considered. In this sense, intermittency and multifractality are 
synonym. 

Intermittency and multiscaling properties have been found 
in many fields, such as rainfall [11], finance [9 10], turbulence 
[6-8 15], and geophysical fields [12 13 28].  

Multiscaling intermittency is often characterized using a 
structure function of order q > 0 as the statistical moment of the 
fluctuations ∆Xτ = |X (t + τ ) − X (t)| [6 15] 

<(∆Xτ )q>~Cqτ
ζ(q)                                            (1) 

where Cq is a constant and ζ(q) is a scale invariant moment 
function; it is also a cumulant generating function, which is 
nonlinear and concave and fully characterizes the scale-
invariant properties of intermittency.  

For this global solar radiation study, we consider the scaling 
exponent ζ (q) that characterizes the scaling behavior or 
measures the distance between a monofractal and multifractal 
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process. Indeed if ζ(q) is linear, the considered process is 
monofractal, if ζ(q) is nonlinear, the process is multifractal. 
Furthermore, the concavity gives information on the 
intermittency degree: the more concave the curve is, the more 
intermittent the process [6 14 28]. In this study, scaling 
exponents ζ(q) is estimated through EMD and arbitray-order 
Hilbert spectral analysis [15], which is an extension of Hilbert 
Huang Transform (HHT) [18 19].  

This paper is organized as follows. Section 2 describes the 
global solar radiation dataset used in this study. Section 3 
presents the EMD and arbitrary- order Hilbert spectral analysis 
methods and the multifractal intermittency properities. Section 
4 is dedicated to the presentation and the discussion of the 
results, which are then briefly summarized in Section 5. 

 

NOMENCLATURE 
 
X(t) [W/m2] global solar radiation 
f [min-1] frequency 
ω [min-1] instantaneous frequency 
Fs [min-1] Sampling frequency 
Ts [m] Sampling time 
T [m] Time scale 
A 
e 
E(f) 
m 

 Amplitude 
envelop 
Fourier spectrum 
mean 

H(ω)  Hilbert spectrum  
h(ω)  Hilbert marginal spectrum  
C(t)  IMF mode 
j  scale index 
   
 
Special characters 
 
θ(t)  the phase 
 p(ω,A)  probability density function 
β  spectral exponent 
ζ(q) 
  𝜉(q)  

 Scaling exponent 
Scaling exponent in Hilbert space 

 
 

GLOBAL SOLAR RADITION DATASET 
Reunion island is a French overseas territory and the only 

European region in the southern hemisphere. It lies at 21◦06′ 
South and 55◦32′ East, which locates in the North of the 
tropic of Capricorn. Due to its location, solar energy is an 
abundant energy resource in Reunion (cf. Fig. 1). Annual 
sunshine is in the range of 1400–2500 h and can reach the value 
of 2900 h, for an altitude lower than 400 m. The monthly daily 
radiation reaches more than 6.5kWh/m2 during the wet season 
in some parts of the coastal region (altitude <300 m).  

  
 

 
Figure 1  Global solar irradiance (kWh/m2) distribution in 

Reunion [17]. 

 In this study, we use 1234 days of global solar radiation 
recorded by the MOUFIA station on Reunion Island. The solar 
radiation measurements were collected with a sampling time 
Ts=1 min (the sampling frequency Fs=1/Ts=1 min-1 ＝ 
0.01667Hz). The data time span covers 6 years, from 23 
December, 2008 to 22 November, 2013, and it is presented as 
minutely mean. We use the time series from 8:00 to 17:00, 
which resulted in 661 data value for each day. During this 
period, the ground could obtain more solar radiation and the 
condition is clearer for the whole data. There are 1234*601 data 
points, but these days are not all continuous.  

 Fig.2 a) shows our global solar radiation data from 2008 to 
2013, b) illustrates a daily global solar radiation of the whole 
dataset. This figure shows that the solar radiations exhibit the 
stochastic fluctuations. 
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Figure 2  a) the whole  global solar radiation data, b) an 

example of daily global solar radiation sequence 

INTERMITTENCY AND MULTISCALING PROPERTIES: 
ARBITRARY ORDER HILBERT SPECTRAL ANALYSIS 

We use a new method called Arbitrary Order Hilbert 
Spectral Analysis [12 15 28], which is the extension of Hilbert-
Huang Transform [18 19], to estimate the scaling exponent  𝜉(q) 
which is the principal value of the solar radiation fluctuations. 
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HHT consists of two steps: 1)Empirical Mode Deposition 
(EMD) 2) Hilbert spectral analysis [18 19]. 

 
Ø Empirical Mode Deposition 

EMD is used to decompose the data into a sum of different 
time series (modes), each one having a characteristic frequency 
[18-21]. The modes are called Intrinsic Mode Functions (IMFs) 
and satisfy the following two conditions: i) the difference 
between the number of local extrema and the number of zero-
crossings must be zero or one; ii) the running mean value of the 
envelope defined by the local maximum and the envelope 
defined by the local minimum is zero [18 19]. The EMD 
procedure to decompose a signal into IMFs follows these 
algorithms: 

1)  The local extremes of the signal X(t) are identified.    
2)  The local maxima are connected together forming an 

upper envelope emax(t), which is obtained by a cubic spline 
interpolation. The same is done for local minima, providing a 
lower envelope emin(t).  

3)  The mean is defined as m1(t) = (emax(t) + emin(t))/2.    
4)  The mean is subtracted from the signal, providing the 

local detail h1(t) = X(t) − m1(t).    
5)  The component h1(t) is then examined to check if it 

satisfies the conditions to be an IMF. If yes, it is considered as 
the first IMF and denoted C1(t) = h1(t). It is subtracted from the 
original signal and the first residual, r1(t) = X(t) − C1(t) is taken 
as the new series in step 1). On the other hand, if h1(t) is not an 
IMF, a procedure called “sifting process” is applied as many 
times as needed to obtain an IMF. The sifting process is the 
following: h1(t) is considered as the new data; the local extrema 
are estimated, lower and upper envelopes are formed and their 
mean is denoted m11 (t). This mean is subtracted from h1 (t), 
providing h11 (t) = h1 (t) − m11 (t). Then it is checked again if 
h11(t) is an IMF. If not, the sifting process is repeated k times, 
until the component h1k(t) satisfies the IMF conditions. Then 
the first IMF is C1(t) = h1k(t) and the residual r1(t) = X(t) − C1(t) 
is taken as the new series in step 1).  

The above procedure is repeated for n times and such n 
IMFs are obtained, when r1(t) becomes monotonic function no 
further IMF can be extracted. Thus the original signal X(t) is 
written as a sum of IMF modes Ci(t) and a residual rn(t). 

                                       (2) 
  

The above sifting process should be stopped by a 
criterion[18-20,22,23]. This criterion has been accomplished by 
limiting size of the standard deviation (SD) between 0.2 and 0.3. 

                             (3) 
 

Ø Hilbert spectral analysis (HSA) 
EMD is associated Hilbert spectral analysis, which is 

applied to each IMF component Ci as a time frequency analysis, 
in order to locally extract the energy-time-frequency 
information from the data [18 19 24 25]. The Hilbert transform 
is written as  

                                    (4) 

 
where P means the Cauchy principle value [24 25] 
From this, we can construct the analytic signal z, defined as  

                                             (5) 
 
where C,   is real and imaginary part of a signal 

respectively. Where  

                                                     (6) 
 
and θ(t)=arg(z)=arctan .  A(t) is an amplitude time series 

and θ(t) is the phase of the mode oscillation [24]. Hence , the 
instantaneous frequency ω is determined from the phase, 

                                                                 (7) 
 
Within such approach and neglecting the residual, the 

original time series is rewritten as  

                                    (8)  
   
where Ai and θi are the amplitude and phase time series of 

mode i and Re means real part [18 19]. For each mode, the 
Hilbert spectrum is defined as the square amplitude 
H(ω,t)=A2(ω, t). H(ω,t) gives a local representation of energy 
in the time frequency domain. Then the Hilbert marginal 
spectrum h(ω) is written as  

                                                 (9) 
 
This is similar to the Fourier spectrum, since its corresponds 

to the energy associated to the frequency [18 19]. 
 

Ø Intermittency and Arbitrary-order Hilbert spectral 
analysis 

An extension of HHT, arbitrary-order Hilbert spectral 
analysis was proposed by Huang et al. [12 15 28], in order to 
characterize the scale invariant property of signals. Here, We 
can define of the joint probability density function (pdf), 
p(ω,A) of the instantaneous frequency ω and the amplitude A 
for all the IMF modes [12 15]. Thus the corresponding Hilbert 
marginal spectrum is rewritten as  

                                 (10) 
 
This expression concerns the second-order statistical 

moment. A generalization of this definition is considered to 
arbitrary-order statistical moment q≥0 [15 28]:  

                               (11) 
 
Hence, in the Hilbert space, the scale invariance is written  

                                                 (12) 
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where 𝜉(q) is the corresponding scaling exponent in the 
Hilbert space. This scaling exponent function is linked to 
scaling exponent function ζ(q) of structure functions, by the 
expression [15 28]:  
ζ(q)＝𝜉(q)-1                                                          (13) 

as it is well know that ζ(q)＝qH, hence 𝜉 (q)=qH+1. Here 
H is Hurst parameter H= 𝜉(1)-1. This method provides a way to 
estimate the scaling exponent which characterize  intermittency 
process.  

RESULTS  
 
The time series [26] of global solar radiation were collected 

at regular intervals, and it includes information of the trend, 
seasonal cycle and residual. In order to make the data more 
stationary, we pre-process the whole global radiation data. Fig 
3 illustrates that  daily global solar radiation corresponding the 
result of preprocessing. Fig 4 exhibits this pre-processing which 
was applied for the whole global solar radiation data 
corresponding the result. In this figure, we can see the multiple 
fluctuations become more stationary and unseasonal. This is 
global solar radiation data will be used for decomposition in 
next step.   
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Figure 3  An example of daily global solar radiation data and 
corresponding the stationary global solar radiation data. 

 
Figure 4  The whole global solar radiation data and 

corresponding the stationary global solar radiation data. 

Ø Empirical Mode Decomposition  

 We use EMD method to decompose the staionary daily 
global solar ratiation data which is shown in the Fig 3. After the 
application of the EMD method, the original data is 
decomposed into IMF modes with a residual. For displaying 
convenience, Fig.5 illustrates the 7 IMF modes with the 
residual. Actually EMD acts as a filter bank to get the different 
time series which have a characteristic frequency. The modes 
(1-4) illustrate the fast fluctuations with high frequency, while  
the modes (5-7) represent the slower fluctuations with lower 
frequency. The fluctuations in these IMFs show the variability 
of solar radiation.  
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Figure 5  IMF modes from EMD for the daily global solar 
radiation 

Ø Fourier analysis and Hilbert Spectral Analysis 
Fourier spectrum is used to characterize the variability of 

global solar radiation in this study. Fourier spectrum analysis is 
an important second order statistic of time-series analysis. It 
has long history in statistics, especially in the theory of 
nonparametric function and density estimation and 
characteristic functions [27]. For a scale invariant process, the 
following power law is obtained over a range of frequencies     
f [28]: 

 
E(f)~f-β                                                                                                (14) 
 

Where β is the spectral exponent. In Fig.6, the Fourier 
spectrum E(f) of the daily global solar radiation in Fig.3b was 
shown in log-log scale. The least square fitting method was 
used to estimate the slope of this Fourier spectrum, and the 
value of this slope is near 1.637 which is closed to the 
Kolmogorov spectrum with the scaling exponent β =5/3, 
corresponding to the time scale range 6 min<T< 370 min, 
corresponding the frequencies 0.1111 min-1< f < 2.9*10-3 min-1. 
We applied Fourier spectrum analysis for 1234 days solar 
radiation. Fig.7 illustrates the histogram of the scaling exponent 
β.  The value β between 1.5 to 1.8 accounts 45.2% , almost 
558 days.  It shows that our solar radiation data displays a 
power law behavior.  
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Figure 6  The Fourier spectrum E(f) (blue line) of the solar 
radiation display a power law behaviour which is closed to the 
Kolmogorov spectrum(red line with β=-5/3). The slope (black 
line) using least square fitting method is the scaling exponent 
β of the Fourier spectrum E(f). The inertial frequency range is 

from 0.1111min-1< f < 2.9*10-3 min-1. 
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Figure 7  The histogram of the scaling exponent β for the 
Fourier spectrum over 1234 days. 

In order to characterize the intermittency of the global solar 
radiation, we use the IMF modes in Fig.5 to calculate the 
Amplitude and instantaneous frequency and apply HSA to 
estimate the Hilbert marginal spectrum. In the Fig.8, we 
compare this Hilbert marginal spectrum with the Fourier 
spectrum. Both of these two spectrum show a power law 
behaviour like f-β with the scaling exponentβ. The value of β
shows the nonlinear and non-stationary process with the 
increments.  
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Figure 8  The Hilbert marginal spectrum and Fourier spectrum 
are displayed in log-log scale. A power law behaviour closed to 

the Kolmogorov spectrum with the frequency inertial range  
0.1111min-1< f < 2.9*10-3 min-1. 

Ø Multifractral analysis  

In order to analyze the arbitrary-order moments,  we 
estimate a representation of the joint probability density 
function, pdf p(ω, A) [15] of the solar radiation. The Fig.9 
illustrates that the pdf is the fluctuations in an amplitude-
frequency domain over 1234 days. The pdf can’t be found by 
one mode, and it must be obtained by all the modes together. 
All IMF modes of the data  are calculated and then the 
amplitude and instantaneous frequency corresponding to each 
one of the IMFs could be obtained. We use these Amplitude 
and instantaneous frequency to estimate the pdf. In Fig.9, 
which shows that the amplitude varies with the variability of 
frequency. This pdf shows the global solar radiation the 
fluctuations in different frequency boundary.  

 

Figure 9  The probability density function, pdf p(ω, A) of the 
solar radiation. 

And we also estimate the arbitrary order Hilbert marginal 
spectrum by using the equation 12. The Fig.10 illustrates Lq(ω) 
have the variability of the intermittency where the moments 
q=0.1, 1, 2, 3. It show a power law behavior  in range  
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9 min < T <  350 min corresponding the frequencies 
0.1111 min-1 < f < 2.9*10-3 min-1. The value of scaling 
exponent will be extracted by the least square fitting method.  
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Figure 10 Arbitrary order Hilbert marginal spectrum Lq(ω) 

using different orders of moments (q=0.1, 1, 2, 3) . Power law 
behavior will be observed on the inertial range  0.1111min-1< f 
< 2.9*10-3 min-1 corresponding the time scales 9 min<T< 350 
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Figure 11 Comparison of  the scaling exponent 𝜉 (q)-1 with 

K41 q/3(red line) . The insert shows the difference and 
variability with q increments.  

This provide a method to estimate the intermittency parameter 
𝜉 (q) with different order moment q≥0. We compare the 
scaling exponent 𝜉 (q)-1 with the K41 law. It seems that  𝜉 (q)-1 
has  departure from K41 law,  and it seems less concave.  

 

 

CONCLUSION  
In this paper, we applied an Empirical Mode Decomposition 

and Arbitrary order Hilbert spectral analysis method to 
characterize the intermittency of global solar radiation. The 
orginal solar radiation data (one day) is succeffully separated 
into several IMF modes. It shows that the EMD acts as a filter 
bank to charaterize the frequency during the time period, and it 
is adaptive method for decomposing the solar radiation data.  

The Fourier spectrum was compared with Hilbert marginal 
spectrum by applying same daily solar radiation data, which 
turned out that the power densities  related with the scaling 
exopent β which has a power law behaviour. The value of the 
slope is closed to -1.5~-1.8 over the time scale 6 min<T< 370 
min .  This  value range is close to the non-intermittency 
Kolmogorov value -5/3. It proves that the variability of solar 
radiation have the similar point with the turbulence  over a time 
scale invariance.  

For the whole solar radiation data (1234 days), we obtained 
the representation of the pdf p(ω, A) . Using this pdf, we 
estimated the power densities with different order moment 
(q=0.1,1,2,3). Then the intermittency information was extracted 
out. The main advantages of  this method are: 1) it seems more 
stable with less fluctuations for estimating the multifractal 
properties, 2) It provides a more adaptive schema in the time 
frequency analysis of solar radition field. It is possible to apply 
Empirical Mode Decomposition and Arbitrary order Hilbert 
spectral analysis method to do more studies related on 
multifractal framework in the future.  
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