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Abstract

A target of interest measured by a high range resolution radar may be modelled by multiple dominant points

of reflections referred to as dominant scatterers. In this paper a non-linear state space setting is used to model the

states and measurements of a target moving in the down- and cross-range dimensions. A resample-move particle

filter with simulated annealing is successfully used to jointly infer the locations of the dominant scatterers and the

motion parameters of the target. A novel technique for the initialization of the particle filter for the given application

is presented. The location estimates of scatterers using the particle filter method are compared to those obtained

using standard range-Doppler inverse synthetic aperture radar (ISAR) imaging when using the same radar returns for

both cases. The particle filter infers the location of scatterers more accurately than range-Doppler ISAR processing,

and the processing can be performed online as opposed to ISAR processing, which requires batching. It is relatively

straightforward to extend the method to perform localisation and tracking of scatterers in three dimensions, whereas

such an extension is challenging in range-Doppler ISAR processing. However, several challenges need be addressed

to make this algorithm suitable for practical implementation and these challenges are discussed. This method may

be used to obtain very accurate estimates of target state, which may in turn be used for accurate ISAR motion

compensation. Given enough computing resources this algorithm may in future become the basis of a new radar

target imaging scheme.

Index Terms

Particle filter, Extended target tracking, High range-resolution radar, ISAR.

I. INTRODUCTION

Radar systems utilise electromagnetic waves to detect and infer different characteristics of a target located within

a specific region. This is performed through a two step process which includes the illumination of a specific region
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with electromagnetic waves, followed by the reception of any electromagnetic scatter which is reflected from objects

in the region towards the radar system.When an electromagnetic wave is incident upon the surface of a target, it

is scattered in a complex manner. The scattered wave directed towards the radar system from a target originates

primarily from multiple individual reflection points, referred to as dominant scatterers [1].

A large variety of radar configurations exist [2]. The configuration of interest in this paper is of monostatic

pulsed radar systems capable of achieving a high range-resolution (HRR), typically with a range resolution of less

than a metre. HRR systems transmit high bandwidth waveforms to achieve the required range-resolution. Digital

processing of the raw returns, observed by the radar, results in a discrete complex HRR profile. An HRR profile is a

projection of the observable scatterers located in a three dimensional space to a single dimension, referred to as the

range dimension, located along the radar line of sight [3]. Synthetic aperture radar (SAR) and inverse SAR (ISAR)

images are projections of the observable scatterers located in a 3-D space to a 2-D image plane. A SAR/ISAR

image can be generated from a sequence of HRR profiles that are obtained at different azimuth angles between the

radar platform and the target [4]. This is achieved due to the effective rotational motion of the target and/or radar

platform during the collection of HRR profiles. The ISAR technique directly relates to the approach advocated in

this paper, since in ISAR processing the radar is assumed stationary while the target experiences relative rotational

motion.

In ISAR processing, the target should ideally exhibit a constant rate of rotation around a fixed axis. In this case,

and under the assumption that HRR profiles are collected over a period in which no migration of scatterers through

resolution cells occur, an undistorted ISAR image can be obtained by performing a fast Fourier transform (FFT) on

each range bin. When the motion of the target also consists of translational motion components, further preprocessing

is required prior to the FFT on each range bin, to remove the effects thereof. Translational motion compensation

focuses on removing the component of motion directed along the line of sight of the radar which jointly affects

all the scatterers, whilst retaining the rotational motion. It is either carried out as a single step, or firstly as coarse

range alignment followed by fine phase correction [5]. Conventional motion compensation algorithms generally

assume that the rotational motion of the target is constrained to a 2-D plane during the interval in which the target

is observed [6]. It has been found that many real world targets exhibit rotation in a 3-D plane, including aircraft

undergoing fast manoeuvres [7] and ships at sea [8]. The presence of rotation in a 3-D plane may result in distorted

ISAR images. It has also been found that ISAR images of targets subjected to a time-varying perturbed motion can

lead to distortion in ISAR images [4].

The rotation induced by the target is essential in order to resolve the scatterers in the cross-range dimension1.

However, the unknown complex motion of a target can result in severe distortion of ISAR images. Knowledge of the

motion of the target would allow for the compensation of the distortive effects. Since ISAR is generally performed

on uncooperative targets, a need to estimate the motion of a target prior to the generation of ISAR images is clearly

evident.

1The cross-range is the direction perpendicular to the range dimension.
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The primary objective of this paper is to present a framework that is capable of tracking the locations of multiple

dominant scatterers in space and motion parameters of an extended target that is observed by a monostatic pulsed

HRR radar. It is assumed that the target is uncooperative and hence the only available measurements are the noisy

1-D HRR profiles obtained from the processing of the radar data. Essentially, it is required to infer 2-D or 3-D

positions from convoluted 1-D data.

Several different approaches have been applied to the tracking of extended targets, with applications including

the tracking of multiple extended targets and the joint estimation of the extent of the target as well as its motion

parameters [9], [10]. An assumption made in these papers is that the observation sources are not fixed upon the target.

This assumption is made due to the possibility of occlusions and large changes in the location of measurements

sources. This is a realistic situation for HRR radar applications when measurements are collected over periods of

time with large changes in the rotation angle. However, in our application it is assumed that the measurements are

observed over periods of time in which small changes in the rotation angle are induced, as the dominant scatterers

are persistent during such periods [1], [3], [11] and corresponds to measurement intervals used by ISAR processors

based on the range-Doppler algorithm [12].

There are several approaches [13]–[15] which utilise the dominant scatterer assumption to infer scatterer locations

and target motion parameters. The paper [13] addresses extended object tracking through the reconstruction of a

multi-resolution problem by means of nonlinear optimisation, and is as such a non-Bayesian approach. In the

paper by Hammarstrand et. al. [14], which appeared during the course of this research, the authors propose a

Bayesian inference approach to scatterer localisation and tracking with application to radars on motor vehicles. The

model is extensive and allows for the birth and death of scatterers, as well as dealing with clutter and unresolved

measurements. However, sensor angle measurements are assumed to be available, in addition to range and range

rate measurements as the result of a standard detection process. In contrast, in our paper, in addition to the range

measurements, the phase changes of dominant scatterers are modelled explicitly and are used to determine the

cross range position of scatterers over very small rotation angle changes of the extended target. Also, in our case,

the targets are assumed to be at great distances and no angle measurements are available. In [15] a linear filter

is utilised to track the dominant scatterers in range and Doppler prior to utilising a geometric inversion to obtain

estimates for the location of the scatterers and the target motion.

In contrast to all the papers mentioned above, the approach in this paper is to jointly estimate and track the

location of several dominant scatterers and the motion parameters of the extended target directly from the range

line data. This will be performed through the use of a state space model and nonlinear Bayesian state estimation.

The particle filter (PF) is a well documented sequential Monte Carlo method used for dynamic state estimation [16],

[17], and was selected owing to its ability to deal with the non-linearities and non-Gaussian noise. The findings of

this paper are extensions of the work presented in [18]. The work in [18] utilised a particle Markov Chain Monte

Carlo technique for the inference of static parameters. In this paper the state space model has been modified to allow

parameters previously assumed as being static to be included in the dynamic state, resulting in the requirement of a

simpler particle filter based algorithm. The inclusion of phase measurements from radar data allowed for a smaller
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angle range of rotation required to infer the target state. The novelty of this paper lies in the unique modelling of

the state space system as well as the unique aspects relating to the implementation of the particle filter for this

application.

II. MODELS

A target is represented as a set of points based on the assumption that a target consists of multiple dominant

scatterers [1]. The points are located in a 2-dimensional space as illustrated by an example in Figure 1. A rigid body

is assumed, in that it is assumed that scattering centres (scatterers) do not wander over the body of the target as the

target moves, i.e. they are fixed to the target frame. Not all types of scatterers obey this assumption, and in Section

II-A, the motion noise parameters can accommodate scatterers that do wander over the rigid body within limits.

However, more accurate charaterisation of such wandering scatterers may be required in future investigations. This

similar to the standard point target assumption in much of the ISAR radar literature [19].
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Fig. 1. Example of a target represented with dominant scatterers. Zero reference point of axes shifted to [10000,0].

It is assumed that the number of persistent scatterers M is fixed and constant during the observation period [20].

The expected approach would be to choose the M most dominant scatterers at the beginning of the simulation to

track them throughout. This is not an entirely unreasonable assumption, since dominant scatterers may very well

be persistent over the small target rotation angle which is required to localise scatterers and estimate the motion

parameters. For an aerial target undertaking a rate 2 turn, this amounts to 0.64 seconds or 3.7 degrees of target

rotation. The dimensions in Figure 1 are referred to as the down-range, x→, and cross-range, x⊥, respectively. The

radar is stationary and located at the origin of the co-ordinate system. The down-range dimension corresponds to

the look direction of the radar. The cross-range dimension is perpendicular to the down-range dimension with the

origin at the centroid of rotation of the target. In the three-dimensional case, there are two cross-range dimensions,

one which is tangential to the azimuth arc at the point passing through the target’s centroid of rotation and the

other is tangential to the elevation arc at the point passing through the target’s centroid of rotation. For the purpose

of comparing directly to standard 2-D ISAR techniques, a two-dimensional case is considered with a down-range
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and a single cross-range dimension. Figure 2 illustrates the down-range and cross-range dimensions relative to a

target and the radar in a 2-D space. In this case, where the axis of rotation of the target does not lie in the azimuth

or elevation planes, cross range is defined as follows. The radar ISAR image plane is defined by two unit vectors

(iLOS, iΩ), where iΩ = (Ω × iLOS)/|Ω|, and Ω represents the target rotation axis vector in 3-D space. The vector

iLOS represents the down-range dimension and the vector iΩ defines the cross range dimension [21]. The projected

rotation axis perpendicular to the image plane Ωeff is given by Ωeff = iLOS × (Ω× iLOS).
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Fig. 2. Illustration of the axes relative to a target and the stationary radar.

Polar co-ordinates were selected for the representation of the location of the dominant scatterers to restrict

non-linearities in the observation generation functions. The state vector is given by

xk =
[
r1,k, θ1,k, . . ., rM,k, θM,k, ωk

]
, (1)

where rc,k and θc,k represent the radius and angle of the scatterer c = [1, . . . ,M ] relative to the centroid of

rotation and the cross-range axis respectively, and ωk is the angular velocity of the target at discrete time instance k.

An example of the state space representation of a random target consisting of two dominant scatterers is illustrated

in Figure 3.
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Fig. 3. Illustration of how the state vector relates to a target. The centre point on the target represents the centroid of rotation.
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The true states of the target are hidden but are also related to a set of observations that are obtained at each time

step. A state space model consists of models for the observations and the dynamics of the states. The state space

model is represented by the following equations

xk = a(xk−1,wk),

yk = b(xk,vk),
(2)

where xk and yk represent the states and observations at discrete time instant k respectively, wk and vk represent

stochastic variables modelling the noise disturbances in the state dynamics and observations respectively, and a(·)

and b(·) represent non-linear generation functions for the states and observations. A probabilistic equivalent to Eq.

(2) is given by

xk ∼ f(xk|xk−1),

yk ∼ g(yk|xk).
(3)

where f(·) is referred to as the state transitional density and g(·) is referred to as the observation density. The

Markovian property is assumed for both models [17].

A. Motion Model

The motion of each dominant scatterer is directly related to the motion of the target. However, a stochastic

variation between scatterers was also included. The rotational motion of the target was modelled with a discrete

almost constant angular velocity random acceleration model [22]. The motion model for each state is given by

rc,k = rc,k−1 + pc,k,

θc,k = θc,k−1 + ωk−1∆t+
1

2
∆t2qk,

ωk = ωk−1 + ∆tqk,

(4)

where ∆t represents the constant time that is elapsed between discrete time steps, and pc,k and qk represent zero-

mean Gaussian random variables with respective standard deviations of σp and σq . Since the data is simulated,

the dynamic noise parameters are chosen and hence σp and σq are place holders to model real world uncertainty,

some aspects which are yet to be characterised. It is expected that in a real world problem, motion uncertainty may

enter in several forms, which may include turbulence in the case of an air target, as well as the fact that the real

scattering centres are not necessarily stationary on a rigid body. The random walk property which accompanies the

evolution of rc,k is to account for the fact that real scattering centres move over time, especially on curved surfaces

of the target. The choice of a almost constant angular velocity model for ωk is simply a first order choice and is a

standard model for Newtonian dynamics in the absence of significant accelerations.

B. Observation Model

The dominant scatterers were modelled with the point scatterer model which assigns a specific amplitude and

phase to each dominant scatterer. The signal received from the target consists of the complex summation of all
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scatterers. There are several different waveforms and signal processing techniques which can produce an HRR

profile [2]. A general expression for an HRR profile is represented by

so(t) =
∑
i

σRCSie
−j4πf0Ri

c f

(
t− 2Ri

c

)
+ en, (5)

where i represents the scatterer index, σRCSi represents the amplitude of the returned signal based on the radar

cross section for scatterer i, f(t) represents the point spread function, which is related to the bandwidth, B, of the

transmit waveform used by the radar, f0 represents the radar operating carrier frequency, c represents the speed of

light, en represents complex noise which is induced during the signal processing of the radar measurements and is

directly related to the signal-to-noise ratio (SNR), and Ri represents the distance between the radar and scatterer

i which is assumed fixed during the collection of data for a single HRR profile. The resolution of a range cell is

given by

∆Rcell = κ
c

2B
, (6)

where κ represents a scaling factor which takes into consideration any signal processing operations which degrade

the resolution, such as windowing [2]. The complex returns of all the scatterers which are located within a single

range resolution cell constructively or destructively interfere to result in a combined response. In this paper the

stepped frequency waveform (SFW) approach described in [1] was utilised to obtain an HRR profile, with the

addition of a zero mean Gaussian noise on the in-phase and quadrature channels of the radar receiver at a specific

SNR, prior to windowing and performing the inverse Fourier transform. This resulted in a discrete form of Equation

(5).

The observations extracted from each HRR profile include the range and phase of each dominant scatterer. In

addition to the extracted observations, the PF requires the stochastic relationship as described by Equation (3).

However, in this application, this relationship varies, depending on the type of scatterers residing in each range

cell of the HRR profile. All possible scenarios can be described by one of three categories [23]. The categories

include when a range bin contains a large number of small scatterers with no dominant scatterers; when a range

bin contains a number of small scatterers with a single dominant scatterer present; and when a range bin contains

a number of small scatterers with multiple dominant scatterers present. The observation models and application

of tracking dominant scatterers in this paper assumes the category which consists of at most a single dominant

scatterer within a range cell at any given time. Methods to deal with the case of multiple dominant scatterers in a

range cell are discussed later.

The first processing step performed is the thresholding of the magnitude of the HRR profile. This is performed

in order to isolate the peaks related to dominant scatterers. The threshold level is manually set according to the

SNR in the simulation. The discrete ranges corresponding to the peaks in the magnitude of the HRR profile are

then obtained through a basic peak detection algorithm. The corresponding range obtained from the peaks represent

the range to each dominant scatterer.

July 15, 2014 DRAFT



8

1) Range Measurement: This measurement describes the physical distance between the radar and the scatterer.

In terms of the hidden states, the generation function for each observation is modeled as

Rc,k =

√
(rc,k cos(θc,k) + x→× )

2
+ (rc,k sin(θc,k))

2
+ vk, (7)

where x→× represents the location of the centroid of rotation in the down range, and vk is a zero-mean Gaussian

random variable. Although in reality x→× is dynamic and unknown, here it is assumed to be static and known. The

reason for this assumption is based on the fact that the scatterers’ state information in the range and cross-range

dimensions is derived from the rotation of the rigid body. Adding motion to the centroid of rotation will simply add

an equal translational component to the motion of all the scatterers. Hence the special case of a rotating rigid body

with a stationary centroid of rotation is considered here. In a more realistic setting where x→× has motion, the state

of x→× can be modelled by augmenting xk with the state variables of x→× and specifying an appropriate motion

model for these state variables. Since the motion of the target centroid x→× is severely constrained on the time

scale which is considered here, a simple almost constant velocity motion model [24] would suffice. Furthermore,

motion compensation algorithms exist which could remove the velocity component of x→× an can be found in [5],

[25]–[27] and [28]. The method presented in this paper can be extended using the state augmentation approach or

any of these motion compensation algorithms, but falls beyond the scope of this paper.

Note that the cross range origin always corresponds to the centroid of rotation in the cross range dimension, and

the locations and motion of scatterers are always relative to this origin. Hence the absolute location of the cross

range origin does not need to be known or estimated. The only constraint is that all scatters need to be inside the

angular extent of the radar beam.

2) Phase Measurement: The range to each dominant scatterer is the only information that can be extracted

from the magnitude of the HRR profile and was the only information extracted in the previous work presented in

[18]. However, additional information can be extracted from the complex HRR profile by finding the phase at the

extracted range to each dominant scatterer. The absolute phase measurement is a highly accurate range measurement

which suffers from very large degrees of ambiguity. The progression of phase, referred to as the delta phase, is the

difference in absolute phase of each scatterer between two consecutive HRR profiles. The delta phase measurement

is still ambiguous on the interval [−π;π] but is substantially less likely to wrap around the range in comparison

with the absolute phase. The generation function for the delta phase of each scatterer is given by

∆φc,k =
4π∆Rc,k

λ
+ eφ, (8)

where

∆Rc,k =

√
(rc,k cos(θc,k) + x→× )

2
+ (rc,k sin(θc,k))

2

−
√

(rc,k−1 cos(θc,k−1) + x→× )
2

+ (rc,k−1 sin(θc,k−1))
2
,

λ is the wavelength of the transmitted signal, and eφ is a noise term which corresponds to the effects of the complex

noise term in Eq. (5) on the delta phase measurement of each scatterer. The effect of this noise on the delta phase,
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eφ, was modeled with the von Mises distribution, also commonly known as the circular Gaussian distribution [29],

due to the circular interval that the delta phase is defined on. The Von Mises functional form was verified by fitting

the model to samples generated by simulation. The probability density function of the Von Mises distribution is

given by

p(θ|θ0,m) =
1

2πI0(m)
exp{m cos(θ − θ0)} θ ∈ [0, 2π) (9)

where I0(m) is the zeroth-order Bessel function of the first kind, θ0 is the mean, and m is the concentration

parameter. The mean and concentration parameter are analogous to the mean and inverse variance of a univariate

Gaussian respectively. In this application the mean was equal to 0 and the concentration parameter was found to

be dependent on the SNR in the radar simulator.

When compared with the general expression typically used to describe the observation generation equation in

Eq. (2), the generation function in Eq. (8) is dependent on the state at the previous time step which violates the

Markovian property of the state space model [17]. The state vector was augmented with the states from the previous

time step to prevent the violation of the Markovian property, since it is a fundamental property in the development

of the state estimation algorithm. The observation vector is thus finally given by

yk =
[
R1,k,∆φ1,k, . . ., RM,k,∆φM,k

]
. (10)

It is required to perform data association in order to correctly label the extracted measurements. Data association

is not the focus of this study, and classical global nearest neighbour data association [30] was selected to be used

in our application. It was implemented using the auction algorithm. Any of the more advanced data association

techniques may also be used and these include multiple hypothesis tracking [31], joint probabilistic data association

[30] and probabilistic multiple hypothesis tracking [32].

III. DYNAMIC STATE ESTIMATION

Utilising a Bayesian framework, the tracking density of interest is the filtering distribution, p(xk|y1:k). A closed

form expression for the filtering density is not tractable due to non-linearities and non-Gaussian noise present in

the state space model.

A. The Particle Filter

Particle filtering is a technique which allows for the acquisition of a discrete estimate for the filtering distribution,

p̂(xk|y1:k) =
1

N

N∑
i=1

δiXk
(xk), (11)

where Xi
k ∼ p(xk|y1:k) and N represents the total number of samples selected for the representation. The PF

achieves this discrete representation through a sequential algorithm based on the application of sequential importance

sampling [17]. Initially, a set of N samples, also referred to as particles, are selected from the prior distribution.
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The particles are then weighted according to the first set of observations received. At each time step, two operations

are performed. The particles are propagated through the state space by the application of a proposal distribution,

Xi
k = qk(xk|Xi

k−1,yk), (12)

where i represents the particle index, followed by the evaluation and normalisation of the importance weights,

wik = wik−1

g(yk|Xi
k)f(Xi

k|Xi
k−1)

qk(Xi
k|Xi

0:k−1,y1:k)
, (13)

w̃ik =
wik∑N
j=1 w

j
k

. (14)

This results in a discrete approximation for the filtering distribution at each time step, in the following form

p̂(xk|y1:k) =

N∑
i

w̃ikδ
i
Xk

(xk). (15)

Although theoretically sound, this procedure is prone to weight degeneracy. Weight degeneracy occurs since the

variance of the importance weights increases over time [33]. Essentially, a single particle will tend to have a

normalised weight of 1, while the other particles’ weights tend towards zero, resulting in a poor representation of

the posterior distribution. To partially overcome weight degeneracy, the introduction of a resampling step after the

evaluation of the importance weights was proposed [16], [34]. Through resampling, particles which contain higher

weights are duplicated while particles with lower weights are eliminated, greatly alleviating the weight degeneracy

problem. However, resampling may cause sample impoverishment, which is when particles with high weights are

favoured to a large degree and can ultimately result in the entire set of particles being duplicates of a single

particle. In order to prevent sample impoverishment, it has been proposed [35] to only perform resampling when

weight degeneracy is severe. There are several measures of weight degeneracy that are utilised to determine when

resampling should be performed. A commonly used measure is the effective sample size (ESS) [36],

N̂eff =
1∑N

i (w̃ik)2
. (16)

A value of 1 would indicate that all the probability mass is assigned to a single particle, indicating severe degeneracy,

and conversely, the effective sample size approaches N when the weights tend to be uniformly spread among the

particles. After resampling, the discrete approximation for the filtering distribution is given in Equation (11).

Two important practical design considerations in particle filtering are particle filter initialisation and the choice

of proposal distribution.

1) Particle Filter Initialisation: It is imperative that the prior distribution is sufficiently defined in order to

initialise the particles in highly probable regions in the state space. It is assumed that the target is non-cooperative.

Hence, the prior information known about the target is limited to the maximum possible extent of the target, based

on the radar operating parameters, and the assumption that the motion model accurately describes the motion of the

target. Observing two HRR data points results in two range measurements and a single delta phase measurement.

It is proposed that these observations could aid in obtaining a more accurate particle initialisation. The mapping

between the state space and the observation space is represented by the observation generation functions in Equations
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(7) and (8). However, this is not a unique mapping and any observation, when mapped to the state space, can result

in many different locations in the state space. This is further influenced by the noise of the observation process. The

aim is to populate particles in all the regions of the state space which could result in the observations received. The

first step is to perturb the observations by the noise which is associated with the observation generation functions.

This may move the observations possibly towards observations that represent the mapping of the true states to the

observation space. After this step it is assumed that the noise terms in the observation generation functions are

removed, resulting in a noiseless mapping between the state space and observation space,

Rc,k =

√
(rc,k cos(θc,k) + x→× )

2
+ (rc,k sin(θc,k))

2

∆φc,k =
4π∆Rc,k

λ
,

(17)

where ∆Rc,k = Rc,k − Rc,k−1. However, these relationships do not describe a mapping between the observation

space and the state representing the angular velocity of the target. A relationship was derived to relate the

observations to the angular velocity dimension in the state space. Firstly, the delta phase observation is related

to the difference in range for each scatterer through

∆Rc =
∆φcλ

4π
. (18)

The difference in range is related to the radial velocity of the scatterer through

vr,c =
∆Rc
∆t

. (19)

The radial velocity is related to the angular velocity of the overall target and the down- and cross-range location

of the specific scatterer through

vr,c = v cos θa,c

vr,c = ωrc cos θa,c

vr,c ≈ ω
√

(x→c − x×)
2

+ x⊥c
2

cos

(
π

2
+ tan−1

(
x⊥c

x→c − x×

))
,

(20)

where θa,c represents the angle between the radar and the velocity vector of scatterer c, and is not to be confused

with the angles in the state space. The further away a dominant scatterer is from the centroid of rotation, the larger

the distance that the scatterer moves given the same angular velocity. By making the angular velocity the subject

of the formula in Equation (20), and substituting the maximum cross-range location for any scatterer and the range

observation as the down-range location results in a minimum possible angular velocity for the target

ωmin,c =
vr,c√

(Rc − x×)
2

+ x⊥max
2

cos
(
π
2 + tan−1

(
x⊥max

Rc−x×

)) . (21)

Finding the maximum of the minimum angular velocities determined for each dominant scatterer results in the

minimum angular velocity of the target for the specific particle due to the rigid body assumption,

ωmin = max
c
ωmin,c. (22)
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The relationship between the range observation and the down-range and cross-range locations of each scatterer is

given by

Rc =

√
x→c

2 + x⊥c
2
. (23)

Making the down-range location in Equation (23) the subject of the formula, and substituting into Equation (20)

result in

vr,c = ω

√(√
R2
c − x⊥c

2 − x×
)2

+ x⊥c
2

cos

π
2

+ tan−1

 x⊥c√
R2
c − x⊥c

2 − x×

 .

(24)

After determining the minimum angular velocity for the particle, the angular velocity state is initialised according

to

ω ∼ U(ωmin, ωmax), (25)

where ωmax is the maximum angular velocity fixed in simulation. The sampled angular velocity is then substituted

into Equation (24). With the knowledge of the radial velocity and range for each scatterer, the only unknown

variable in the equation is the cross-range location. Once the cross-range location was inferred for each scatterer,

the value was substituted into Equation (23) to obtain a corresponding down-range location. The down-range and

cross-range locations for each scatterer were then converted into the polar domain. This process was repeated for

the initialisation of each particle.

2) Choice of Proposal Distribution: Theoretically, there is an infinite number of possible choices for the proposal

distribution, as the only criteria for the proposal distribution is that its support must include that of the filtering

distribution [37]. However, the optimal proposal distribution is the distribution which minimises the variance of the

importance weights [38],

qk(xk|Xi
k−1,yk) = p(xk|Xi

k−1,yk). (26)

Substituting this proposal distribution into Equation (13) results in the following iterative importance weight update

wik ∝ wik−1p(yk|Xi
k−1) = wik−1

∫
g(yk|xk)f(xk|Xi

k−1)dxk. (27)

However, sampling from this proposal distribution and solving the integral in Equation (27) are not possible with the

exception of very few state space models. Alternatives to implementing the optimal proposal distribution include us-

ing sub-optimal proposal distributions and using approximations of the optimal proposal distribution. A popular sub-

optimal choice for the proposal distribution is the state transitional density [16], qk(xk|Xi
k−1,yk) = f(xk|Xi

k−1).

This selection of proposal distribution is commonly referred to as the bootstrap particle filter (BPF). Subsequently,

the importance weights are then updated according to

wik = wik−1g(yk|Xi
k). (28)
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The BPF has the advantage of reducing the computational complexity required for the calculation of the importance

weights. However this choice of proposal distribution fails to take the current observation into account when

propagating the particles through the state space.

There are also several approaches which approximate the optimal proposal distribution. One of the most notable

approaches is referred to as the unscented particle filter (UPF) [39]. The UPF approximates the optimal proposal

distribution with a Gaussian distribution. The UPF achieves this approximation through the implementation of

the unscented Kalman filter (UKF). The UKF is based upon the scaled unscented transformation (SUT), which is

essentially a method for determining the statistics of a random variable which undergoes a non-linear transformation.

The UPF has been shown to perform well in applications in which the likelihood density is peaked relative to

the state transition density as illustrated in Figure 4.

Likelihood DensityLikelihood Density

State Transition DensityState Transition Density

Fig. 4. Illustration of the likelihood density in terms of the state space and state transition density.

This is due to the fact that the proposal distribution takes the latest observation into account. This allows the

filter to move the particles into areas which result in high likelihoods. However, the problem faced in this specific

application, is that the state transition density is peaked relative to the prior distribution. The prior distribution

has a relatively large extent, in the order of metres, due to the limited information of the target available during

filter initialisation. The state transition density has a relatively small extent, in the order of millimetres for the

radar parameters utilised, due to the small amount of motion incurred between the collection of HRR profiles. The

limited motion between HRR profiles is required to prevent delta phase wrap. This results in the degeneration of

the estimates obtained from the UPF. Unlike the BPF, the weight for each particle in the UPF is dependent on the

state transition density, as noted by Equation (13). The mismatch between the prior distribution and state transition

density results in the weights obtaining a value of zero due to particles being moved to locations in the state space

where the state transition density approaches zero. As such the BPF was the selected technique.

B. Annealed MCMC step

The resample-move method of Gilks and Berzuini [40] together with simulated annealing [41] are used to mitigate

the degenerative nature of this inference problem. This method consists of adding a single Markov Chain Monte

Carlo (MCMC) Metropolis Hastings step after particle filter resampling. The proposal distribution for the MCMC

step was chosen as a Gaussian with 1cm standard deviation in the down-range and a 30cm standard deviation in
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Fig. 5. Trajectory of a random target consisting of 6 dominant scatterers. Zero reference point of axes shifted to [10000,0].

the cross-range. A move in the angular velocity dimension of the state vector was found not to be necessary. The

weight ratio of the proposed particle state X̄i
k to the original particle state Xi

k is used to determine if the proposed

move is accepted. The proposed particle state is accepted with probability

Pa(i, k) = min

(
1,
w̄ik
wik

)
, (29)

where w̄ik is the calculated weight of the proposed particle state. As motivated in [40] each selected particle, before

moving is approximately distributed according to the posterior distribution. Hence after the move, the particle

remains approximately from the posterior distribution, and as such the typical MCMC burn-in period is not required.

Simulated annealing was effected as follows. The BPF is initialised with a 10 fold increase in both the variance for

the delta phase and range observations to obtain the results in this paper. The annealing schedule is implemented

such that the variances are decreased at equal intervals on a logarithmic scale such that the true observation variance

is reached by the time half of the HRR profiles were processed. This means that during processing of the second

half on the HRR profiles, filtering is performed using actual variances on the state dynamics and observations as

generated by the radar and target simulator. Annealing allows for particles to initially explore the state space than

would otherwise be possible, roughly finding the modes of the true posterior, while as real time progresses, the

particles are increasingly concentrated around the support of the very peaked true posterior distribution.

IV. RESULTS

The simulated target is a disc with a radius of 7m containing six dominant scatterers that are randomly located

within a quarter of the disc. Figure 5 illustrates the starting location, final location and trajectory for each of the

dominant scatterers on the disc. The parameters of the target and its motion are listed in Table I. The parameters

relate to an air target undergoing a rate 2 turn. The parameters σp and σq were chosen such that the resulting

scatterer motion does not induce phase wrap in the delta phase measurement, such as observed in real HRR data

of a dominant scatterer depicted in Figure 11. The simulated radar operating parameters are summarized in Table
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TABLE I

DEFINING PARAMETERS OF THE RANDOM TARGET.

Parameter Parameter Value

Number of dominant scatterers 6

Angular velocity (ωr) 0.1 rad/s

Centroid of rotation co-ordinates([x×, 0]) [10013, 0] m

Motion model std. deviations ([σq , σp]) [1× 10−3m, 1× 10−9m.s−2]

Total time elapsed 0.64 s

Time difference between points (∆t) 6.4 ms

TABLE II

SFW BASED HRR RADAR SIMULATOR PARAMETER VALUES.

Radar Parameter Parameter Value

Step Frequency (∆f ) 10 MHz

Number of Pulses per HRR profile (n) 64

Centre Frequency (f0) 10 GHz

Effective Pulse Repetition Frequency (PRF ) 10 KHz

Signal-to-noise Ratio (SNR) 20dB (10dB, 15dB in Table III)

Range resolution 23.42 cm

II. These are based on a practical radar measurement experimental setup used for target classification research and

is based at the CSIR in South Africa. The SNR values given are after HRR processing (i.e. with signal processing

gain). The marginal filtering distribution for the state representing the angular velocity for all time steps is illustrated

in Figure 6. The intensity of gray indicates the density of particles in that region of the state space. The states
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Fig. 6. The marginal filtering distribution for the angular velocity.
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Fig. 8. ISAR image produced through standard Doppler processing techniques. Zero reference point of axes shifted to [10000,0].

corresponding to the range and angle of each of the scatterers were converted to the down-range and cross-range

dimensions. Figure 7 illustrates the log of the joint marginal filtering distribution for the final time step for the

down-range and cross-range location of the dominant scatterers. As can be expected, the distribution is more diffuse

in the cross-range dimension than the range dimension, since the cross-range locations are not observed directly,

but are inferred from the motion of the target over several HRR profiles. This is contrasted to the equivalent ISAR

image generated through standard range-Doppler processing of the HRR profiles in Figure 8. Here the classical

motion compensation by Haywood [42] and the dominant scatterer algorithm (DSA) [43] auto focusing methods

were used as a baseline for comparison. The root mean-square-error (RMSE) determined from the converted state

estimates over 50 simulation runs is given in Table III. In the down-range dimension, the PF method attains a

location accuracy in the order of 1/10th of the wavelength of the centre frequency. The accuracy in the cross range

dimension is about 4 times the wavelength of the centre frequency. Note that the target rotation rate is estimated

jointly with the scatterer positions, and hence the location accuracy does not necessarily need to be in the order of
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TABLE III

RMSE CALCULATED OVER 50 INDEPENDENT MONTE CARLO RUNS.

State (SNR = 10 dB) x→1 (mm) x⊥1 (mm) x→2 (mm) x⊥2 (mm) x→3 (mm) x⊥3 (mm) x→4 (mm)

RMSE 4.5 243.7 3.8 295 3.4 278.8 10.4

σRMSE 0.6 5.1 0.9 70 0.6 91 0.5

State (SNR = 10 dB) x⊥4 (mm) x→5 (mm) x⊥5 (mm) x→6 (mm) x⊥6 (mm) ω (mrad/s)

RMSE 223.7 7.9 320.04 4.1 494.9 8.4

σRMSE 99.2 0.5 154.2 0.8 200.5 3.5

State (SNR = 15 dB) x→1 (mm) x⊥1 (mm) x→2 (mm) x⊥2 (mm) x→3 (mm) x⊥3 (mm) x→4 (mm)

RMSE 1.3 57.9 2.1 150.6 3.1 192.5 1.6

σRMSE 0.3 2.8 0.4 57.0 0.2 63.3 0.2

State (SNR = 15 dB) x⊥4 (mm) x→5 (mm) x⊥5 (mm) x→6 (mm) x⊥6 (mm) ω (mrad/s)

RMSE 157.2 2 228.1 1.8 318.7 5.3

σRMSE 70.8 0.3 98.4 0.3 141.5 1.5

State (SNR = 20 dB) x→1 (mm) x⊥1 (mm) x→2 (mm) x⊥2 (mm) x→3 (mm) x⊥3 (mm) x→4 (mm)

RMSE 2.1 81.2 2.3 115.4 2.2 141.5 2.1

σRMSE 1.4 43.5 0.9 57.5 1.0 76.9 1.1

State (SNR = 20 dB) x⊥4 (mm) x→5 (mm) x⊥5 (mm) x→6 (mm) x⊥6 (mm) ω (mrad/s)

RMSE 122.4 1.8 146.4 1.7 190.5 4.5

σRMSE 62.2 0.9 74.6 0.9 102.7 1.6
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Fig. 9. The marginal filtering distribution for the angular velocity when only two dominant scatterers are observed.

1/10 of the carrier frequency wavelength to obtain a useful result.

The effect of decreasing the number of dominant scatterers being tracked was investigated by eliminating dominant

scatterers 1 and 3 to 6 of the target illustrated in Figure 5. The resulting marginal filtering distribution for the state

representing the angular velocity for all time steps is illustrated in Figure 9. Hence, considering more scatterers in

the estimation process has the effect of reducing the uncertainty in the target motion estimates.
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V. DISCUSSION

Table III shows that PF scatterer position estimate accuracies over 50 Monte Carlo runs are typically in the

order of millimetres in the down-range dimension and decimetres in the cross-range dimension. When the SNR is

degraded from 20dB to 10dB, there is not a significant degradation in location accuracies. At poor SNR values, the

limitation becomes correct data association, since noise peaks in the HRR profile start to cross the threshold. In such

cases the GNN association algorithm will need to distinguish between noise and scatterer return threshold crossings.

If dominant scatterers can be accurately identified at the start of the tracking window, the GNN data association

does maintain these even if occasional noise threshold crossings do occur. These threshold crossings typically occur

at SNR values between 5dB and 10dB. In addition to unwanted threshold crossings, dominant scatterer returns may

also fail to cross the threshold, owing to scatterers being suppressed by destructive interference with noise. These

cases are currently not handled by PF and should be addressed in future work. However if the SNR deteriorates

enough (below 5dB), the data association will fail, and consequently also the PF method. This could be mitigated to

some extent by utilising advanced data association methods such as joint probabilistic data association or multiple

hypothesis tracking.

Comparing Figure 7 and 8 illustrates the difference in results obtained with the PF approach and the range-

Doppler ISAR processing equivalent. The particles in the PF represent the most likely hypothesis for the true state

given the noisy observations. The PF location estimates are more accurate than the ISAR image, and the latter also

contains unwanted artifacts owing to Fourier processing. Table IV highlights the differences between ISAR and the

PF approach presented. ISAR makes use of pre-processing methods to compensate for the motion of the target and

Doppler processing to form an image. The method proposed in this work uses a parametric model of the motion

and observation of the scatterers on the target. This incorporates prior information about how the motion of the

scatterers is constrained and how they are observed. Hence, higher location accuracies can be expected than with

ISAR, since a prior understanding of the process which generates the data is implicitly incorporated in the model.

ISAR processing is not dependent on the number of scatterers present in an HRR profile. In contrast, the state

dimensionality of the particle filter increases with the number of scatterers, hence increasing the computational

complexity of the filter. This results in a constraint on the number of scatterers that can be processed. The

PF approach requires data association, and in this case, global nearest neighbour data association is used. Data

association may be altogether averted if random finite set tracking is used [44], although this would entail an

entirely new study. ISAR processing does not directly produce an image with a cross-range dimension and further

processing would be required to convert the radial velocity dimension into the cross-range dimension. The PF

approach can process new data sequentially on-line, whereas the ISAR algorithm requires the data to be batched

for off-line processing. Finally, the PF approach can be extended to tracking scatterers in three dimensions, through

the addition of an extra spatial dimension for each of the scatterers and a corresponding modification of the

motion model to accommodate motion in three dimensions. Although this is to be verified in future work, it is

expected that this method will again outperform 3-dimensional ISAR, owing to the use of parametric models for
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TABLE IV

A COMPARISON BETWEEN ISAR AND THE PF APPROACH.

ISAR PF Approach

Type of scatterers processed All Dominant Only

Computational complexity Low High

State dimension dependent N/A Yes

Dependent on data association N/A Yes

Motion parameter estimates No Yes

Cross-range directly available No Yes

Type of processing Batch Batch/Sequential

Extension of results to a 3-D space Challenging Straightforward

the motion and observation equations. This improvement will incur computational complexity owing to the fact

the more parameters would have to be estimated. Even though there are certain cases for which the motion of the

target based on the HRR observation is ambiguous, the particle filter, if implemented correctly should maintain a

representation of this ambiguity. A particular challenge of current 3-D ISAR methods is related to the compounding

of errors in the estimation of rotation axis and rate [45], [46]. It is the opinion of the authors that the model based

approach followed here also has a better chance than existing 3-D ISAR methods at addressing phase errors owing

to interfering scatters, and this is explored in the next section. If a suitable technique can be found to visualise the

particle clouds of the PF in three dimensions, and enough scatterers can be considered, this method may in future

form the basis of a new radar imaging scheme.

This algorithm was originally developed with air targets in mind and hence the effect of clutter was not considered.

In the case of surface targets, such as the example presented in the next section, it is expected that the algorithm

would reject clutter effectively, owing to the peaked nature of the likelihood. Hence particles associated with

scatterers that do not adhere to the expected motion of the target (such as clutter) are expected to receive very low

weights.

VI. FUTURE INVESTIGATION

Future research will focus on removing simplifying assumptions and extending the framework to handle real

world data (RWD). Preliminary studies to meet these ends have been conducted and are presented in this section.

Unlike the ideal dominant scatterer based model simulations utilized in this paper, HRR profiles based on RWD

may be influenced by several additional factors, such as returns from weak scatterers and additional scattering

mechanisms. In order to address these factors, several pre-processing steps and adjustments to the framework

presented may be required. An important step in the framework presented is the extraction of observations of the

dominant scatterers from the HRR profiles. All measurements above a specific threshold in the magnitude of the

HRR profile were assumed to be considered as dominant scatterers. This may not necessarily be valid for RWD.
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The reason for this is due to the assumption that two dominant scatterers are not located within the same range

bin. However, this may occur in RWD. When two or more dominant scatterers are located in the same range

bin, the complex returns from the scatterers are combined into a single result for the given range bin. This may

result in constructive or destructive interference which can lead to an increase or decrease in the amplitude of the

magnitude of the HRR profile, and a change in the delta phase observed. By analysing RWD it is noted that range

bins which consist of only a single dominant scatterer have a relatively consistent delta phase when compared to

range bins which consist of multiple scatterers. This is illustrated in Figures 10 to 12 below. Figure 10 consists of

the magnitude of a set of range aligned HRR profiles obtained from a maritime vessel [47]. Analysing Figure 10,

it is clear that a dominant scatterer is located within the region of range bin 37. The delta phase for range bin 37

is illustrated in Figure 11. To contrast, the delta phase for range bin 31, which may consist of multiple scatterers,

is illustrated in Figure 12. The variability of the delta phase can be used to distinguish between range bins which

consist of single dominant scatterers or multiple dominant scatterers by monitoring the delta phase prior to tracking.

As an extension, it was found that the shape of the probability distribution of the delta phase of a specific range

bin is directly related to the types of scatterers located within the range bin. Hence, characterising the probability

distribution of the delta phase in a range bin prior to initialisation and tracking could aid in identifying range

bins consisting of dominant scatterers. Further, after the filter is initialized to track a set of dominant scatterers,

additional steps can be taken to identify new dominant scatterers as well as to identify when dominant scatterers

may merge into a single range bin. Future investigations would therefore be aimed at extending the framework to

support a variable dimension state space, along the lines of [14].
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Fig. 11. The delta phase for range bin 37 of Figure 10.
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