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Abstract Let {pn}∞n=0, where pn is a polynomial of degree n, be a sequence
of polynomials orthogonal with respect to a positive probability measure. If
x1,n < · · · < xn,n denotes the zeros of pn while x1,n−1 < · · · < xn−1,n−1 are
the zeros of pn−1, the inequality

x1,n < x1,n−1 < x2,n < · · · < xn−1,n < xn−1,n−1 < xn,n,

known as the interlacing property, is satisfied. We use a consequence of a
generalised version of Markov’s monotonicity results to investigate interlacing
properties of zeros of contiguous basic hypergeometric polynomials associated
with little q-Jacobi polynomials and determine inequalities for extreme zeros
of the above two polynomials. It is observed that the new bounds which are
obtained in this paper give more precise upper bounds for the smallest zero of
little q-Jacobi polynomials, improving previously known results by Driver and
Jordaan [9], and in some cases, those by Gupta and Muldoon [17]. Numerical
examples are given in order to illustrate the accuracy of our bounds.
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1 Introduction

The notion of basic hypergeometric series can be traced back to 1748, when
Euler considered an infinite product of the form

∞∏
k=0

(1− qk+1)−1

as a generating function for p(n), the number of partitions of a positive integer
n into positive integers (cf. [16, p. 239]). It was only 100 years later that
a systematic treatment of basic hypergeometric series was attempted, when
Heine [19] converted the simple observation that limq→1[(1 − qa)/(1 − q)] =
a, a ∈ C into a theory of 2φ1 hypergeometric series analogous to that for 2F1

hypergeometric series developed by Gauss. For more detail on this q-extension
of hypergeometric series we refer to the books by Gasper and Rahman [16],
Ismail [20] as well as the recent books by Koekoek, Lesky and Swarttouw [27]
and Ernst [14].

Let {pn}∞n=0, where pn is a polynomial of degree n, be a sequence of polyno-
mials orthogonal with respect to a positive probability measure. Then pn has
n real, simple zeros which lie in the interior of the convex hull of the support
of the measure and, if x1,n < x2,n < · · · < xn,n denotes the zeros of pn while
x1,n−1 < x2,n−1 < · · · < xn−1,n−1 are the zeros of pn−1, the inequality

x1,n < x1,n−1 < x2,n < · · · < xn−1,n < xn−1,n−1 < xn,n, (1)

called the interlacing of zeros, holds. A classical theorem due to Stieltjes (cf.
[34, Theorem 3.3.3]) proves that, for m < n, there is at least one zero of pn
in between any two consecutive zeros of pm, a property known as Stieltjes
interlacing.

Interlacing of zeros of orthogonal polynomials was studied by several authors.
Levit [30] was the first to study interlacing properties of zeros of Hahn poly-
nomials from different orthogonal polynomials in 1967. In 1984, Askey [16]

proved that the zeros of Jacobi polynomials Pα,βn and Pα+1,β
n−1 interlace and he

conjectured that the zeros of Pα,βn and Pα+2,β
n−1 interlace. Further results were

obtained in [6], [7], [11], [12] and [13] for the classical orthogonal polynomials
such as Jacobi and Laguerre polynomials, for discrete orthogonal polynomials
in [24] and for linear combinations of orthogonal polynomials in [4], [5], [26]
and [33].

The mixed recurrence relations used to prove Stieltjes interlacing of the ze-
ros of two polynomials from different sequences provide a set of points that
can be applied as inner bounds for the extreme zeros of continuous and dis-
crete orthogonal polynomials (cf. [8]). Classical methods to obtain bounds for
zeros of orthogonal polynomials include the use of difference equations, Stur-
mian methods for differential equations (cf. [34]), Markov’s theorem (cf. [31]),
Obrechkov’s theorem (cf. [32]) and the Hellmann-Feynmann theorem (cf. [20]).
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Examples where these and other methods are applied to zeros of classical or-
thogonal polynomials of a discrete variable can be found in [29], [28], [1] and
[2].

Ismail questioned whether similar techniques to those used for classical orthog-
onal polynomials could be used to prove inequalities satisfied by the zeros of
q-orthogonal polynomials at the OPSFA 2007 conference in Marseille. In [25],
mixed recurrence relations obtained from generating functions of Al-Salam-
Chihara, q-Meixner-Pollaczek, q-ultraspherical and q-Laguerre polynomials
were used to prove interlacing properties of the zeros for these q-orthogonal
polynomials with shifted parameters. In the present sequel, we study interlac-
ing properties of the zeros of little q-Jacobi polynomials using a consequence of
the generalised version of Markov’s monotonicity result (cf. [20, Thm. 7.1.1])
and the connection of little q-Jacobi polynomials with 2φ1 hypergeometric
polynomials. The results obtained are applied to obtain inequalities satisfied
by the extreme zeros of little q-Jacobi polynomials which improve inequalities
obtained in [9] and, in some cases, also those in [17],

We will assume throughout this paper that 0 < q < 1. Little q-Jacobi poly-
nomials are discrete orthogonal on (0,∞) with respect to the weight function
(cf. [16, 7.3.3], [3, p. 592], [27, 14.12.2])

w(x) =
αxqx(βq; q)x

(q; q)x
, x = 0, 1, 2, · · ·. (2)

which is positive for 0 < q < 1, αq > 0 and βq < 1. In order to let the
moments exist, we impose 0 < αq < 1.

Little q-Jacobi polynomials were introduced by Hahn [18] and are of the form

pn(α, β; q;x) = 2φ1(q−n, αβqn+1;αq; q, xq), (3)

where the 2φ1 hypergeometric series (cf. [16]) is defined by

2φ1(a, b; c; q, x) =

∞∑
k=0

(a; q)k(b; q)k
(q; q)k(c; q)k

xk, (4)

with

(a; q)k =

{
1; k = 0,∏k−1
m=0(1− aqm); k ∈ N.

(5)

The product (5) is referred to as the q-shifted factorial. It is assumed in (4)
that c 6= q−m for m = 0, 1, 2, · · · . Furthermore, we note that (cf. [27, 14.12.15])

lim
q→1−

pn(qα, qβ ; q;x) = Pα,βn (1− 2x)/Pα,βn (1),

where Pα,βn (z) denotes Jacobi polynomials (cf. [27, 9.8.1]) and

lim
q→1−

2φ1(qa, qb; qc; q, x) = 2F1(a, b; c;x).
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Here 2F1(a, b; c; z) is the Gaussian hypergeometric function.

Note that (cf. [16])

(a; q)x =
(a; q)∞

(aqx; q)∞
for x ∈ C and |q| < 1 (6)

where

(a; q)∞ =

∞∏
m=0

(1− aqm),

which agrees with (5) for x = 0, 1, 2, · · · but holds for x ∈ C when aqx 6= q−k,
k = 0, 1, 2, · · · and the principal value of qx is taken (cf. [20]). This implies
that the little q-Jacobi weight (2) is defined for general x and in particular for
x ∈ (0,∞). We analyse inequalities satisfied by the zeros of different sequences

of 2φ1 hypergeometric polynomials and little q-Jacobi polynomials in order to
obtain an inner bound for the extreme zeros that improves the upper bound for
the smallest zero of little q-Jacobi polynomials in [9] and, for certain parameter
values, the bound due to Gupta and Muldoon (cf. [17]). Our method of proof
requires a generalisation of a result on inequalities satisfied by the zeros of
two polynomials orthogonal with respect to different weights (cf. [34, Thm.
6.12.2]). We prove this result and the contiguous relations satisfied by 2φ1
hypergeometric series that we need in the next section where we also discuss
other preliminary material.

2 Preliminary results

The following generalised version of Markov’s theorem, which describes the
manner in which the zeros of a polynomial change as the parameter changes,
is stated as an exercise in [15, Chap. 3, ex. 15] and can be applied to zeros of
certain discrete orthogonal polynomials.

Lemma 1 [20, Thm. 7.1.1] Let {pn(x; τ)}∞n=0 be orthogonal with respect to
dα(x; τ),

dα(x; τ) = ρ(x; τ)dα(x),

on an interval I = (a, b) and assume that ρ(x; τ) is positive and has continuous
first derivative with respect to τ for x ∈ I, τ ∈ T = (τ1, τ2). Furthermore,
assume that ∫ b

a

xj
∂ρ(x; τ)

∂τ
dα(x), j = 0, 1, 2, · · · , 2n− 1,

converge uniformly for every compact subinterval of T . Then the zeros of

pn(x; τ) are increasing (decreasing) function of τ, τ ∈ T , if
∂

∂τ
{ln ρ(x, τ)}

is an increasing (decreasing) function of x, x ∈ I.

We point out the following consequence which is analogous to [34, Thm 6.12.2].
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Lemma 2 Let Pn(x, τ) and Qn(x, τ) be orthogonal with respect to dα(x; τ) =
ω(x; τ)dα(x) and dβ(x; τ) = ω̃(x; τ)dβ(x) respectively where ω(x; τ) and ω̃(x; τ)
are positive and continuous functions on [a, b] and τ ∈ R.

If the ratio
ω̃(x; τ)

ω(x; τ)
is an increasing function of x for x ∈ [a, b], then

xν < Xν , ν = {1, 2, 3, · · · },

where x1 < x2 < · · · < xn and X1 < X2 < · · · < Xn are the zeros of Pn(x, τ)
and Qn(x, τ) respectively.

Proof For x ∈ [a, b], τ ∈ R, let ρ(x; τ, µ) = (1− µ)ω(x; τ) + µω̃(x; τ). Clearly
ρ(x; τ, µ) is positive and has a continuous partial derivative with respect to µ
for 0 < µ < 1.

∂ρ(x,τ,µ)
∂µ

ρ(x, τ, µ)
=

ω̃(x; τ)− ω(x; τ)

(1− µ)ω(x; τ) + µω̃(x; τ)

=
1

µ
− 1

1− µ+ µ ω̃(x;τ)ω(x;τ)

is an increasing function of x when
ω̃(x; τ)

ω(x; τ)
is an increasing function of x.

Hence, Lemma 1 implies that, as µ increases, the zeros of polynomials associ-
ated with ρ(x; τ, µ) increase.

Further, note that for the particular case µ = 0 and µ = 1

ρ(x; τ, 0) = ω(x; τ) and ρ(x; τ, 1) = ω̃(x; τ)

which shows that, as µ increases from 0 to 1, the zeros of polynomials asso-
ciated with ω(x; τ) are less than zeros of polynomials associated with ω̃(x; τ)
and this completes the proof of the Lemma 2.

Mixed relations between 2φ1(qα, qβ ; qγ ; q, x) and functions

2φ1(qα±1, qβ ; qγ ; q, x), 2φ1(qα, qβ±1; qγ ; q, x) and 2φ1(qα, qβ ; qγ±1; q, x)

were given in [19] (see also [21], [22] and [23]). These relations are analogous to
the standard contiguous relations for the Gaussian hypergeometric functions.
Instead of a single shift in a single parameter, new relations can be obtained
by either a double shift in a parameter or a single shift in two parameters. We
will apply such contiguous relations to prove our results and list the relations
we need in Lemma 3 using the notation

φn = 2φ1
(
q−n, b; c; q, xq

)
, φn(bq) = 2φ1

(
q−n, bq; c; q, xq

)
,

φn(
b

q
) = 2φ1

(
q−n,

b

q
; c; q, xq

)
, φn(cq) = 2φ1

(
q−n, b; cq; q, xq

)
,

φn(
c

q
) = 2φ1

(
q−n, b;

c

q
; q, xq

)
and φn(bq, cq) = 2φ1

(
q−n, bq; cq; q, xq

)
,
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Lemma 3 Let n ∈ N and c 6= q−m for m = 0, 1, . . . . Then

(i)

(
1− bq

c

)
φn = bq

(
qn − 1

c

)
φn+1(bq)

+ (1− bqn+1)

(
1− q−n+1b

c
x

)
φn(bq) (7)

(ii) (q−n − b)φn = q−n(1− b)φn(bq)− b(1− q−n)φn−1 (8)

(iii)

[
b+ q−n+1

(
1− b

c
− b

q

)]
φn = q−n+1

(
1− b

c

)
φn

(
b

q

)
+ b(1− q−n)

(
1− bq−n+1

c
x

)
φn−1 (9)

(iv) (q−n+1 − c)φn = q−n(q − c)φn
(
c

q

)
− c(1− q−n+1)φn−1 (10)

(v) (q−nbx− c)(1− c)φn = q−nx(b− c)φn(cq)− c(1− c)φn+1 (11)

(vi) (1− c)φn − φn+1(bq) = (q−n − bq)xφn(bq, cq) (12)

(vii)

[
1 + q − q−n − q

−n+1

c
+
q−2n+1

c

(
1− b

q−n

)
x

]
φn

= q

(
1− q−n

c

)
φn+1 +(1− q−n)

(
1− q−nb

c
xq

)
φn−1 (13)

(viii) (c(1− b)− bq(1− cqn))φn= bq(cqn − 1)φn+1

+
(1− b)
qn

(cqn − bxq)φn(bq) (14)

(ix) (c− bq)φn =[(c− bq)− bc(1−qn)]φn(bq)

+ b(1−qn)(c−bq−n+2x)φn−1(bq) (15)

Proof The contiguous relations can be verified by comparing coefficients of xn.
For example, the coefficient of xn on the left-hand side of (12) can be written
as

qn(1− c)
(

(q−n; q)n(b; q)n
(c; q)n(q; q)n

− (q−n−1; q)n(bq; q)n
(c; q)n(q; q)n

)
= qn(1− c) (q−n; q)n−1(bq; q)n−1

(c; q)n(q; q)n
((1− q−1)(1− b)− (1− q−n−1)(1− bqn))

= qn−1(1− c)(q−n − bq)(1− qn)
(q−n; q)n−1(b; q)n−1

(c; q)n(q; q)n

= (q−n − bq)
[

(q−n; q)n−1(b; q)n−1q
n−1

(c; q)n−1(q; q)n−1

]
(16)

and, since the expression in the square brackets of (16) is the coefficient of
xn−1 in φn(bq, cq), this completes the proof of the contiguous relation (12).
The proofs of the other relations follow in an analogous manner.
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The following results concerning the interlacing of zeros have been proved,
with some variations, in different contexts. They provide simple tools to study
the zeros of polynomials and are useful in the context of our paper, so we
summarise them here for the convenience of the reader.

Lemma 4 (cf. [24] ) Consider the finite or infinite interval (c, d) and let pn
and qn−1 be polynomials (not necessarily orthogonal) of degree n with real
zeros c < x1,n < x2,n < · · · < xn,n < d and degree (n− 1) with real zeros c <
x1,n−1 < x2,n−1 < · · · < xn−1,n−1 < d respectively satisfying the interlacing
property (1). Assume that a polynomial g satisfies

g(x) = a(x)pn(x) + b(x)qn−1(x)

and denote the zeros of g with deg(g) = i by y1,i < y2,i < · · · < yi,i. Let
k ∈ {1, 2, · · · , n− 1}. If both a(x) and b(x) are continuous and have constant
sign on (c, d), then all the zeros of g are real, simple and

(a) when g has degree n, either
(i) xk,n < yk,n < xk,n−1 < xk+1,n < yk+1,n or

(ii) yk,n < xk,n < xk,n−1 < yk+1,n < xk+1,n

(b) when g has degree n− 1, either
(i) xk,n < yk,n−1 < xk,n−1 < xk+1,n or

(ii) xk,n < xk,n−1 < yk,n−1 < xk+1,n.

There are two possibilities for the ordering of the interlaced zeros in Lemma
4(a) and (b) respectively. When both a(x) and b(x) are non-zero constants
and qn−1 = pn−1, one may apply [5, Thm. 3] or [26, Thm. 5] to determine the
specific arrangement of the zeros, while the monotonicity of the zeros is often
useful when a(x) and b(x) are not constant.

Lemma 5 (cf. [8,10]) Let pn and qn−1 be polynomials (not necessarily or-
thogonal) of degree n and (n − 1) respectively satisfying interlacing property
(1) on the (finite or infinite) interval (c, d). Assume that a polynomial gn−2
of degree (n− 2) satisfies

f(x)gn−2(x) = a(x)pn(x) + (x−An)qn−1(x)

for some constant An where f(x) and a(x) are continuous and f(x) has con-
stant sign on (c, d). Then

(i) the n− 1 real, simple zeros of (x−An)gn−2 interlace with the zeros of pn
and An is an upper bound for the smallest, as well as a lower bound for
the largest zero of pn if gn−2 and pn are co-prime;

(ii) if gn−2 and pn are not co-prime,
a) they have 1 common zero that is equal to An and this common zero
cannot be the largest or smallest zero of pn;
b) the n− 2 zeros of gn−2(x) interlace with the n− 1 non-common zeros of
pn;
c) An is an upper bound for the smallest as well as a lower bound for the
largest zero of pn.
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In the next section we state our main results and provide the proofs in Section
4.

3 Main Results

Theorem 1 For 0 < c < 1 and b < cqn−1, the zeros of φn and φn+1(bq) are
interlacing on (0,∞).

Theorem 2 Let 0 < c < 1 and b < 0. Let 0 < x1,n < x2,n < . . . < xn,n <∞
and 0 < X1,n < X2,n < . . . < Xn,n < ∞ denote the zeros of φn and φn(bq)
respectively. Then

Xk,n+1 < Xk,n < xk,n < Xk+1,n+1 for each k = 1, 2, . . . n. (17)

Theorem 3 For 0 < c < 1 and b < 0, the zeros of φn and φn−1 separate each
other on (0,∞).

Theorem 4 If 0 < c < 1 and b < 0, suppose that 0 < x1,n < x2,n < . . . <
xn,n < ∞ and 0 < x1,n−1 < x2,n−1 < . . . < xn−1,n−1 < ∞ denote the n and
n−1 real zeros of φn and φn−1 respectively. Further, let 0 < y1,n < y2,n < . . . <
yn,n < ∞ be the zeros of φn(b/q). Then xk,n < yk,n < xk,n−1 for each k =
1, 2, 3, . . . , n− 1 and xn−1,n−1 < xn,n < yn,n.

Theorem 5 If 0 < c < 1 and b < cqn−1, suppose that 0 < x1,n < x2,n < . . . <
xn,n < ∞ and 0 < x1,n−1 < x2,n−1 < . . . < xn−1,n−1 < ∞ denote the n and
n−1 real zeros of φn and φn−1 respectively. Further, let 0 < t1,n < t2,n < . . . <
tn,n < ∞ be the zeros of φn(c/q). Then xk,n < tk,n < xk,n−1 for each k =
1, 2, . . . , n− 1 and xn−1,n−1 < xn,n < tn,n.

Theorem 6 If 0 < c < 1 and b < cqn, suppose that 0 < x1,n < x2,n < . . . <
xn,n < ∞ and 0 < x1,n+1 < x2,n+1 < . . . < xn+1,n+1 < ∞ denote the n and
n + 1 real zeros of φn and φn+1 respectively. Further, let 0 < s1,n < s2,n <
. . . < sn,n <∞ be the zeros of φn(cq). Then xk,n+1 < sk,n < xk,n < xk+1,n+1

for k = 1, 2, . . . , n.

Theorem 7 If 0 < c < 1 and b < cqn−1, suppose that 0 < x1,n < x2,n <
. . . < xn,n < ∞, 0 < X1,n+1 < X2,n+1 < . . . < Xn+1,n+1 < ∞ and 0 <
s1,n < s2,n < . . . < sn,n < ∞ denotes zeros of φn, φn+1(bq) and φn(bq, cq)
respectively. Then Xk,n+1 < sk,n < xk,n < Xk+1,n+1 for k = 1, 2, . . . n.

Theorem 8 Let 0 < c < 1, b < 0 and 0 < t < 1 and suppose that 0 <
x1,n < x2,n < . . . < xn,n < ∞, 0 < s1,n < s2,n < . . . < sn,n < ∞ and 0 <
r1,n < r2,n < . . . < rn,n < ∞ denote the real zeros of φn, φn(bt) and φn(bq)
respectively. Then the following triple interlacing holds for k = 1, 2, . . . , n− 1

rk,n < sk,n < x1,n < rk+1,n < sk+1,n < xk+1,n.
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Theorem 9 Let 0 < c < 1 and b < 0, then

(i) the zeros of φn−2 together with the point An (Bn) interlace with the zeros
of φn where

(a) An =
cq2n−3

(
1+q−q−n+1− q

−n+2

c

)
(bqn−1−1)

(b) Bn = cqn−2

b + [c(b−1)+bq(1−cqn−1)][c−bq−cb(1−qn−1)]
b(1−b)(c−bq)q−n+2 .

(ii) Let x1,n and xn,n denote the smallest and largest zero of φn, then

0 < x1,n < Bn < An < xn,n.

Corollary 1 Let 0 < αq < 1 and β < 0.

(i) The zeros of pn−2(α, βq2; q;x) together with the point An (Bn) interlace
with the zeros of pn(α, β; q;x) where

(a) An =
αq2n−2

(
− q

1−n
α −q1−n+q+1

)
αβq2n−1

(b) Bn = 1
βq2 + [αβqn+1−1+βqn+1(1−αqn)][1−βqn+1−αβqn(1−qn−1)]

βq2(1−αβqn+1)(1−βqn+1) .

(ii) Let w1,n and wn,n denote the smallest and largest zero of pn(α, β; q;x),
then

0 < w1,n < Bn < An < wn,n.

Remark 1 A different bound for the extreme zeros of pn(α, β; q;x),

w1,n < Cn =
qn
(
α(α+ 1)βq2n + α(β + 1)(−(q + 1))qn + (α+ 1)q

)
(αβq2n − 1) (αβq2n − q2)

< wn,n,

is given in [9, 4.10] for 0 < αq < 1 and 0 < βq < 1. We note that Cn is an
inner bound for the extreme zeros of pn(α, β; q;x) also when 0 < αq < 1 and
β < 1 and therefore Cn can be compared to An for negative values of β. Since
the difference

Cn −An =
αβ(q + 1)q2n−2

(
qn−1 − 1

) (
1− αqn−1

)
(αβq2n − 1) (αβq2n−2 − 1)

> 0

for 0 < α < 1, β < 0, we conclude that w1,n < Bn < An < Cn < wn,n when
0 < α < 1 and β < 0 and it is clear that the new bound Bn is the more precise
upper bound for the smallest zero of pn(α, β; q;x).

In [17], Gupta and Muldoon give another another upper bound

Dn (18)

=
(q + 1)qn−1

(
1− αq2

)
(1− αq)

(1− q) (qn(αq(β(q(αq − 2)− 1)− q − 2) + 1) + αβq2n+1 (αq2 + 1) + αq2 + 1)

for the smallest zero z1,n of the different q-Jacobi polynomial pn(α, β; q; z(1−
q)), 0 < αq < 1, β < 1, which cannot immediately be compared to the upper
bounds An, Bn and Cn for the smallest zero w1,n of pn(α, β; q;x). However,
the following corollary will enable us to do a comparison.
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Corollary 2 Let 0 < αq < 1 and β < 0.

(i) The zeros of pn−2(α, βq2; q; z(1 − q)) together with the point En interlace
with the zeros of
pn(α, β; q; z(1− q)) where

En =
αq2n−2

(
− q

1−n

α − q1−n + q + 1
)

(1− q) (αβq2n − 1)
. (19)

(ii) If z1,n and zn,n denote the smallest and largest zero of pn(α, β; q; z(1− q))
respectively, then

z1,n < En < zn,n.

Remark 2 Comparing the new bound En to the bound Dn given by Gupta and
Muldoon in [17], it is clear from the numerical examples given in Table 1 for
specific values of 0 < αq < 1 and β < 0, that the choice of the parameters
determines whether Dn or En is the better upper bound for the smallest zero
z1,n of pn(α, β; q; z(1− q)).

Table 1 Comparison of upper bounds for the smallest zero of pn = pn(α, β; q; z(1 − q))
when n = 8 for different values of q, α and β.

Values of q, α and β q = 0.9, α = 0.1 q = 0.1, α = 0.05 q = 0.9, α = 0.95
β = −0.4 β = −0.4 β = −10.4

Smallest zero of pn 3.39968 1.10494× 10−7 0.0370522

Bound En in (19) 4.79109 1.16667× 10−7 1.83607

Bound Dn in (18) 5.29965 1.2149× 10−7 0.0507134

The difference between the two bounds Dn and En can be simplified as

Dn − En (20)

=
qn−1

1− q

(
α
(
1− qn−1

)
+ (1− αqn)

αβq2n − 1
+

(q + 1)(1− αq)
(
1− αq2

)
Fn

)
,

where

Fn =
(
1− αqn+1

)
+ qn(1− αq) + αq2 (1− qn)

−αβqn+1
(
q
(
1− αqn+1

)
+ (1− qn) + q(1− αq)

)
.

For 0 < αq < 1 and β < 0, all the denominator and numerator terms in (20)
are positive except for the denominator αβq2n − 1 in the second fraction on
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the right hand side. Hence, for 0 < αq < 1 and β < 0, Dn−En > 0 if and only
if

(q + 1)(1− αq)
(
1− αq2

)
Fn

>
α
(
1− qn−1

)
+ (1− αqn)

1− αβq2n

or, equivalently,

β <
1

αq2n

(
Fn(α− αqn−1 − qn + 1)

(q + 1)(1− αq) (1− αq2)

)
= Gn.

We conclude that the bound (18) due to Gupta and Muldoon is a better upper
bound for the smallest zero of pn(α, β; q; z(1−q)) compared to the new bound
(19) if and only if 0 < αq < 1 and β < min{0,Gn}.

4 Proof of Main Results

Proof of Theorem 1. Little q-Jacobi polynomials have the following basic
hypergeometric representation from (3)

pn(α, β; q;x) = 2φ1(q−n, b; c; q, z), (21)

where b = αβqn+1, c = αq and z = xq. From the orthogonality it follows that
the zeros of little q-Jacobi polynomial are real and positive for 0 < α < 1/q
and β < 1/q. These conditions are equivalent to 0 < c < 1 and b < cqn−1.
Therefore, for 0 < c < 1 and b < cqn−1, the zeros z = xq of 2φ1(q−n, b; c; q, z)

lie in (0,∞). Furthermore, since the zeros of p
(α,β)
n and p

(α,β)
n+1 (x) are interlacing

and

pn+1(α, β; q;x) = 2φ1(q−n−1, αβqn+2;αq; q, xq)

= 2φ1(q−(n+1), αβqn+1q;αq; q, xq) = φn+1(bq),

we deduce that the zeros of φn and φn+1(bq) also separate each other. 2

Throughout the following proofs we will denote a step function with unit jumps
at x = 0, 1, 2, · · · by α(x).

Proof of Theorem 2. For 0 < c < 1 and b < cqn−1 it follows from (21) and
(2) that the polynomial φn is orthogonal with respect to the weight function

w1(x) =
( bcq
−n+1; q)x

(q; q)x
cx for x = 0, 1, 2, · · · which, using (6), can be represented

as

w1(x) =
( bcq
−n+1; q)∞

( bcq
x−n+1; q)∞

(qqx; q)∞
(q; q)∞

cx α(x)

= ω1(x; b) α(x)

when x ∈ (0,∞), 0 < c < 1 and b < cqn−1 where α(x) denotes a step
function with unit jumps at x = 0, 1, 2, · · · as previously mentioned. Similarly,
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φn(bq) is orthogonal with respect to w2(x) = ω2(x; b) α(x) where ω2(x; b) =
( bcq
−n+2; q)x

(q; q)x
cx for x ∈ (0,∞), 0 < c < 1 and b < cqn−1. Now

d

dx

(
ω1(x; b)

ω2(x; b)

)
=

d

dx

(
c− bq−n+1

c− bq−n+1+x

)
=
bqn−1qx(c− bqn−1) ln q

(c− bq1−n+x)2

is positive for b < 0, 0 < c < 1, hence the ratio
ω1(x; b)

ω2(x; b)
is an increasing

function of x for x ∈ (0,∞). Since ω1(x; b) and ω2(x; b) are positive, continuous
functions for 0 < c < 1, b < 0, x ∈ (0,∞) it follows from Lemma 2 that
Xk,n < xk,n for each k = 1, 2, . . . , n which proves one part of assertion (17).
Next, from Theorem 1, we know that φn and φn+1(bq) have interlaced zeros.

Rewriting (7) we obtain

φn(bq) =
bq(qn − 1

c )

(bqn+1 − 1)(1− q−n+1bx
c )

φn+1(bq) +
(1− bq

c )

(1− bqn+1)(1− q−n+1bx
c )

φn.

Since both
bq(qn− 1

c )

(bqn+1−1)(1− q−n+1bx
c )

and
(1− bqc )

(1−bqn+1)(1− q−n+1bx
c )

are continuous and

have constant sign in (0,∞), application of Lemma 4(b)(i), yields

Xk,n+1 < Xk,n < xk,n < Xk+1,n+1 for k = 1, 2, · · · , n.

This completes the proof of assertion (17). 2

Proof of Theorem 3. By Theorem 2 we have that the zeros of φn and φn(bq)
separate each other as described in (17) for 0 < c < 1 and b < 0. Evaluating
(8) at consecutive zeros xk,n and xk+1,n, k = 0, 1, 2, · · · , n−1, of φn we deduce
that

φn−1(xk,n)φn−1(xk+1,n) < 0

which implies that φn−1 has an odd number of zeros between any two con-
secutive zeros of φn. Since φn−1 has at most n − 1 zeros and there are n − 1
intervals where they must lie, it follows that the n−1 real simple zeros of φn−1
interlace with the n real simple zeros of φn. 2

Proof of Theorem 4. The weight function for φn(b/q) on (0,∞) is w0(x) =
ω0(x; b)α(x), where

ω0(x; b) =
( bcq
−n; q)x

(q; q)x
cx for x ∈ (0,∞), 0 < c < 1, b ≤ cqn−1. Since

d

dx

(
ω0(x; b)

ω1(x; b)

)
=

d

dx

(
c− bq−n

c− bq−n+x

)
=
bq−n+x(c− bq−n) ln q

(c− bq−n+x)2
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is positive when b < 0 and 0 < c < 1, the ratio
ω0(x; b)

ω1(x; b)
is an increasing

function of x in (0,∞). Since ω1(x; b) and ω0(x; b) are positive, continuous
functions for 0 < c < 1, b < 0, x ∈ (0,∞) from Lemma 2 we can conclude that

xk,n < yk,n for k = 1, 2, . . . , n. (22)

Next, from the contiguous relation (9) and application of Lemma 4(a)(i) to-
gether with (22), we have

xk,n < yk,n < xk,n−1 for each k = 1, 2, 3, . . . , n− 1

and
xn−1,n−1 < xn,n < yn,n.

Hence the proof of Theorem 4 is completed. 2

Proof of Theorem 5. φn(c/q) is orthogonal with respect to the weight

function w3(x) = ω3(x; b)α(x), where ω3(x; b) =
( bcq
−n+2; q)x

(q; q)x
( cq )x, for x ∈

(0, ∞), 0 < c < 1 and b < cqn−1. Since

d

dx

(
ω3(x; b)

ω1(x; b)

)
=

d

dx

(
(c− bq−n+x+1)

(c− bq−n+1)qx

)
=
−cq−x ln q

(c− bq−n+1)
,

which is positive for b < cqn−1 and 0 < c < 1, the ratio
ω3(x; b)

ω1(x; b)
is an

increasing function of x in (0,∞). Since ω1(x; b) and ω3(x; b) are positive,
continuous functions for x ∈ (0,∞), 0 < c < 1, and b < cqn−1, it follows from
Lemma 2 that

xk,n < tk,n for k = 1, 2, . . . , n. (23)

Further, using Lemma 4(a)(i) and the contiguous relation (10) together with
(23), we have

xk,n < tk,n < xk,n−1 for all k = 1, 2, . . . , n−1 and xn−1,n−1 < xn,n < tn,n.

2

Proof of Theorem 6. For x ∈ (0, ∞), 0 < c < 1 and b < cqn, φn(cq) is
orthogonal with respect to the weight function w4(x) = ω4(x; b)α(x), where

ω4(x; b) =
( bcq
−n; q)x

(q; q)x
(cq)x. Since

d

dx

(
ω4(x; b)

ω1(x; b)

)
=

d

dx

(
(c− bq−n)qx

c− bq−n+x

)
=
cbqn+x(cqn − b) ln q

(cqn − bqx)2

is negative when b < cqn and 0 < c < 1, the ratio
ω4(x; b)

ω1(x; b)
is an decreasing

function of x on (0,∞). Since ω1(x; b) and ω4(x; b) are positive, continuous
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functions for x ∈ (0,∞), 0 < c < 1 and b < cqn, from Lemma 2 we can
conclude that sk,n < xk,n for k = 1, 2, . . . , n. Further, rewriting the contiguous
relation (11) as

B(x)φn(x) + C(x)φn+1(x) = φn(cq;x)

with

B(x) =
(q−nbx− c)(1− c)

q−n(b− c)x

and

C(x) =
c(1− c)

q−n(b− c)x
,

since both B(x) and C(x) are continuous and have constant sign in (0,∞), we
see by Lemma 4(b)(i) that all zeros of φn(cq) are real, simple and the zeros
satisfy

xk,n+1 < sk,n < xk,n < xk+1,n+1 for k = 1, 2, · · · , n.

2

Proof of Theorem 7. φn(bq, cq) is orthogonal with respect to the weight

function w5(x) = ω5(x; b)α(x), where ω5(x; b) =
( bcq
−n+1; q)x

(q; q)x
cqx, for x ∈

(0,∞), 0 < c < 1 and b < cqn−1. The ratio
ω1(x; b)

ω5(x; b)
= 1/qx, which is an

increasing function of x on (0,∞). Since ω1(x; b) and ω5(x; b) are positive,
continuous functions for x ∈ (0,∞), 0 < c < 1 and b < cqn−1, from Lemma 2
we can conclude that sk,n < xk,n for k = 1, 2, . . . , n. Next, for b < 0 and x > 0
it follows from the contiguous relation (12) together with Lemma 4(b)(i) and
Theorem 1, for k = 0, 1, 2, · · · , n that

Xk,n+1 < sk,n < xk,n < Xk+1,n+1.

2

Proof of Theorem 8 φn(bt) is orthogonal with respect to the weight function

w6(x) = ω6(x; b)α(x), where ω6(x; b) =
( btc q

−n+1; q)x

(q; q)x
cx, for x ∈ (0,∞), 0 <

c < 1, 0 < t < 1 and bt < cqn−1. Consider the ratio

H(x) =
ω1(x; b)

ω6(x; b)
=

( bcq
−n+1; q)x

( btc q
−n+1; q)x

=
(c− bq−n+1)(c− bq−n) · · · (c− bq−n+x)

(c− tbq−n+1)(c− tbq−n) · · · (c− tbq−n+x)
.

Taking logarithmic differentiation of H(x) with respect to x we obtain

H ′(x)

H(x)
=
−bq−n+x ln q

c− bq−n+x
+
tbq−n+x ln q

c− tbq−n+x
,
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which on further simplification gives

H ′(x) =

(
(t− 1)bcq−n+x ln q

(c− bq−n+x)(c− tbq−n+x)

)
×H(x)

=
(t− 1)bcq−n+x ln q(c− bq−n+1)(c− bq−n) · · · (c− bq−n+x)

(c− bq−n+x)(c− tbq−n+x)(c− tbq−n+1)(c− tbq−n) · · · (c− tbq−n+x)
.

Since 0 < c < 1, b < cqn−1 and bt < cqn−1, H ′(x) > 0 if and only if either
both b and (t − 1) are positive or both are negative. Since (t − 1) is negative
for all t ∈ (0, 1), the above inequality holds true for b < 0.

Therefore H(x) is an increasing function of x on (0,∞) when b < 0. Since
ω1(x; b) and ω6(x; b) are positive, continuous functions for 0 < c < 1, b < 0,
x ∈ (0,∞) from Lemma 2 we can conclude that

sk,n < xk,n for k = 1, 2, . . . , n (24)

Next, consider the ratio

H1(x) =
ω6(x; b)

ω2(x; b)
=

( btc q
−n+1; q)x

( bcq
−n+2; q)x

=
(c− tbq−n+1)(c− tbq−n) · · · (c− tbq−n+x)

(c− bq−n+2)(c− bq−n+1) · · · (c− bq−n+x+1)
.

Using a similar argument as for H(x) above, we observe that H ′1(x) positive
if

cbq−n+x ln q(1− qt)(c− bq−n+1)(c− bq−n) · · · (c− bq−n+x) > 0.

Which is holds true for 0 < bt < cqn−x and x ∈ (0,∞). Therefore, H1(x) is
an increasing functions of x in (0,∞) for 0 < bt < cqn−x. Since ω2(x; b) and
ω6(x; b) are positive, continuous functions for 0 < c < 1, b < 0, x ∈ (0,∞) it
follows from Lemma 2 that

rk,n < sk,n for k = 1, 2, . . . , n. (25)

Combining (24) and (25) with Theorem 2 the result follows for 0 < c < 1,
b < 0 and 0 < t < 1. 2

Proof of Theorem 9.
(i)(a) Replacing n by n−1, the contiguous relation (13) may be written as

−c(1− q−n+1)

q−2n+3(bqn−1 − 1)

(
1− q−n+2b

c
x

)
φn−2

=
(c− q−n+1)

q−2n+2(bqn−1 − 1)
φn + (x−An)φn−1. (26)

Therefore, by Lemma 5, since
(

1− q−n+2b
c x

)
does not change sign on (0,∞)

when 0 < c < 1 and b < 0, the zeros of φn−2 together with the point An
interlace with the zeros of φn and An is an upper bound for the smallest as
well as lower bound for the largest zero of φn. 2
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(i) (b) Substituting the expression for φn(bq) in (14) into (15) we obtain

bq(1− cqn)φn+1 = (c(b− 1) + bq(1− cqn))φn

+
(1− b)(c− bxq−n+1)

((c− bq)− cb(1− qn))
((c− bq)φn − b(1− qn)(c− bq−n+2x)φn−1(bq)),

which on replacement of n by n− 1 and further simplification yields

(x− cqn−2

b
)(x− cqn−3

b
)φn−2(bq) =

[c− bq − bc(1− qn−1)](cqn−1 − 1)

(1− b)(1− qn−1)b2q−2n+4
φn

− (c− bq)
(1− qn−1)b2q−n+3

(x−Bn)φn−1),

The result follows by Lemma 5 that the zeros of φn−2(bq) together with the
point Bn interlace with the zeros of φn and Bn is an upper bound for smallest
as well as lower bound for largest zero of φn.

(ii) The quantity

An −Bn =
bqn−3(qn − q)(cqn − q2)(−bq + c(1 + b(qn − 1)))

(b− 1)(c− bq)(q − bqn)

is positive for all n = 0, 1, · · · when 0 < c < 1 and b < 0.
2

Proof of Corollary 1. The result follows from the proof of Theorem 9 by
proper transformation of the polynomials. Therefore, we sketch the outline of
Corollary 1(i)(a) and omit the detail of (i)(b) and (ii).

(i)(a) Replacing c = αq, b = αβqn+1 in (26) and using the connection
(21) between basic hypergeometric and little q-Jacobi polynomials we have

αq2(n−1)
(
1− q1−n

) (
1− βq2x

)
1− αβq2n

pn−2(α, βq2; q;x)

=
q2n−2

(
αq − q1−n

)
αβq2n − 1

pn(α, β; q;x) + (x−An)pn−1(α, βq; q;x). (27)

Since the zeros of φn and φn−1 interlace, so do also those of pn(α, β; q;x) and
pn−1(α, βq; q;x). Therefore applying Lemma 5, the zeros of pn−1(α, βq2; q;x)
together with the point An interlace with the zeros of pn(α, β; q;x). 2

Proof of Corollary 2.
Substituting x by z(1− p) we can write (27) as

αq2(n−1)
(
1− q1−n

) (
1− βq2(1− q)z

)
(1− q) (1− αβq2n)

pn−2(α, βq2; q; z(1− q))

= (z −Dn)pn−1(α, βq; q; z(1− q)) +
q2n−2

(
αq − q1−n

)
(1− q) (αβq2n − 1)

pn(α, β; q; z(1− q)).

It follows from Lemma 5 that, if z1,n < zn,n denote the extreme zeros of
pn(α, β; q; z(1− q)), we have z1,n < Dn < zn,n. 2
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