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ABSTRACT 

A numerical study of buoyancy-driven unsteady natural 

convection boundary layer flow past a vertical cone embedded 

in a non-Darcian isotropic porous regime with transverse 

magnetic field applied normal to the surface is considered. The 

heat and mass flux at the surface of the cone is modeled as a 

power-law according to ( )
m

w
q x x  and  

*
( )

n

w
q x x  

respectively, where x denotes the coordinate along the slant 

face of the cone. Both Darcian drag and Forchheimer quadratic 

porous impedance are incorporated into the two-dimensional 

viscous flow model. The transient boundary layer equations are 

then non-dimensionalized and solved by the Crank-Nicolson 

implicit difference method. The velocity, temperature and 

concentration fields have been studied for the effect of Grashof 

number, Darcy number, Forchheimer number, Prandtl number, 

surface heat flux power-law exponent (m), surface mass flux 

power-law exponent (n), Schmidt number, buoyancy ratio 

parameter and semi-vertical angle of the cone. Present results 

for selected variables for the purely fluid regime are compared 

with the published results and are found to be in excellent 

agreement. The local skin friction, Nusselt number and 

Sherwood number are also analyzed graphically. The study 

finds important applications in geophysical heat transfer, 

industrial manufacturing processes and hybrid solar energy 

systems. To test the accuracy of the computations the local 

shear stress and local Nusselt number computations for the non-

porous case are compared with those of Hossain and Paul [9] 

for a heat flux gradient of m = 0.5 and X = 1.0 in the steady 

state, and are found to be in good agreement. 

 

INTRODUCTION 
Combined heat and mass transfer in fluid-saturated porous 

media finds applications in a variety of engineering processes 

such as heat exchanger devices, petroleum reservoirs, chemical 

catalytic reactors and processes and others. A thorough 

discussion of these and other applications is available in the 

monographs [1, 2]. Comprehensive reviews of the much of the 

work communicated in porous media transport phenomena 

have been presented in [3, 4]. Most studies dealing with porous 

media have employed the Darcy law. However, for high 

velocity flow situations, the Darcy law is inapplicable, since it 

does not account for inertial effects in the porous medium. Such 

flows can arise for example in the near-wellbore region of high 

capacity gas and condensate petroleum reservoirs and also in 

highly porous filtration systems under high blowing rates. The 

most popular approach for simulating high-velocity transport in 

porous media is the Darcy–Forchheimer drag force model. This 

adds a second-order (quadratic) drag force to the momentum 

transport equation. This term is related to the geometrical 

features of the porous medium and is independent of viscosity. 

A seminal study discussing the influence of Forchheimer 

inertial effects in porous media convection is presented by 

Vafai and Tien [5]. The mixed convective boundary layer flow 

from a vertical surface in a fluid-saturated non-Darcian porous 

medium including Forchheimer inertial effects is studied by 

Chen and Chen [6] and Chen et al. [7]. Thermal convection 

boundary layer flow with buoyancy and suction/blowing effects 

from a cone with non-uniform surface temperature is studied by 

Hossain and Paul [8]. The study is extended by Hossain and 

Paul [9] by considering non-uniform surface heat flux, both 

studies employing numerical methods. Chamkha et al. [10] 

studied the double-diffusive convection heat and mass transfer 

over a cone (and wedge) in Darcy-Forchheimer porous media. 

Magnetohydrodynamic (MHD) flow  and  heat  transfer  is  of  

considerable  interest  because  it  can  occur  in many 

geothermal, geophysical, technological, and engineering 

applications such as nuclear reactors and others. The 

geothermal gases are electrically conducting and are affected 

by the presence of a magnetic field. Vajravelu and Nayfeh [11] 

studied hydromagnetic convection from a cone and  a wedge 

with  variable  surface  temperature  and  internal  heat  

generation  or  absorption. Cheng [19, 20] used integral method 
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to study heat and mass transfer by natural convection from 

truncated cones in porous media with variable wall temperature 

and concentration. The problem of natural convection of a non- 

Newtonian fluid from a vertical truncated cone was studied 

with variable wall temperature and concentration. In analyzing 

non-Darcy flow through porous media, the Forchheimer 

equation has been exclusively used to describe non-Darcy 

porous media flow, and has been extended to multiphase flow 

conditions. Thus far the transient thermal convection flow over 

a cone in Darcy-Forchheimer porous media has not been 

studied in the literature despite important applications in 

geothermics, geophysics and materials processing. 

 

NOMENCLATURE 

x, y   coordinates along the cone generator and normal to the 

generator 

u,v velocity components along the x- and y-directions 

g gravitational acceleration 

r   local radius of cone  

t  time 

t dimensionless time 

T   temperature 

T dimensionless temperature 

C   concentration 

C dimensionless concentration 

D mass diffusion coefficient 

K permeability of porous medium 

w
q  heat flux (i.e. heat transfer rate per unit area) 

*

w
q  mass flux (i.e. mass transfer rate per unit area) 

k thermal conductivity of fluid 

L reference length  

X, Y   dimensionless coordinates along the cone generator and 

normal to the generator 

U,V dimensionless velocity components along the X- and Y-

directions 

b Forchheimer geometrical constant  

Da Darcy number 

Fs Forchheimer number 

GrL Grashof number  

M magnetic parameter 

B0 magnetic field strength 

Pr Prandtl number 

N buoyancy ratio parameter 

Sc Schmidt number  

m power-law index for surface heat flux relation  

n power-law index for surface mass flux relation  

Nux local Nusselt number  

NuX dimensionless local Nusselt number 

Shx local Sherwood number 

ShX non-dimensional local Sherwood number 

R dimensionless local radius of cone  

 

Greek symbols 

 dynamic viscosity of fluid 

 kinematic viscosity of fluid 

 semi-vertical cone angle 

 thermal diffusivity 

 volumetric thermal expansion coefficient 

 dimensionless temperature function 

 dimensionless time 

X dimensionless local shear stress function (skin friction)  

 

Subscripts 

w  condition on the wall 

∞ free stream condition 

 

 

 

MATHEMATICAL MODEL  

 An axisymmetric unsteady natural convection boundary 

layer flow past a vertical cone with transverse 

magnetic field applied normal to the surface with 

variable heat and mass flux in a Darcy-Forchheimer 

fluid saturated porous medium in a cartesian (x, y) 

coordinate system is formulated mathematically in this 

section.  

 Initially, it is assumed that the cone surface and the 

surrounding fluid which are at rest possess the same 

temperatureT

  and concentration 

level C

 everywhere in the fluid. At time 0t  , heat 

supplied from the cone surface to the fluid, 

concentration level near the cone surface are raised at 

a rate of   m

w
q x x and    * n

w
q x x respectively, 

and they are maintained at the same level.  

 It is assumed that the concentration C  of the diffusing 

species in the binary mixture is very less in 

comparison to the other chemical species, which are 

present and hence the Soret and Dufour effects are 

negligible.  

 We consider viscous flow where pressure work, viscous 

dissipation and thermal dispersion effects are 

neglected.  

 

 

 

 

 

 

 

 

 

 

 

                         Figure 1 Physical Model  
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The coordinate system chosen (as shown in Fig.1) is such that 

the x-direction is measured along the cone surface from the 

leading edge O, and the y-direction is normal to the cone 

generator. The cone apex is located at the origin (x = y = 0). 

Here  designates the semi-vertical angle of the cone and r is 

the local radius of the cone. 

Then under the above assumptions, the governing 

boundary layer equations with Boussinesq’s approximation are  

 

   
0

ur vr

x y

 
 

 
      (1) 

22

0

2

* 2

cos ( )

cos ( )
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u v u g T T

t x y y

b
g C C u u

K K


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


 





   
      

   

    

        (2) 

2

2

T T T T
u v

t x y y


      
  

   
                 (3) 

2

2

C C C C
u v D

t x y y

      
  

   
         (4) 

 

where all terms are defined in the nomenclature. Under the 

Boussinesq approximation buoyancy effects are simulated only 

in the momentum equation, which is coupled to the energy 

equation, constituting a free convection regime. The 

corresponding spatial and temporal initial and boundary 

conditions at the surface and far from the cone take the form: 

 

0 : 0, 0, ,t u v T T C C
 

               for all x, y, 

  
*

( ) ( )
0 : 0, 0, ,w w

q x q xT C
t u v

y k y D

  
       

 
 at  y = 0, 

0, ,u T T C C
 

      at  x = 0,        (5)

  

0, ,u T T C C
 

       as y   . 

where all the parameters defined in the nomenclature.  

 

The equations (1) to (4) are highly coupled, parabolic and 

nonlinear. An analytical solution is clearly intractable and in 

order to facilitate a numerical solution we non-dimensionalize 

the model. Proceeding with the analysis we now introduce the 

following transformations:  

 

x
X

L
 ,  

1

4
L

y
Y Gr

L
 , 

r
R

L
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1

4
L

vL
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


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The transport equations (1) to (4) are thereby reduced to the 

following dimensionless form 

 

 

   
0

UR VR

X Y

 
 

 
            (7) 

 
2

2

2
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 
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2

2

1

Pr

T T T T
U V

t X Y Y

   
  

   
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2

2

1C C C C
U V

t X Y Sc Y

   
  

   
         (10) 

The corresponding non-dimensional initial and boundary 

conditions are given by 

0 : 0, 0, 0, 0t U V T C      for all X, Y, 

0 : 0, 0, ,
m nT C

t U V X X
Y Y

 
      

 
at Y = 0,     (11) 

0U  ,      0T  ,   0C    at  X = 0, 

0,U      0,T    0C       as Y   . 

where again all the parameters are given in the nomenclature. 

The dimensionless local values of the skin friction, Nusselt 

number and the Sherwood number are given by the following 

expressions  

0

x

Y

U

Y




 
   

 
         (12) 

 

0

x

Y

T
Nu X

Y 

 
   

 
         (13) 

 

0

x

Y

C
Sh X

Y 

 
   

 
         (14) 
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NUMERICAL METHOD 
In order to solve the unsteady, non-linear, coupled equations (7) 

– (10) under the conditions (11), an implicit finite difference 

scheme of Crank-Nicolson type has been employed which is 

discussed by many researchers [12, 13, 14, 15, 18]. The finite 

difference scheme of dimensionless governing equations is 

reduced to tri-diagonal system of equations and is solved by 

Thomas algorithm as discussed elsewhere [16]. The region of 

integration is considered as a rectangle with 
max

1X  and 

max
22Y   where 

max
Y  and corresponds to Y    which lies 

very well outside both the momentum and thermal boundary 

layers. The maximum of Y was chosen as 22, after some 

preliminary investigation so that the last two boundary 

conditions of (11) are satisfied within the tolerance limit
5

10


. 

The mesh sizes have been fixed as 0.05X  , 0.05Y   

with time step 0.01t  . The computations are carried out 

first by reducing the spatial mesh sizes by 50% in one direction, 

and later in both directions by 50%. The results are compared. 

It is observed in all cases, that the results differ only in the fifth 

decimal place. Hence, the choice of the mesh sizes seems to be 

appropriate. The scheme is unconditionally stable. The local 

truncation error is 
2 2

( )O t Y X     and it tends to zero 

as ,t X   and Y tend to zero. Hence, the scheme is 

compatible. Stability and compatibility ensure the convergence. 

The derivatives involved in Equations (12) – (14) are evaluated 

using five point approximation formula. 

RESULTS AND DISCUSSION  
Only selective figures have been reproduced here for 

brevity. In the numerical computations the following values for 

the dimensionless thermophysical parameters are prescribed: 

Grashof number ( L
Gr ) = 1.0, Darcy number (Da) = 0.1 (high 

permeability), Forchheimer number (Fs) = 0.1 (weak quadratic 

drag), Prandtl number (Pr) = 7.0 (water), Schmidt number (Sc) 

= 0.6 (oxygen diffusing in air), surface heat flux power law 

exponent (m) = 0.5, surface mass flux power law exponent (n) 

= 0.5, buoyancy ratio parameter (N) = 1.0 and semi-vertical 

angle of the cone ( ) = 20
0
. All graphs therefore correspond to 

these values unless otherwise indicated. To test the accuracy of 

the computations the local shear stress and local Nusselt 

number computations for the non-porous case are compared 

with those of Hossain and Paul [9] for a heat flux gradient of m 

= 0.5 and X = 1.0 in the steady state, in Tables 1, 2 

respectively, and are found to be in good agreement.   

 

Table 1 Comparison of local skin friction values at X = 1.0 and 

m = 0.5 with those of Hossain and Paul [9] for steady state 

purely fluid (Da   in present model) case. 

 

 

 

 

Pr 

Hossain and 

Paul [9] 

X/GrL
3/5

 

Present 

results 

0.01 5.13457 5.13424 

0.05 2.93993 2.93180 

0.1 2.29051 2.29044 

 

Table 2 Comparison of local Nusselt number values at X = 1.0 

and m = 0.5 with those of Hossain and Paul [9] for steady state 

purely fluid (Da   in present model) case. 

 

Pr 

Hossain and 

Paul [9] 

 

NuX/GrL
3/5

 

Present 

results 

0.01 0.14633 0.14648 

0.05 0.26212 0.26227 

0.1 0.33174 0.33648 

In Figs. 1(a) and 1(b), the influence of Grashof number ( l
Gr ) 

on steady state velocity (U) and temperature (T) distributions 

with Y-coordinate are shown. Free convection i.e. thermal 

buoyancy effects are analyzed via the Grashof number. For an 

increasing l
Gr  from 0.1 through 1.0, 10.0, 50.0 to 100.0 

cooling of the cone by free convection occurs i.e. heat is 

conducted away from the cone to the surrounding regime.  

Figs. 2(a) and 2(b) show the effect of Darcy number (Da) on 

dimensionless velocity (U) and temperature (T) with 

transformed radial coordinate (Y) close to the leading edge (i.e. 

cone apex) at X = 1.0. To study the influence of regime 

permeability from sparsely packed media to densely packed 

materials the following values Da = 1.0, 0.1, 0.01, 0.001 are 

considered. Da = 
2

K L for a fixed value of the reference 

length (L) is directly proportional to permeability (K) of the 

porous regime. Increasing Da increases the porous medium 

permeability and simultaneously decreases the Darcian 

impedance since progressively less solid fibers are present in 

the regime. The flow is therefore accelerated for higher Da 

values causing an increase in the velocity U as shown in Fig. 

2(a). Maximum effect of rising Darcy number is observed at 

intermediate distance from the cone surface around Y  1. 
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Conversely temperature T depicted in Fig. 2(b) is opposed by 

increasing Darcy number. The presence of fewer solid fibers in 

the regime with increasing Da inhibits the thermal conduction 

in the medium which reduces distribution of thermal energy. 

The regime is therefore cooled when more fluid is present and 

T values in the thermal boundary layer are decreased. Profiles 

for both velocity and temperature are smoothly asymptotic 

decays to the free stream indicating that excellent convergence 

(and stability) is obtained with the numerical method. Velocity 

boundary layer thickness will be increased with a rise in Da and 

thermal boundary layer thickness reduced. The effect of the 

Forchheimer inertial drag parameter (Fs) on dimensionless 

temperature (T) profiles is shown in Fig. 3. The Forchheimer 

drag force is a second order retarding force simulated in the 

momentum conservation equation. Increasing Fs values from 

0.0 through 0.1,1.0,5.0,10.0,20.0 and 50.0 causes a strong 

increase in Forchheimer drag which decelerates the flow i.e. 

reduces velocities. For higher values of Fs it is expected that 

the porous medium flow becomes increasingly chaotic. 

Temperature (T) however is slightly increased with a rise in 

Forchheimer parameter. The effects of the Prandtl number (Pr) 

on velocity profiles are depicted in Fig. 4. Pr encapsulates the 

ratio of momentum diffusivity to thermal diffusivity. Larger Pr 

values imply a thinner thermal boundary layer thickness and 

more uniform temperature distributions across the boundary 

layer. Hence thermal boundary layer will be much less thick 

than the hydrodynamic (translational velocity) boundary layer. 

Smaller Pr fluids have higher thermal conductivities, so that 

heat can diffuse away from the cone surface faster than for 

higher Pr fluids (thicker boundary layers). Physically the lower 

values of Pr correspond to liquid metals (Pr  0.02, 0.05), Pr = 

0.7 is accurate for air or hydrogen and Pr = 7.0 for water. The 

computations show that translational velocity U is therefore 

reduced as Pr rises from 0.72 through 1.0, 2.0, 5.0, 7.0 and 10.0 

since the fluid is increasingly viscous as Pr rises.  

Fig. 5 shows the effect of the Schmidt number (Sc) on the 

dimensionless concentration (C).  We note that the Schmidt 

number (Sc) embodies the ratio of the momentum to the mass 

diffusivity. Sc therefore quantifies the relative effectiveness of 

momentum and mass transport by diffusion in the 

hydrodynamic (velocity) and concentration (species) boundary 

layers. Smaller Sc values can represent for example hydrogen 

gas as the species diffusing in air, Sc = 2.0 implies hydrocarbon 

diffusing in air, and higher values to petroleum derivatives 

diffusing in fluids (e.g. ethyl benzene) as indicated elsewhere 

[17]. As Sc increases, Fig. 5 shows that C values are strongly 

decreased as larger values of Sc correspond to a decrease in the 

chemical molecular diffusing i.e. less diffusion therefore takes 

place by mass transport. The dimensionless concentration 

profiles all decay from a maximum concentration to zero in the 

free stream. Greater Sc values correspond to lower chemical 

molecular diffusivity of the parent fluid so that less diffusion of 

the species occurs in the regime. Concentration boundary layer 

thickness will therefore be reduced. For low Sc fluid greater 

species diffusion occurs and concentration boundary layer 

thickness increased. For Sc = 1, the Concentration and velocity 

boundary layers will have approximately the same thickness i.e. 

species and momentum will be diffused at the same rates. With 

lower Sc values the decay of concentration from the cone 

surface is more controlled, for increasing values of Sc the 

profiles descend more and more steeply and concentration falls 

faster from the surface to a short distance into the boundary 

layer regime. 

The effect of surface heat flux power exponent (m) on the 

steady state temperature (T) is shown in Fig. 6. An increase in 

the value of m reduces the temperature. It is also seen that the 

time required to reach the steady state temperature is more at 

lower values of m. Fig. 7 depict the distribution of 

concentration (C) with radial coordinate (Y) for various values 

of the surface mass flux power law exponent (n). The 

concentration reduces with the increasing n values from 0.0 

through 0.25, 0.50, 0.75 and 1.0. Increasing Fs clearly reduces 

the local Nusselt number as shown in Fig. 8.  

A slight increase in local Nusselt number accompanies the 

increment in Pr as shown in Fig. 9. The influence of the 

concentration to thermal buoyancy ratio parameter (N), on 

dimensionless temperature (T) with radial coordinate (Y) is 

shown in Fig. 10. N = 0 indicates that thermal and species 

buoyancy forces are both absent. For N > 0, thermal and 

species buoyancy forces aid each other. N = 1 implies that both 

buoyancy forces are of the same order of magnitude. A rise in 

N from 0.0 through 1.0, 2.0, 3.0 and 5.0 induces a retarding 

effect on the flow in the porous regime i.e. velocities are 

decreased.  Increasing N (thermal and concentration buoyancy 

forces assisting each other) decreases temperatures in the 

regime i.e. cools the boundary layer regime. The effect of semi-

vertical angle of the cone () on dimensionless temperature (T) 

with Y-coordinate is shown in Fig. 11. It is observed that a rise 

in  substantially increases the temperature T in the boundary 

layer regime. And more time is required to reach the steady 

state. Fig. 12 the influence of magnetic parameter (M) versus 

spanwise spatial distributions of velocity U are depicted. 

Application of magnetic field normal to the flow of an 

electrically conducting fluid gives rise to a resistive force that 

acts in the direction opposite to that of the flow. This force is 

called the Lorentz force. This resistive force tends to slow 

down the motion of the fluid along the cone and causes an 

increase in its temperature and a decrease in velocity as M 

increases. An increase in M from 1 through 2, 3, and 4 clearly 

reduces streamwise velocity U both in the near-wall regime and 

far-field regime of the boundary layer. 
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CONCLUSIONS 
Numerical solutions have been presented for the buoyancy-

driven unsteady natural convection boundary layer flow past a 

vertical cone embedded in a non Darcian isotropic porous 

regime. Present results are compared with those of [9] and 

found to be in excellent agreement. The following conclusions 

are drawn. 

 Increasing Grashof number boosts the translational 

velocity in the cone surface regime and decreases 

temperature throughout the flow regime. 

 Increasing Darcy number accelerates the flow i.e. 

increases translational velocities. However the 

temperature is reduced with a rise in Darcy number. 

 An increase in the Forchheimer inertial drag parameter 

is observed to slightly increase the temperature, but 

reduces both velocity and local Nusselt number. 

 An increase in Prandtl number is observed to decrease 

both temperature and velocity, but the concentration is 

slightly increased. A slight increase in local Nusselt 

number accompanies the increment in Pr. 

 The concentration is observed to significantly decrease 

with an increase in Schmidt number. 

 The temperature is observed to decrease with an 

increase in buoyancy ratio parameter, but decrease 

with an increase in semi-vertical angle of the cone. 

The time taken to reach the steady state increases with 

increasing . 
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