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ABSTRACT
A low-order discrete dynamical system (DDS) model for

finite-rate chemistry of H2-air combustion is derived in 3D. Sim-
ulation is performed in the context of a new subgrid-scale (SGS)
method. Regime maps are used to determine useful ranges of
values for bifurcation parameters. Specifically, a nine-step mech-
anism of H2-air reactions with N2-dilution is studied. As input to
the DDS model, one fixed position within the flow chosen from
Meier et al., is used (Combustion Science and Technology, 1996).
The results in terms of time series of velocities, species mass
fractions and the sum of mass fractions are analyzed. Moreover,
the results are compared with experimental data at the selected
position in the flame field. Discrepancies between computed and
experimental results are discussed, and possible causes for dis-
crepancies are analyzed. The potential of applying the current
DDS in large-eddy simulation is addressed.

INTRODUCTION
Direct numerical simulation (DNS) is a method in computa-

tional fluid dynamics in which the Navier–Stokes equations are
numerically solved without any turbulence model. DNS is a use-
ful tool for fundamental research in turbulence, and it is possible
to perform “numerical experiments" and extract from them infor-
mation difficult or impossible to obtain in the laboratory, allow-
ing a better understanding of the physics of turbulence. How-
ever, the computational cost of DNS is very high, even at low
Reynolds numbers; and it is generally not possible for finite-rate
chemistry except in two space dimensions. For Reynolds num-
bers encountered in most industrial applications, the computa-
tional resources required by a DNS would exceed the capacity of
the most powerful computers currently available.

Presently, applying simple mathematical models to deal with
turbulent combustion is a very common practice. The goal of
modeling is to replace a complicated system of equations with a
much simpler one that can be solved analytically, or with mini-
mal numerical analytic effort. There are two widely-used classes
of turbulent flow models, namely, Reynolds-averaged Navier–
Stokes (RANS) and large-eddy simulation (LES). RANS meth-
ods have been successful in predicting some gross features of
combustion, such as the profiles of combustor exit temperatures,
whereas these are unable to predict transient phenomena such
as flameout and relight in gas turbines, combustion instabilities
in gas turbines and afterburners, cycle-to-cycle variations in IC
engines, and pollutant formation, as noted by E. Fedina and C.
Fureby [1]. Rather, the goal of RANS modeling in such situa-
tions is simply to produce averaged scalar fluxes whose overall
effect is close to a “smearing" over time of the actual physics.
This is unacceptable in many combustion studies.

It is well known that typical chemical reaction rates can be
expressed in the form of the Arrhenius law [2]

k(T ) = ATn exp

(
−Ea
R0T

)
, (1)

where Ea is activation energy, R0 is the universal gas constant,
T is temperature; and A and n are empirical constants. This
form is extremely nonlinear, and must be averaged in the context
of the RANS formalism or filtered in typical LES [3]. It is clear
that

k(T ) = ATn exp

(
−Ea
R0T

)

6= AT
n

exp

(
−Ea
R0T

)
= k(T ) ,
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and the lack of equality is so severe that the second formula on
the right simply cannot be used.

An alternative method to RANS for modeling combustion is
LES. In LES, the large-scale energy-carrying motion is directly
resolved on the grid, while the small-scale is modeled. The usual
LES decomposition for the velocity u(x, t) is

u(x, t) = ũ(x, t) + u′(x, t) . (2)
In this decomposition, ũ(x, t) is usually termed the large- or
resolved-scale part of the solution, and u′(x, t) is called the
small-scale, subgrid-scale, or unresolved part. It is important
to note that the resolved and unresolved scales depend on both
space and time, and this is a major distinction and advantage in
comparison with the Reynolds decomposition.

Most recent research in LES has focused on SGS models,
which are especially problematic in the context of finite-rate
chemistry at least in part due to use of so-called implicit filter-
ing leading to the inequality shown earlier in the context of the
reaction rate formula. But other forms of LES are beginning to be
studied. A typical LES-like decomposition of solution variables
employed in such formalisms is

Q(x, t) = q(x, t) + q∗(x, t), x ∈ Rd, d = 2, 3. (3)

Substituting Eq. (3) into the transport equation(s) for the depen-
dent variable vector Q results in

(q + q∗)t +∇·F (q + q∗) = ∇ ·G(q + q∗) +S(q + q∗), (4)

where q(x, t) is the large-scale part, and q∗(x, t) is the small-
scale part; the subscript t denotes partial differentiation with re-
spect to time, and ∇· is the divergence operator. F and G are
advective and diffusive fluxes, respectively, and S is a nonlinear
source term.

A basic hypothesis regarding construction of the small-scale
model is that q∗ in Eq. (3) can be expressed as

q∗i = AiMi, i = 1, 2, . . . , Nv, (5)

where, Nv is the total number of dependent variables; q∗i is the
ith component of the Nv small-scale dependent variables; the
Ais are amplitudes derived from scaling laws of Kolmogorov
(see, e.g., Frisch [4] ); and Mi is a chaotic map that can ex-
hibit bifurcation leading to a strange attractor, thus producing
small-scale turbulent temporal fluctuations locally in space and
time [3].

In this paper, we will apply the method, originally proposed
in 2D and studied by McDonough and Zhang [5] [6], to construct
a 3-D SGS model for LES. This method includes the well-known
logistic map

m(n+1) = βm(n)(1−m(n)) , (6)

first presented by May [7], a widely-used model to deal with
complicated dynamical systems. Frisch [4] demonstrated that
a simple quadratic map,

x(n+1) = 1− 2x(n), (7)

might be viewed as a ‘poor man’s Navier–Stokes equation’, and

this is a transformation of Eq. 6. Furthermore, McDonough and
Huang [8] have derived the 2-D ‘poor man’s Navier–Stokes equa-
tion’,

a(n+1) = β1a
(n)(1− a(n))− γ1a(n)b(n), (8a)

b(n+1) = β2b
(n)(1− b(n))− γ2a(n)b(n), (8b)

directly from the Navier–Stokes equations via a Galerkin proce-
dure.

In this work, we will use an analogous approach in 3D to
derive a finite-rate chemistry SGS model including the momen-
tum and thermal energy equations similar to earlier studies in 2D
in [8] and in [5] [6]. The purpose of this paper is to present a
preliminary exploration of the behavior of this DDS for a spe-
cific reduced-kinetic mechanism for H2-air combustion and to
compare the computed results with extant experimental data.

In the remainder of this work, we present the governing
equations and assumptions, derive the corresponding DDS for a
specific reduced mechanism via a single-mode Galerkin approx-
imation, and present results and compare these to experimental
data.

MODEL
In this section, we will first introduce the governing equa-

tions, and from these derive a general DDS that can be used to
model any desired chemical kinetics as well as other physics.
Then, we provide a reduced mechanism for H2-air combustion
and introduce the experimental data to be used for comparison.

Governing Equations
The general governing equations used to describe combus-

tion include equations for mass conservation, momentum bal-
ance, and energy and species transport. They are

ρt +∇ · (ρU) = 0, (9a)

ρ
DU

Dt
= −∇p+∇ · (µ∇U) + ρg, (9b)

ρcp
DT

Dt
= ∇·(λ∇T )+

Ns∑
i=1

cpiDiWi∇

(
ρYi
Wi

)
·∇T−

Ns∑
i=1

hiω̇i,

(9c)

D(ρYi)

Dt
= ∇ · (ρDi∇Yi) + ω̇i, i = 1, . . . Ns. (9d)

Here,

ω̇i = Wi

Nr∑
j=1

(ν′′i,j − ν′i,j)ωj , (10)

688



with

ωj = kf,j

Ns∏
l=1

(
ρYl
Wl

)υ′
i,j

− kb,j
Ns∏
l=1

(
ρYl
Wl

)υ′′
i,j

. (11)

These equations hold on a 3-D spatial domain Ω ∈ R3 during a
specified time interval t ∈ (t0, tf ), and U = (u, v, w)T ; D/Dt
is the substantial derivative; ∇ is the gradient operator; g is the
body-force acceleration vector, ρ is density, and p is the pressure.
T is temperature; Yi is the mass fraction, and hi is specific en-
thalpy, of species i. The transport properties include (dynamic)
viscosity µ, thermal conductivity λ, and the binary diffusion co-
efficient Di of species i in the ambient background gas. Here,
cpi and Wi are the specific heat capacity and relative molecular
mass of species i, respectively; ν′i,j and ν′′i,j are stoichiometric
coefficients of reactants and products corresponding to species i
in reaction j. Ns andNr are the number of species and reactions,
respectively. Finally, kf,j and kb,j are the forward and backward
reaction rate coefficients of the jth reaction, respectively. The
reaction rate expression was shown in Eq. (1), and we write the
specific form for the jth reaction:

kj = AjT
nj exp

(
−Ej
R0T

)
.

Recall that in LES the large-scale part has been resolved di-
rectly, so we now propose to construct corresponding DDS SGS
models from the governing equations. We then add the SGS so-
lutions of the latter to the resolved solution to construct an ap-
proximation to the complete solution. Because the DDSs are
computed in the absence of resolved-scale information here, we
will not analyze initial and boundary conditions for the chosen
spatial domain in the present work.

Construction of Dynamical Systems
In modeling the chaotic maps Mi of Eq. (5), we assume all

solution variables possess (generalized) Fourier series represen-
tations [9]

qi(x, t) =

∞∑
k=1

ak,i(t)ϕk(x), x ∈ Ω, ∈ [t0, tf ], (12)

where functions {ϕk}∞k=1 are basis functions of the Galerkin ap-
proximation for the Fourier coefficients, ak,i, of the ith depen-
dent variable. There are several requirements associated with
these basis functions: 1) {ϕk}∞k=1 is complete in L2(Ω); 2) it is
orthonormal; 3) it exhibits behavior similar to complex exponen-
tials, eik·x, with respect to differentiation.

Now, we consider this representation restricted to the sub-
grid scale. In general, the number of wavevectors required for
adequate representation decreases quickly as the extent of the
spatial domain is reduced. Thus, we can use only a few wavevec-
tors to represent q∗ in Eq. (3). In this paper, we choose a single
wavevector k for simplicity.

Detailed derivation of the 2-D poor man’s Navier–Stoker’s

equation has been provided in [8], with the corresponding 3-D
case by Polly [10]. In this paper, for brevity, we only present an
outline of this derivation. We substitute Eq. (12), the Fourier rep-
resentations of the dependent variables, into the governing Eqs.
(9). Then form inner products of each equation with every basis
function and use orthonormality of {ϕk} (the same simplifica-
tions used in [8]) to construct the Galerkin ordinary differential
equations (ODEs). This procedure yields an infinite ODE sys-
tem to replace the original PDEs. Here, we will use a simple
forward-Euler, single-step, explicit time integration procedure to
perform the temporal discretization. After appropriate rescaling
to account for a single wavenumber, we obtain the following 3-D
DDS model of Eqs. (9):

a(n+1) = βua
(n)(1−a(n))−γ12a(n)b(n)−γ13a(n)c(n), (13a)

b(n+1) = βvb
(n)(1− b(n))− γ21a(n)b(n) − γ23b(n)c(n), (13b)

c(n+1) = βwc
(n)(1−c(n))−γ31a(n)c(n)−γ32b(n)c(n)+αT e

(n),
(13c)

d
(n+1)
i = −(βYi

+γuYi
a(n+1)+γvYi

b(n+1)+γwYi
c(n+1))d

(n)
i

+
.
ωi +di,0 i = 1, 2, . . . , Ns, (13d)

e(n+1) =

[(
Ns∑
i=1

αTdid
(n+1)
i −γuTa(n+1)−γvT b(n+1)

−γwT c(n+1)

)
e(n)−

Ns∑
i=1

Hi
.
ωi

]
/(1+βT )+e0 , (13e)

with

ω̇i =

Nr∑
j=1

[
Cf,ij

Ns∏
l=1

d
ν′
j,l

l − Cb,ij
Ns∏
l=1

d
ν′′
j,l

l

]
. (14)

Here, superscripts (n) are time-step indices; a, b, c, dis, and
e denote Fourier coefficients of the velocity vector in three di-
rections, species concentrations, and temperature, respectively;
the subscripted αs, βs, γs are DDS bifurcation parameters, all
of which are associated with the various physical bifurcation pa-
rameters. For example, βu, βv , and βw are functions of Reynolds
number; αT is related to Grashof number (actually, this term ex-
ists in all three velocity components); the αTdi are related to
Schmidt and Lewis numbers; and theHi are associated with spe-
cific enthalpies for each species i; the Cf,ij , Cb,ij can be related
to Kolmogorov-scale Damköhler numbers. The various γs cor-
respond to velocity, temperature and species concentration gra-
dients. The di,0s and e0 are high-pass filtered species concentra-
tions and temperature, respectively, for subgrid-scale behavior.
We mention that for simplicity we will set αT identically equal
to zero in the present work, as buoyancy effects are negligible.
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Reaction-Chemistry Reduced Mechanism
Overall (global) reactions are a consequence of collections

of elementary reactions, and resolution of these elementary reac-
tions is a difficult and time-consuming task [2]. Many elemen-
tary reactions produce a negligible contribution to the reaction
process, and therefore can be ignored, leading to reduced mech-
anisms. Here, we only study the case of H2-air reactions with
N2 dilution. Elementary reactions listed in Eqs. (15) are selected
from the detailed H2-O2 reaction mechanism [11] and a reduced
mechanism for H2-air combustion [12]. The corresponding re-
action rate data (assuming Arrhenius form) are listed in Table 1,
where F means forward reaction and B means backward reaction.

Table 1. Reduced Mechanism for H2-Air Reaction

# F Aa n Ea B Aa n Ea

a kf 3.52×1016 −0.7 71.42 kb 7.04×1013 −0.26 0.60

b kf 5.06×104 2.67 26.32 kb 3.03×104 2.63 20.23

c kf 1.17×109 1.3 15.21 kb 1.28×1010 1.19 78.25

d k0 5.75×1019 −1.4 0.0 k∞ 4.65×1012 0.44 0.0

e 7.08×1013 0.0 1.23

f kf 1.66×1013 0.0 3.44 kb 2.69×1012 0.36 231.86

g 2.89×1013 0.0 −2.08

h kf 4.00×1022 −2.0 0.0 kb 1.03×1023 −1.75 496.14

i kf 1.30×1018 −1.0 0.0 kb 3.04×1017 −0.65 433.09

H + O2 
 OH + O (15a)
H2 + O 
 OH + H (15b)

H2 + OH 
 H2O + H (15c)

H + O2 + M ⇀ HO2 + Ma (15d)

HO2 + H ⇀ 2OH (15e)

HO2 + H 
 H2 + O2 (15f)

HO2 + OH ⇀ H2O + O2 (15g)

H + OH + M 
 H2O + Ma (15h)

2H + M 
 H2 + Ma (15i)

This mechanism is believed to be sufficient to describe pre-
mixed and nonpremixed flames, autoignition and detonations un-
der conditions of practical interest. It consists of 15 reversible
elementary reactions, and we collapse them to a nine-step mech-
anism, involving eight reacting species H2, O2, H2O, OH, H, O,
HO2, N2. Here, the bodies M and Ma are regarded as including
all reacting species except the reactants/products of the particu-
lar reaction. For example, in reaction 15(d), M includes all of
species except H and O2, and the Ma includes all species except

HO2. Coefficients of reacting species are set to unity, which is
different from the so-called San Diego mechanism [13].

Experimental Data
The experimental data are chosen from DLR Institute of

Combustion Technology Experimental Data Archives, H2/N2

Jet Diffusion Flame [H3] (DLR Stuttgart), which is available
at http://www.sandia.gov/TNF/simplejet.html. This flame was
selected as a “standard flame" of the “International Workshop
on Measurements and Computation of Turbulent Nonpremixed
Flames," Naples, July 1996. It was investigated at the TU Darm-
stadt, Fachgebiet Energie-und Kraftwerkstechnik, and those data
sets are available in the TU Darmstadt–Flame Data Base [14].
This is a nonpremixed flame with fuel (50%H2 + 50%N2,
Reynolds number =10000, nozzle diameter = 8mm, Vexit=34.8
m/s) and co-flowing air (Vair = 0.3 m/s). Meier et al. [15] pro-
vide a detailed description of this flame. We study the temper-
ature and species concentrations at one specific point. Let x be
the distance from the nozzle along the flame axis, D the nozzle
diameter, and r the radial distance from the flame axis. The lo-
cation considered in this work is x/D = 2.5 and r = 6.75mm;
we note that this point is located where the temperature is max-
imum for the chosen x/D. The initial conditions, listed below,
include temperature and mass fractions of four species in H2-air
combustion, namely, H2, O2, H2O and N2.

Table 2. Initial conditions: temperature and mass fractions

T [K] YH2 YO2 YH2O YN2

2095.6 0.0011 0.0531 0.1623 0.7834

RESULTS AND DISCUSSION
In this section, we consider a single position of the co-flow

TU Darmstadt-Flame Data Base [14]. We calculate time series
of velocities, temperature and species concentrations at this lo-
cation using a low-order model based on the DDS described in
an earlier section. We compare these computed results with the
corresponding experimental data, provide a discussion regard-
ing behavior of the computed results, and analyze the potential
factors that may cause discrepancies between computation and
experiment.

Regime Maps
For simplicity, the bifurcation parameters in Eqs. (13) are

taken to correspond to homogeneous and isotropic turbulence.
Namely, βu = βv = βw = β, γ12 = γ13 = γ21 = γ23 = γ31 =
γ32 = γ, and γuT = γvT = γwT = γT . We remark that neither
the fluid flow nor the chemistry can be expected to be either ho-
mogenous or isotropic in this case, but this assumption provides a
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tractable starting point. Moreover, we emphasize that no such as-
sumption is needed in a complete LES because all bifurcation pa-
rameters can be calculated from high-pass filtered resolved-scale
results. The values of these parameters associated with species i,
e.g., βYi

, αTdi etc., should be analyzed individually since every
species has its own characteristics. We present only one regime
map, β vs. γ in Fig. 1. Once the different regimes are identi-
fied by their power spectral density (detailed analysis provided
in Ref. [8]), we can choose regimes where chaotic-behavior is
present, and apply the corresponding bifurcation parameters of
the chaotic region in Eqs. (13) to evolve the DDS.

-1

-0.5

 0

 0.5

 1

 1.5  2  2.5  3  3.5  4

γ

β

(a) Entire domain of interest

(b) color table

Figure 1. Regime map

In Fig. 1, we show the behaviors of the DDS for the pa-
rameters (β, γ) ∈ [1.2, 4.0]×[−1.0, 1.0]. Specifically, the values
β = 3.6416, γ = 0.264 are chosen, corresponding to the white
point in the 11th region of Fig. 1: broadband, essentially stochas-
tic behavior, but with a fundamental frequency.

Validation of Model
In [5] 2-D DDS results for a similar combustion process are

provided, but the more realistic 3-D case has not previously been
studied. We will use the instantaneous sum of mass fraction fluc-
tuations as a first measure to validate the model. Instead of forc-
ing the sum to be unity by calculating all but one species and
then setting it to satisfy the required unity value as is typical (and
computationally more efficient), we directly calculate all species
concentrations using the DDS and then observe the sum of mass
fractions.
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 0  0.005  0.01  0.015  0.02  0.025  0.03

S
u
m

Time(s)

Sum of Mass Fractions in Time

Figure 2. Sum of mass fractions vs. time

Figure 2 shows that the sum of mass fractions is close to
unity for all times and the time averaged sum of mass fractions
is 0.998, showing less than 1% discrepancy from the required
value. Moreover, instantaneous values are nearly all greater than
0.99 and less than 1.002. These result show that the model works
well in terms of mass fractions. In the following subsection, we
will present additional computed results and compare them with
experimental data to further validate this model.

Computed Results
Appropriate bifurcation parameters have been found as in-

dicated in the subsection Regime Maps, and we use these in the
DDS of Eq. (13) to obtain the computed results. The detailed
comparison of computed results and experimental data is shown
in Fig. 3 and Table 3, and we provide a brief discussion of the
comparison.

Figure 3(a) shows that all five variables of the DDS exhibit
turbulent behaviors, as is true for the experiments of Fig. 3(b),
thus demonstrating that the DDS model can mimic the physi-
cal temporal turbulent fluctuations in a qualitative sense; but the
fluctuation frequencies shown in Fig. 3(a) are higher than those
of Fig. 3(b). A possible reason for the difference is that the fluc-
tuation scale in the DDS model may be more sensitive than was
the experimental equipment, and the former can generate smaller
time scales. On the other hand, fluctuation amplitudes in Fig.
3(b) are higher than those of Fig. 3(a), which suggests a possible
scaling problem in the model.

In Table 3, although the discrepancy of temperature is larger
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than the experimental root mean square (RMS), the correspond-
ing error is less than 10%. Furthermore, discrepancies of the four
species in Table 3 are far less than the corresponding experimen-
tal RMS; and the largest error is less than 15%, which we view as
acceptable for a low-order model to be used on the subgrid scale.
Table 3 and Fig. 3 show that we nearly match mean values for
species concentration, and the discrepancies are lower than the
experimental RMS.

Table 3. Temperature and major species mass fraction mean values

T [K] YH2 YO2 YH2O YN2

Experiment 2030.3 0.0012 0.0576 0.1565 0.7846

DDS model 2223.4 0.0010 0.0532 0.1601 0.7856

Experiment rms 85.4 0.0012 0.0188 0.0136 0.0081

Discrepancy 193.1 0.0002 0.0044 0.0036 0.0010

Error % 9.51 −14.53 −7.68 2.32 0.13

The temperature values in Table 3 and Fig. 3 are somewhat
higher in the computation than in the experiment. This is due
to the temperature model required for these calculations (small-
scale plus large scale), which would not be needed in a complete
LES. Overall, the computed results mimic the combustion pro-
cess to a reasonable extent, and the 3-D DDS model works fairly
well.

Discrepancy Analysis
Recall that the DDS model presented in this paper is de-

rived for use as part of a SGS model for LES, and in this context
would be evaluated at single points. So the computed results of
the DDS model are set by initial conditions, and they do not ac-
count for behavior in the whole flow field. In contrast, although
the experimental data are recorded at fixed positions, the species
concentrations and temperature are affected by the fuel flow and
air flow throughout the experiment.

The particular finite-rate reduced mechanism employed here
is also a possible error source. Recall that we use only a nine-step
mechanism (including forward and backward) for the combus-
tion process, and this mechanism does not contain reactions for
NOx. We know NOx exists at high temperature, and in this case
the average temperature is over 2000K. Hence, we should possi-
bly take NOx reactions into consideration, and we will examine
this in our continuing studies.

It is rather likely that the homogeneous, isotropic assump-
tion is responsible for some, possible much, of the observed dis-
crepancies. In [5] and [6], this assumption was not employed,
and results were qualitatively better, even though the model was
only 2D. Effects of this will also be investigated in ongoing stud-
ies.

(a) DDS model

(b) Experimental Data

Figure 3. Comparison at x/D=2.5, r=6.75mm

CONCLUSIONS
In this paper we derived a 3-D discrete dynamical system

for finite-rate combustion from governing PDEs and utilized this
model with a nine-step reduced mechanism to mimic H2-air
combustion. The sum of species mass fractions close to unity
demonstrates this model also works in 3D, as it previously did
in 2D. Turbulent fluctuations exhibited in computed results are
similar to those of experimental data in a qualitative sense; com-
puted averaged temperature and species concentration are essen-
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tially within experimental error. But the turbulence statistics and
fluctuation amplitudes are not very accurate. However, we have
mentioned that chosen bifurcation parameters did not necessarily
agree with experimental data location conditions (in part due to
the isotropy and homogeneity assumptions), and what we have
attempted to do in this paper is model the combustion process
rather than precisely duplicate a real physical situation. Further-
more, we are considering only a single location of flow field, and
the DDS model provides a SGS simulation for this point only.
For the whole flow field, we need to add this SGS model to the
resolved part of a LES and thus construct an approximation to
the complete solution. In the Discrepancy Analysis section, we
find that the DDS model lost some information probably caused
by several simplifications. We will study these shortcomings in
further research.

In general, we believe the results of this study are suffi-
ciently promising to suggest continued investigation of discrete
dynamical systems for finite-rate chemistry as low-order models
on subgrid-scales for large-eddy simulation.
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