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ABSTRACT 

The main goal of the current work is to evaluate specific 

equations to define effective thermal conductivity for inward 

melting problems inside spherical containers in terms of the 

temperature difference and the spacing between the interface 

and shell. Sets of numerical analyses have been conducted with 

commercial CFD software ANSYS-FLUENT. In order to check 

the validity of the method, proposed effective thermal 

conductivity equation has been implemented into a phase 

change problem inside a spherical container, and the results are 

compared with the experimental findings. Comparative results 

reveal that implementation of the effective thermal conductivity 

yields reasonable results regarding to the experimental 

measurements 

 

INTRODUCTION 
In the design period of thermal energy storage systems, 

there are several parameters should be taken into account, such 

as thermo-physical properties of the phase change material, 

dimensions of the enclosure and working parameters of the 

secondary-fluid. Since the experimental investigation and 

optimization of such a system is costly and time consuming, 

engineers and researchers mainly use numerical simulations to 

find optimum parameters for a specific application. The main 

difficulty that may arise while solving a phase change problem 

is capturing the interface position properly. To do so, there are 

mainly two solution strategies; moving grid and fixed grid [1]. 

In the former one, according to the interface position mesh is 

regenerated at each time step to capture high gradients around 

the phase change front perfectly. On the other hand, in the latter 

one, the mesh structure is kept constant for the whole solution 

period, and the interface position is revealed according to the 

enthalpy or temperature distribution. Each method has some 

cons and pros and the details about these methods are of the 

focus of our current study. Detailed information about these 

methods can be found elsewhere [2, 3].  

The main difficulty, however, may arise for solving a phase 

change problems if the effects of natural convection cannot be 

omitted. Such cases correspond almost for all real applications, 

since the temperature difference between the phase change 

temperature of the PCM and the secondary fluid may 

reach10°C to 20°C. The presence of natural convection affects 

both total time of phase change and the curvature of the 

interface. Natural convection and thermal stratification 

phenomena inside an enclosure deteriorate uniformity of phase 

change front. There are countless studies which deal with the 

numerical and experimental investigation of natural convection 

driven phase change. Here we will mainly focus on revealing 

the time consumed for such analyses.  

NOMENCLATURE 
 
C [-] Dimensionless heat capacity 

g [m/s2] Gravitational acceleration 
Gr [-] Grashof number 

h [kJ/kg] Enthalpy 

k [W/mK] Thermal conductivity 
K [-] Dimensionless thermal conductivity 

L [m] Gap of annulus 

Nu [-] Nusselt number 
q [W] Rate of heat transfer 

p [Pa] Pressure 

r [m] Radial axis direction  
R [-] Dimensionless radial axis 

S [-] Dimensionless source term 

S’ [-] Shape factor 
Ste [-] Stefan number 

T [°C] Temperature 

t [s] Time 
u [m/s] Velocity 

 

Special characters 
ε [-] Convergence criteria 

δθm [-] Dimensionless temperature range of mushy zone 

ΔT [K,oC,oF] Temperature differences 
ρ [kg/m3] Density 

θ [-] Dimensionless temperature  

ϕ [o] Angular position 
μ   

τ [-] Dimensionless time 

 
Subscripts 

  

eff  Effective 

i  Inner  
m  Melting or Mushy region 

o  Outer  

s  Solid phase 
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Tan et al. [4] carried out experimental and numerical study 

in order to investigate melting period of n-octadecane inside a 

spherical enclosure. They used commercial CFD software in 

their simulations and the optimum time step size is obtained to 

be 0.1 s. Assis et al. [5] considered melting period paraffin 

inside spherical container. Since they have examined advanced 

unconstrained melting problem with considering air at the top 

of the sphere, optimum time-step size became so small such as 

0.02 s. Shmueli et al. [6] experimentally and numerically 

investigated the melting process of paraffin inside vertical 

cylindrical cavity. The container consists of PCM and air 

regions so the VOF (Volume of fluid) multiphase model is 

solved with enthalpy-porosity method. Optimum time-step size 

of this analysis is represented to be 0.002s. Shatikian et al. [7] 

presented their numerical findings of inward melting process of 

a PCM between to fins. Again the authors optimized the time-

step size as 0.01s to achieve considerable convergence criteria.  

These comprehensive works deal with in-depth analyses of 

the natural convection driven phase change and aim to reveal 

local natural convection patterns, thermal stratification regions 

and variation of the interface as a function of time or space. In 

such an analysis, in order to decrease the numerical errors for 

all governing equations, the time-step size has to be kept 

around 0.1 s or below. Nevertheless, it will be time consuming 

process to follow such an analysis to carry out engineering 

design, which requires testing of lots of parameters for a 

particular problem.  

There are also some other methods to simplify natural 

convection driven phase change problems within a reasonable 

engineering accuracy. Ismail et al. [8] simulated the inward 

solidification process inside a sphere with the presence of 

natural convection. Instead of modelling the natural convection 

for the liquid phase of the PCM, they have defined effective 

thermal conductivity to consider the influence of convection. 

Reasonable consistency has been obtained according to the 

comparative results of time-wise variation of the temperature at 

the center of the sphere. However, Ismail et al. [8] indicated 

that there is no certain correlation to compute the effective 

thermal conductivity value for spherical containers and the 

literature values vary between 1.4 W/mK and 8.2 W/mK. 

The main goal of this study is to correlate the variation 

effective thermal conductivity of water as a function of the 

interface position for inward melting process inside a spherical 

container.  

 

DEFINITION OF THE PROBLEM 
In this study, we have carried out three different sets of 

numerical analyses. In the first step, in order to obtain the 

effective thermal conductivity values, steady-state natural 

convection of water is simulated for various geometric and 

thermal conditions. The validity of the steady-state analyses has 

been tested regarding to the experimental data of Bishop et al. 

[9] for the case of air. As a last step, the correlated data is 

implemented into a numerical code to simulate inward melting 

inside a spherical container, and the results are compared 

against the experimental measurements. Following sub-sections 

will define each problem and the related solution methods. 

Steady-state natural convection of water/air inside sphere 

As a first step, steady-state natural convection inside a 

spherical annulus is considered. As shown in the Figure 1, 

sphere is considered to be two dimensional and axis-symmetric. 

The inner and outer radius of the spherical annulus are 

indicated as ri and ro, respectively, and the outer and inner 

surfaces are kept at constant temperatures as To and Ti, 

respectively. For the each case of fluid, water or air, except the 

density, thermo-physical properties of the fluid are defined to 

be constants and are obtained at a mean temperature, Tmean = (To 

+ Ti)/2. Density of water and air are identified as a function of 

temperature, which is valid for the temperature range 

considered in this study as   

 

ρwater = -0.007085T 
2
 + 3.925T + 456.49                 (kg/m

3
) 

ρair = 1E-05T
2
 - 0.0104T + 3.3209              (kg/m

3
) 

 
Figure 1 Definition of the problem 

 

Considering the incompressible, two-dimensional, steady-

state and laminar flow inside a spherical annulus, governing 

equations can be reduced as 

 

Continuity 

0
i

u

x





       (1) 

Momentum 
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Energy  

 i
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T
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x x x


   
  

   
     (3) 

 

For the inner and outer walls of the sphere, no-slip 

boundary condition is applied. Remaining boundaries (vertical 

axis-lines) are defined to be axis. Governing equations are 

discretized into algebraic sets of equations with using Control-

Volume-Approach of Patankar [10]. Power-Law scheme [10] is 

ri 

ro 

Water 

or 

Air 

To 

Ti 

L = ro - ri 

ϕ = 90° 

ϕ = 0° 

ϕ = -90° 
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implemented for evaluating the values at the control surfaces 

for each transport parameter. SIMPLE algorithm is used as a 

solution algorithm of governing equations. The computational 

domain is divided into 150.000 structured computational 

volumes, and the grid density is increased near the outer and 

inner surfaces of the sphere to capture the higher temperature 

and velocity gradients. Convergence criteria for the mass, 

momentum, and energy balance equations are set to be 10
-6

. 

Computations are performed with the aid out commercial CFD 

software ANSYS-FLUENT v.14 [11].  

 

Numerical Investigation of Inward Melting of Water 

Melting process of water inside the sphere is investigated 

both experimentally and numerically. Numerical analyses have 

been performed with implementing the temperature 

transforming method of Cao and Faghri [12]. Since the 

effective conductivity meets the effect of convection, one-

dimensional heat conduction with phase change is considered 

in formulation, 

    2

2

1
C S KR

R RR




 

    
   

    
   (4) 

According to this method, enthalpy can be identified as a piece-

wise linear functions for liquid, mushy and solid phases in 

terms of the temperature. C, K and S are defined for each phase 

of the material as follows, 

   
1
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2Ste

1

S m

S m m

m

m

C
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 
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 

  



      

  

 (5) 
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 (6) 

 

   0.5 1 0.5 Ste

1 Ste

S m m

S m m m

S m m

C

S C

C

  

    

  

 


      
   

 (7) 

Here, except the thermal conductivity of water in the liquid 

phase, the thermo-physical properties of water are defined to be 

constants for each phase. The thermal conductivity of the liquid 

water is defined as a function of annulus spacing and the 

temperature difference between the interface and the shell. 

Non-dimensional parameters that are used in Equations (4-7) 

can be found elsewhere [12]. 

Energy equation (Eq. 4) is discretized by finite volume 

approach of Patankar [10]. Computational domain is divided 

into five hundred control volumes. In order to interpolate the 

variation of the thermal conductivity at the solid/liquid 

interface, harmonic mean thermal conductivity definition of 

Patankar [10] has been implemented. Tri-Diagonal Matrix 

Algorithm (TDMA) has been used to resolve the linear sets of 

equations. The computer code is developed in MATLAB 

programming language. As a result of the preliminary analyses, 

time step size is selected to be, t = 10 s. Convergence criteria, ε, 

for each time-step is defined in terms of the maximum relative 

change of temperature between two iterations for the whole 

domain, and for each time step ε <10
-14

 is satisfied.  

 

Experimental Investigation of Inward Melting of Water 

In the evaluation of the effective thermal conductivity, the 

problem is reduced into two-dimensional, steady-state problem 

without phase change. Hence, the convenience of these 

simplifications is revealed regarding to the experimental 

comparisons. In the experiments, a spherical container is used 

with an inner diameter and wall thickness of 55 mm and 2 mm, 

respectively. Three thermocouples are used to monitor time-

wise variation of temperature; one is at the center of the sphere, 

and two are at the outer surface of the sphere. In order to obtain 

a homogenous initial temperature inside the sphere, the water 

filled container is submerged into brine (40% Ethylene-

glycol/Water mixture) which is kept at -28°C and remained in 

there until the center temperature becomes steady-state. Then 

the sphere is put into another constant-temperature-bath, which 

has hot-brine with a predefined temperature for melting 

experiments. Experiments are carried on since the temperature 

at the center of the sphere reaches to brine temperature.  

 

RESULTS AND DISCUSSION 
Validation of the Method 

Numerical methodology is introduced with reproducing the 

experimental study of Bishop et al. [9]. Bishop and his 

colleagues took into account natural convection of air inside a 

spherical annulus with isothermal surfaces. In the experimental 

study, Bishop varied the spacing ratio (L/ri) to be 0.19, 0.67, 

1.00, 1.50 and 2.14. The temperature difference (To - Ti), on the 

other hand, was changed between 15°F to 100°F. Comparative 

results are obtained in terms of the average Nusselt number and 

the flow patterns. Bishop et al. [9] suggested the following 

correlation for natural convection of air inside annulus, 

 
0.5170.270Nu 0.332Gr iL r      (8) 

On the other hand, in the numerical analyses, the average 

Nusselt number is calculated as  

  24 i

qL
Nu

k T r



      (9) 

where q is the heat transfer from inner or outer surface of the 

sphere.  

Comparative results are represented in Table 1 for various 

spacing ratios and temperature differences. Increasing spacing 

factor or temperature tends to increase the surface Nusselt 

number. It is also clear that for higher spacing ratios or 

temperature differences, the difference between the predicted 

and the experimental data increases. In the experiments, there 

may be three-dimensional flow patterns or turbulence effects 

may occur especially for higher Gr numbers, which are not 

considered in the current mathematical model. Nevertheless, 

the predicted results have reasonable consistency with the 

results of reference work, and the maximum deviation is found 

to be less than 9%.  
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Table 1 Comparison of Nusselt Number  

Spacing 

Ratio 
ΔT 

Nusselt 

Difference 
Eq. (11) 

Numerical 

Results 

(L/ri) (°F) (-) (-) (%) 

0.67 

25 7.06 6.99 1.0 

61 8.64 8.38 3.1 

100 9.50 9.11 4.1 

1.00 

25 10.43 10.11 3.1 

61 12.77 12.05 5.6 

100 14.03 13.10 6.7 

1.50 

25 14.91 14.21 4.7 

61 18.26 16.95 7.2 

100 20.06 18.43 8.1 

2.14 

25 19.90 18.90 5.0 

61 24.37 22.50 7.8 

100 26.77 24.42 8.8 

  

Bishop indicated that three distinct flow patterns were 

observed namely, kidney-shaped-eddy, crescent-eddy, and 

falling-vortices. In Figure 2, these three flow patterns are 

compared against the flow visualizations of the reference work. 

In Figure 2(a), flow patterns are represented for L/ri = 2.14. A 

distortion is observed close to ϕ = 0° line for the experimental 

observations and the shape of the flow pattern looks like a 

kidney. However, the predicted flow pattern does not resemble 

with the experimental one especially for -45° < ϕ < 45°. As can 

be seen in Table 1, this discrepancy induces a deviation of 5% 

in terms of the surface Nusselt number. On the other hand, as 

seen in Figure 2(b), for L/ri = 0.72, the domain is dominated by 

a big circulation cell and the shape is similar to the crescent. 

The center of the circulation cell is observed for 0° < ϕ < 45° as 

in the reference work. In Figure 2(c) patterns are given for L/ri 

= 0.19. Since the spacing is so small for this configuration, at 

the top of the annulus, 40° < ϕ < 90°, small vortices are 

observed, and this type of flow patterns is called as falling 

vortices. On the other hand, crescent type flow pattern is 

dominated for the rest of the domain for -90° < ϕ < 40°. 

Comparative results reveal that the numerical method that is 

used in the current work has a reasonable consistency with 

experimental findings.   

 

Evaluation of the Effective Thermal Conductivity 

During the inward melting process, the interface will move 

from the outer surface through the center of the sphere. Here, 

we have calculated the effective thermal conductivity for four 

spacing factors and five temperature differences to evaluate a 

correlation that can be used in simplified numerical codes for 

inward melting. The thermal and geometric parameters that are 

used to evaluate effective thermal conductivity are listed in 

Table 2. In the analyses, the temperature of the inner sphere is 

kept constant at the phase change temperature of water, at 0°C. 

 

  
 

(a) L/ri = 2.14, ΔT = 25°F 

 

  
 

(b) L/ri = 0.72, ΔT = 15°F  

 

  
(c) L/ri = 0.19, ΔT = 15°F  

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° 

ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° 

ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° θ
 =

 -
9

0
° 

Figure 2 Airflow patterns 
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Table 2 Parameters for steady-state natural convection of water 

L/ri 0.67, 1.00, 1.50 and 2.14 

Ti – To (°C) 2, 4, 8, 12 and 24 

 

In thermal energy storage systems for cooling applications, 

owing to the high storage capacity per volume, water is the 

most popular and appropriate phase change material. However, 

density inversion of water at 4°C makes it complicate in the 

mathematical simulations and engineering designs. Regardless 

from the spacing ratio of the annulus, two discrete flow 

circulation zones will occur for the cases of surface 

temperatures higher than 4°C and this will increase the 

influence of the convective heat transfer on the melting period 

of the ice. The effective thermal conductivity of a fluid can be 

defined as  

effq S k T         (10) 

where q is evaluated from the numerical analysis and S' is the 

shape factor of the geometry. For the spherical enclosure, the 

shape factor becomes, 

   

4

1/ 1/i o

S
r r


 


      (11) 

In Figure 3, variation of the effective thermal conductivity 

is given in terms of temperature difference and the spacing 

ratio. It is clear that increasing the temperature difference and 

spacing ratio improve the impact of convective forces and 

enhances the keff. It is also interesting that, for To = 2°C and 

4°C, the effective thermal conductivity values are almost 

identical for all spacing ratios. For the advancing temperature 

values, on the other hand, the effect of spacing ratio for a 

particular temperature value becomes clearer. For each outer 

surface temperature value, keff is obtained as a function of 

spacing ratio as 3
rd

 order polynomial functions and the 

coefficients of these functions are given in Table 3. 

 

 
Figure 3 Effective thermal conductivity of water 

 

On the other hand, in Figures 4 and 5, isotherms and 

streamline patterns are represented for two different outer 

surface temperatures with three spacing ratios. As seen in 

Figure 4(a), for To = 8°C and L/ri = 0.67, two circulations cells 

exist in the domain. The inner zone is effective from ϕ = 0° to -

90°. Hot water with higher density drops downwards and cold 

water near the inner sphere surface tends to upwards. 

Consequently, a clock-wise circulation takes place for this 

region. Remaining domain is dominated by a counter-clock-

wise circulation zone. Increasing the spacing ratio, Fig. 4(b) 

and (c), induces thermal stratification for the upper side of the 

domain (0° < ϕ < 90°), and the outer circulation shifts through 

the bottom of the annulus. As a result, the inner circulation cell 

stuck into a narrow region under the sphere and almost 

disappears. Similarly, increasing the outer temperature also 

increases the intensity of the natural convection, and as seen in 

Fig. 5(a), even for the smallest spacing, the secondary 

circulation is effective only a small region around ϕ = -90°. 

Moreover, for the higher the spacing ratios, Fig. 5(b) and (c), it 

is clear that a jet-flow forms at the bottom of the inner sphere 

and hits on the outer surface at ϕ = -90°. 

 

Table 3 Effective thermal conductivity (0.67 ≤ L/ri ≤ 2.14) 

      
3 2

  i i ieff L r L ra rk b dc L    

To (°C) a b c d 

2 0.77 -4.52 9.60 0.99 

4 0.81 -4.7 9.61 1.22 

8 0.0045 -1.94 8.85 0.40 

10 1.18 -7.31 16.56 -0.56 

12 1.27 -7.86 17.82 0.45 

25 3.14 -17.05 33.28 -0.70 

 

Comparative Study 

As a last step, in order to test the validity of the equations 

that are suggested in Table 3, comparative results are given in 

Figure 6. Here, time-wise variation of the center temperature of 

the sphere during the melting process is given together with the 

numerical results. In the numerical code, two different cases are 

considered. In the first one, the thermal conductivity of the 

water is kept constant during the whole process. It is clear that, 

for the constant kl case, the resultant temperature variation is far 

from being capture the experimental one. On the other hand, 

with the implementation of effective thermal conductivity of 

water as a function of the interface position into the numerical 

code, the variation of temperature remarkably approaches to the 

experimental measurements.  

 

CONCLUSION  
In this study, authors proposed the usage of effective 

thermal conductivity of water for inward process of water 

inside spherical container. Effective thermal conductivity 

values are evaluated in terms of the spacing-ratio of the annulus 

and the outer temperature value. The comparative results reveal 

that the method yields reasonable results regarding the 

experimental measurements and further studies may carry out 

to derive more accurate correlations for spherical or any other 

geometries that are commonly used in thermal energy storage 

systems. 
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(a) L/ri = 0.67 

 

 

 
 

(b) L/ri = 1.50 

 

  
 

(c) L/ri = 2.14 

 

 

Figure 4 Natural convection patterns for To = 8°C 

 
 

 

(a) L/ri = 0.67 

 

 

 
 

 

(b) L/ri = 1.50 

 

  
 

(b) L/ri = 2.14 

 

Figure 5 Natural convection patterns for To = 12°C 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° 
ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

ϕ = 90° 

ϕ = 45° 

ϕ = 0° 

ϕ = -45° ϕ = -90° 

Isotherm(left) and streamlines (right) Isotherm(left) and streamlines (right) 

432



    

 
Figure 6 Comparison of experimental data with numerical 

findings – To = 25°C 
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