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ABSTRACT 

  The present numerical study presents results of steady 

three-dimensional natural convection in a cuboid box 

filled with fluid saturated porous medium. The porous 

medium is heated using uniform heat generation source. 

All six faces are subjected to isothermal condition. Darcy 

flow model has been employed. Governing equations 

have been numerically solved using Successive 

Accelerated Replacement Scheme. Maximum 

temperature and its location have been determined for 

wide range of parameters i.e. Rayleigh number, 

horizontal and vertical aspect ratios. As Rayleigh number 

increases, the value of maximum temperature decreases 

and its position shifts upward along mid vertical axis. 

There is significant effect of Rayleigh number and aspect 

ratios on flow and temperature fields. 

 

INTRODUCTION 
Studies on natural convection in porous media have 

practical applications of considerable importance in 

many engineering fields, such as storage of agricultural 

and food products, extraction of geothermal energy, 

underground disposal of nuclear waste material, pebble 

bed nuclear reactors, enhanced recovery of oil or gas by 

thermal methods, matrix heat exchangers, high 

performance insulation for cryogenic containers. The 

combination of natural convection in porous media with 

internal heat generation is interesting in view of 

applications to the above practical cases. 

The onset of natural convection in horizontal infinite 

porous layer with internal heat generation has been 

studied by Gasser and Kazimi [1], Tveitereid [2] and 

Nouri-Borujerdi et al. [3]. Haajizadeh [4] studied steady 

natural convection inside a rectangular porous enclosure 

with uniform internal heat generation and cooling from 

the side walls. Prasad [5] studied thermal convection in a 

rectangular cavity filled with a heat generating, Darcy 

porous medium. Das and Sahoo [6] analyzed  pressure-

velocity  solution  of  natural  convection  for  fluid  

saturated  heat  generating porous  medium  in  a  square  

enclosure employing Brinkman extended Darcy flow 

model. Krishna et al. [7] studied natural convection in a 
two-dimensional square cavity containing hydro 

dynamically and thermally anisotropic porous medium 

with internal heat generation. 

  Studies on three-dimensional natural convection in 

porous media with internal heat generation are limited. 

Beukema et al. [8] developed a model for three-

dimensional natural convection in a confined porous 

medium with internal heat generation. Experiments were 

performed on cooling the model material, representing 

agricultural products at different rates of heat generation 

in a closed container with isothermal walls. Compared to 

conduction only, natural convection accelerated cooling, 

resulting in lower average temperature from centre of the 

container upwards.  Suresh et al. [9] studied three-

dimensional natural convection in anisotropic heat 

generating porous medium enclosed inside a rectangular 

cavity.  

  The present numerical study investigates steady 

three-dimensional natural convection in a cuboid box 

with isothermal walls filled with heat generating porous 

medium. The effect of parameters like modified Rayleigh 

number (  ), vertical aspect ratio (  ) and horizontal 

aspect ratio (  ) on the flow and temperature fields have 

been examined.    

NOMENCLATURE 

             [-] Vertical aspect ratio 

   [-] Horizontal aspect ratio 

B            [m]  Breadth in z-direction 

           [-]  Darcy number 

  [m/s
2
]  Acceleration due to gravity 

           [m]  Height in y-direction 

  [m
2
]   Permeability of porous medium 

    [W/m K]   Thermal conductivity  

    [m]    Length in x-direction 

  [-]    Non-dimensional pressure 

  [N/m
2
]    Fluid pressure 

 ̇            [W/m
3
]     Internal heat generation rate 

    [-]     Rayleigh number 

   [K]  Temperature of porous medium 

        [-]  Dimensionless Velocity components 

        [m/s]  Fluid velocity in       directions 

           [-]  Dimensionless Co-ordinate distances 

            [m]  Co-ordinates in dimensional form 

Greek symbols 

            [m
2
/s]  Effective thermal diffusivity 

            [K
-1

] Thermal expansion coefficient of fluid 

  [-] Error tolerance limit 
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       [N-s/m
2
]  Dynamic viscosity of fluid 

            [m
2
/s]  Kinematic viscosity of fluid 

             [kg/m
3
]  Fluid density 

 ̅            [-] Dimensionless fluid density 

 ⃗⃗            [-] Dimensionless vector potential 

  [-] Dimensionless temperature 

ω [-] Acceleration factor 

Subscripts 

c            cold 

 

MATHEMATICAL FORMULATION 

The mathematical model for a steady three-

dimensional natural convection in a cuboid box filled 

with heat generating porous medium is presented. All 

surfaces are assumed to be at constant temperature,   . 

The Physical model and co-ordinate system is shown in 

Figure 1. The flow is governed by Darcy law. Boussinesq 

approximation is valid. The fluid and solid matrix are in 

thermal equilibrium. Viscous dissipation and pressure 

work are negligible. Porous medium is isotropic and 

homogeneous.  

 
Figure 1 Physical model and co-ordinate system 

 

With above assumptions, the governing equations are 

given as,  
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 Solutions to Equations (1) to (6) are sought subject to 

following boundary conditions: 
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Governing equations are rendered dimensionless 

introducing the following dimensionless variables: 
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The Vector potential,    
⃗⃗⃗⃗  which satisfies the continuity 

equation, is related to the velocity vector,  ⃗  by 

 ⃗       ⃗⃗⃗⃗                                                  (9)                  

Since   ⃗   , the modified vector potential is also 

solenoidal over the domain considered. Thus, 

     ⃗⃗                                                               (10)                                                      

Governing equations in non-dimensional form are 

transformed using vector potential formulation to 

eliminate pressure by taking curl of the momentum 

equations. The corresponding governing equations 

become: 
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The boundary conditions on vector potential (  ⃗⃗  ) as 

given by Hirasaki and Hellums (1968): 
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The boundary condition on temperature ( ) is given by 
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The dimensionless parameters i.e. modified Rayleigh 

number (   ), vertical aspect ratio (    ) and horizontal 

aspect ratio (  ) appearing in above equations are 

defined as, 
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NUMERICAL SCHEME 

Numerical solutions to the governing equations have 

been obtained by employing Successive Accelerated 

Replacement (SAR) Scheme. Chandra and Satyamurty 

[10] and Sangita et al. [11] have demonstrated the 

applicability of the SAR scheme for solving system of 

partial differential equations in the study of two-

dimensional natural convection heat transfer in porous 

media. The same scheme has been extended to solve 

three-dimensional natural convection in porous media. 
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The basic philosophy of this scheme is to guess 

profile for each variable that satisfies the boundary 

conditions. The equations are transformed into finite 

difference employing central differencing scheme. Let 

governing equation of variable   is given by  ̃       at any 

mesh point        corresponding to    and    position. 

The error arising out of the guessed profile is evaluated. 

Let the error arising in equation at (     )  and the     

iteration be  ̃     
  . The (   ) 

th
 approximation to the 

variable   is given as,  

      
          

   
 ̃     

 

  ̃     
 

       ⁄
                          (20)   

  is the acceleration factor which varies from 0 to 2.The 

procedure of correcting the variable at every mesh point 

is repeated until a set of convergence criteria is satisfied. 

The criterion is given by, 

∑ ∑ ∑ |      
          

 |   

∑ ∑ ∑ |      
   |   

                                             (21)                                                       

  is the error tolerance limit. The feature of using the 

corrected value of the variable immediately upon 

becoming available is inherent in this method.                                   

RESULTS AND DISCUSSION 

Numerical code based on SAR Scheme has been 

developed in MSDEV-FORTRAN. Grid sensitivity tests 

have been carried and results are given in Table 1. A grid 

size of 31×31×31 has been considered as optimum. Error 

tolerance limit ( ) value of 10
-4

 has been taken for all 

computations. Acceleration factor (w) value of 0.5 (under 

relaxation) for Ra>1000 and 1.5 (over relaxation) for 

Ra<1000 has been employed. 

For validation of the present mathematical model 

and numerical scheme, maximum temperature 

experimentally measured by Beukema et al. [8] for 

various heat generation rates have been compared with 

computed results in the present study and are given in 

Table 2. The results are in agreement which validates the 

present mathematical model and the numerical scheme. 

Table 1: Grid sensitivity test for Ra=1000, Ay= Az=1.0 

Grid size Maximum 

temperature, θmax 

         0.04780 

         0.04801 

         0.04837 

            0.04822 

 

 

Flow and Temperature Fields 

Figures 2-4 depict flow fields in terms of iso-vector 

potential lines (  
⃗⃗ ⃗⃗  ) at X=0.5 for Ra=100, 1000 and 

10000. It can be observed that as Rayleigh number 

increases, bi-cellular flow becomes more dominant. 

Figures 5-7 depict temperature fields in terms of 

isotherms at X=0.5 for Ra=100, 1000 and 10000. It can 

be observed that as Rayleigh number increases, 

isotherms become finer near the top surface indicating 

more heat transfer from the top face. Also, maximum 

temperature shifts upwards as Rayleigh number 

increases. 

Table 2: Comparison of experimental results of Beukema 

et al. (1983) with the present computed maximum 

temperature (Tmax )  for Ay= 0.66 and  Az=1.0 

Heat 

generation 

rate 

       q 

(Wm
-3

)  

 

Beukema 

et al. [8] 

Tmax  

(
0
C) 

 

 

 

Present 

Tmax 

(
0
C) 

 

 

% error 

15  20.62 20.58 
 

0.19 

28 21.65 21.56 
 

0.42 

60 23.92 23.80 
 

0.50 

115 27.39 26.80 
 

2.15 

171 30.74 29.26 
 

4.81 

235 33.88 31.80 
 

6.14 

 

 
 

Figure 2 Plot of iso-vector potential lines (  
⃗⃗ ⃗⃗  ) at X=0.5 

for Ra=100 and Ay=Az=1 

 

Figure 3 Plot of iso-vector potential lines (  
⃗⃗ ⃗⃗  ) at X=0.5 

for Ra=1000 and Ay=Az=1 
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Figure 4 Plot of iso-vector potential lines (  
⃗⃗ ⃗⃗  ) at X=0.5 

for Ra=10000 and Ay=Az=1 

 

Figure 5 Plot of isotherms at X=0.5 for Ra=100 and 

Ay=Az=1 

 

Figure 6 Plot of isotherms at X=0.5 for Ra=1000 and 

Ay=Az=1 

 

Figure 7 Plot of isotherms at X=0.5 for Ra=10000 and 

Ay=Az=1  

Maximum Temperature and its Location 

Variation of maximum temperature with Rayleigh 

number at different aspect ratios is shown in Figure 8. It 

can be seen that as Rayleigh number increases, value of 

maximum temperature decreases. This is because as 

Rayleigh number increases flow of fluid inside the 

porous box increases which increase heat transfer from 

the wall thereby lowering the maximum temperature in 

the box. For a given Rayleigh number, as vertical aspect 

ratio increases maximum temperature increases but it 

decreases with increase in horizontal aspect ratio. As 

vertical aspect ratio increases fluid has to overcome 

gravity force which slows down flow velocity in vertical 

direction thereby lowers heat transfer and maximum 

temperature increases.  

Variation of temperature along central Y-axis is 

shown in Figure 9 for Ra=0 (pure conduction) and 

Ra=100, 1000 and 10000. It can be noted that for pure 

conduction, maximum temperature is located at the 

center (Y=0.5) i.e center the box. As convection 

increases, the value of maximum temperature decreases 

and the location of maximum temperature shift upwards 

along central Y-axis.  

 

CONCLUSIONS  

The present study presents numerical results for 

mathematical model of steady three- dimensional natural 

convection in a rectangular box filled with heat 

generating porous medium employing Darcy flow model. 

There is significant effect of Rayleigh number on flow 

and temperature fields. As Rayleigh number increases, 

the maximum temperature in the porous box decreases. 

The position of maximum temperature shifts upward 

with increase in Rayleigh number.  
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Figure 8 Variation of maximum temperature with 

Rayleigh number 

 

 

 
 

Figure 9 Variation of temperature along central Y-axis 

 

 

REFERENCES 

1. Gasser, R.D. and Kazimi, M.S., Onset of 

convection in a porous medium with internal heat 

generation, J. Heat Transfer, vol.98, 1976, pp.49-

54.  

2. Tveitereid, M., Thermal convection in a horizontal 

porous layer with internal heat sources, Int. J. Heat 

Mass Transfer, vol.20, 1977, pp.1045-1050. 

3. Nouri-Borujerdi, A., Noghrehabadi A.R., and  

Rees D.A.S., Influence of Darcy number on the 

onset of convection in a porous layer with a 

uniform heat source, International Journal of 

Thermal Sciences, vol.47, 2008, pp.1020-1025. 

4. Haajizadeh, M., Ozguc, A. F. and Tien, C. L., 

Natural convection in a vertical porous enclosure 

with internal heat generation, International Journal 

of Heat and Mass Transfer, vol.27, 1984, pp.1893-

1902. 

5. Prasad, V., Thermal convection in a rectangular 

cavity filled with a heat generating, Darcy porous 

medium, ASME J. Heat Transfer, 

vol.109,1987,pp. 697-703. 

6. Das, S. and Sahoo, R.K., Effects of Darcy, Fluid 

Rayleigh and heat generation parameters on 

natural convection in a porous square enclosure: A 

Brinkman-extended Darcy model, Int. Comm. 

Heat Mass Transfer, vol.26, pp.569-578. 

7. Krishna, D. J., Basak, T. and Das, S. K.,  Natural 

convection in a heat generating hydrodynamically 

and thermally anisotropic non-Darcy porous 

medium, International Journal of Heat and Mass 

Transfer, vol.51, 2008, vol.4691-1902 

8. Beukema, K. J., Bruin, S. and Schenk, J.,  Three-

dimensional natural convection in a confined 

porous medium with internal heat generation, 

International Journal of Heat and Mass Transfer, 

vol.26, 1983, pp.451-458. 

9. Suresh, C. S. Y., Krishna, Y. V, Sundararajan, T. 

and   Das, S. K.,  Numerical simulation of three-

dimensional natural convection inside a heat 

generating anisotropic porous medium,   Heat and 

Mass Transfer, vol.41, 2005, pp.799-809. 

10. Chandra P. and Satyamurty V.V., Non-Darcian 

and anisotropic effects on free convection in a 

porous Enclosure, Transport in Porous Media, vol. 

90, 2011, pp.301–320. 

11. Sangita, Sinha M. K. and Sharma R. V., Natural 

convection in a spherical porous annulus: The 

Brinkman extended Darcy flow model, Transport 

in Porous Media vol.100, 2013, pp.321–335. 

12. Nield D.A. and Bejan, A., Convection in porous 

media, 3
rd

 edition, Springer, New York, 2006.

 

2363


