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ABSTRACT 
The rimming flow of a thin polymeric film inside a rotating 
horizontal cylinder is studied theoretically. The non-
Newtonian fluid viscosity is described by the Generalized 
Newtonian Fluid (GNF) constitutive model. With linear 
stability analysis, it is found that, analogously to Newtonian 
fluids, rimming flow of viscous non-Newtonian fluids is 
neutrally stable.  
  
INTRODUCTION 
The problem of rimming flow has been investigated for many 
years because of its many applications in industry. In most 
applications, a uniform, smooth film coating is desired [1]. 
However, experimentally, it was  shown that rimming flow is 
characterized by wide variety of uneven, bulging steady-state 
film distributions and instabilities [2-7] . Depending on 
various physical parameters including cylinder rotation rate 
and cylinder filling fraction, this desirable smooth flow regime 
may or may not exist.  

Previous theoretical studies of rimming flow, 
however, have largely considered Newtonian fluids. Moffatt 
[8] first derived the value of the maximum amount of fluid a 
rotating cylinder can sustain. For masses above this critical 
value, gravitational forces overcome the cylinder’s rotational 
drag and cause a fluid puddle to accumulate on the rising wall 
of the cylinder. In the lubrication approximation, O’Brien [9] 
showed that the position of the puddle on the cylinder wall can 
be represented by shock solutions. O’Brien [10], Villegas [11-
12], Johnson [13], Hinch and Kelmanson [14] and Badali et al 
[15] later showed these shock solutions are stable. However, 
these “pooling” solutions exhibit uneven bulges, and can be 
undesirable for coating applications. 
 Rimming flow does exhibit smooth free surfaces for 
subcritical loads. The subcritical regime is characterized by 
small cylinder filling fraction and fast rotation rate. While 
rather smooth and uniform, the subcritical film has shown 
instability in experimental investigations. O’Brien [16] first 

considered the stability of the subcritical regime for 
Newtonian fluids. In a linear stability analysis, he showed that  
 
NOMENCLATURE 
 Bond number  ܤ
݃  gravitational acceleration 
ሶߛሶሻߛሺߤ inverse function to  ܩ  
݄  thickness of the liquid layer 
݄௦  steady-state film thickness 
 ଴  characteristic thickness of the liquid layerߟ
 normal to the free surface  ࢔
 pressure  ݌
	   radial coordinate  ݎ

  ଴  radius of the cylinderݎ
ܴ   modified radial coordinate 
ܴ݁  Reynolds number 
 time  ݐ
࢜  fluid velocity vector 
,ோݒ   ఏ  radial and angular components of velocityݒ
 ఏ  radial and angular basis vectorsࢋ	,௥ࢋ
 
Greek Symbols 
ߜ  ߜ ൌ  ଴ݎ/଴ߟ
ሶߛ   shear rate 
 rate of deformation tensor  ࢽ
,ோఏߛ ,ఏఏߛ  ோோ components of the deformation rate tensorߛ
 mean curvature of the free surface  ߢ
 polymer time constant  ߣ
 dynamic viscosity  ߤ
 ଴  characteristic viscosityߤ
 angular coordinate  ߠ
Φ  mass flux through the liquid layer 
 liquid density  ߩ
 surface tension  ߪ
࣎  stress tensor deviator 
߬ோఏ, ߬ఏఏ, ߬ோோ   components of the stress tensor deviator	
Ω  characteristic angular velocity of cylinder 
સ  Del operator 
 
Superscripts 
*  dimensional quantity 
 
Subscripts 
0  characteristic quantity  
 angular component  ߠ
ܴ  radial component 
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for this class of fluids, the uniform subcritical solutions are 
neutrally stable. To find an instability mechanism, Hosoi and 
Mahadevan [17] and Benilov et al [18-22] extended this linear 
stability analysis by including higher order effects normally 
ignored in the lubrication approximation. Pressure differences 
at the top of the cylinder proved destabilizing, but adding 
surface tension stabilized the solution [23]. Inertia, however, 
demonstrated a significant destabilizing effect [21,24]. 
 Although previous studies take many complicated 
effects into account, they do not consider non-Newtonian 
rheological effects when studying steady-state stability. 
Coating industries use polymers that exhibit complex rheology 
that greatly deviates from a Newtonian behavior [25]. 
Polymers exhibit Newtonian rheology for small strains, but 
transition to shear-thinning for larger shear rates. To 
completely describe this important manufacturing process, the 
effects of these non-Newtonian properties need to be 
characterized.  
 However, the non-Newtonian rimming flow, in 
general, and its stability, in particular, has not been 
extensively studied. Fomin et al [26-27] proved that shear-
thinning fluids described by the power-law, Ellis, and Carreau 
models lowered the maximal supportable load of the cylinder. 
Because shear-thinning inhibits the shear-force of the viscous 
drag of the cylinder, higher rotation rates are required to offset 
this gravitational-viscous imbalance.  
 In our study, the linear stability results obtained for 
Newtonian fluids are extended to non-Newtonian fluids. The 
effects of non-Newtonian shear thinning on the stability of 
subcritical steady-state rimming flow are studied. To solve the 
evolution equation governing time-dependent film thickness, 
the film’s free surface is expanded as a normal mode 
perturbation of the steady-state and the resulting eigenvalue 
problem is solved. It is shown that, within the lubrication 
approximation, shear-thinning rimming flow modeled by the 
GNF is neutrally stable.  
 
SYSTEM MODEL AND SCALE ANALYSIS 
Figure 1 contains a schematic of rimming flow. A horizontal 
cylinder of radius	ݎ଴	is rotating in a counterclockwise direction 
 with constant angular velocity Ω. A thin liquid film of ߠ
thickness ݄∗ሺߠ,   moves along the inner cylinder wall due to	ሻݐ
the gravity and the cylinder’s rotational drag force. A 
cylindrical system of coordinates (r, θ, z) is used such that the 
z-axis coincides with the axis of the cylinder. The rest of the 
cylinder is modeled as being filled with rarefied gas of 
uniform pressure and negligible viscous traction at the liquid-
gas interface. It is assumed the cylinder is sufficiently long 
such that the flow is two-dimensional.   

It is further assumed that inertial effects are of 
negligibly small Reynolds number (ܴ݁ → 0) and that the film 
of density ߩ is incompressible. Given these assumptions, the 
governing equations can be presented in the following vector 
form:  
સ∗ ∙ ࢜∗ ൌ 0       (1) 
ࢍߩ െ સ∗݌∗ ൅ સ∗ ∙ ࣎∗ ൌ ૙     (2) 
 

 
Fig. 1 A simple sketch of the rimming flow system. 
 
where vectors and tensors are denoted in boldface and 
dimensional variables with asterisks,  સ∗	is the Del operator, 
࢜∗ is the fluid velocity vector with radial and angular 
components ݒ௥∗	and ݒఏ

∗  is the gravity ࢍ ,is the pressure ∗݌ ,
acceleration vector, and ࣎∗	is the stress tensor deviator. The 
equations (1)-(2) in polar coordinates can be presented as 
follows:  
߲௥∗ሺݒ∗ݎ௥∗	ሻ ൅ ߲ఏݒఏ

∗ ൌ 0     (3) 

െ݃ߩsinߠ െ ߲௥∗݌∗ ൅ ߲௥∗߬௥௥∗ ൅
ఛೝೝ
∗ ିఛഇഇ

∗

௥∗
൅

డഇఛೝഇ
∗

௥∗
ൌ 0  (4) 

െ݃ߩcosߠ െ
డഇ௣

∗

௥∗
൅

డഇఛഇഇ
∗

௥∗
൅ ߲௥∗߬௥ఏ

∗ ൅ ߬௥ఏ
∗ ∗ݎ/ ൌ 0 (5) 

where ߲௥∗ and ߲ఏ denote the partial derivatives with respect to 
 and ݃ is the gravitational acceleration. At the film’s ,ߠ and ∗ݎ
free surface ݎ∗ ൌ ଴ݎ െ ݄∗ሺߠ,  ሻ, the normal force balance, the∗ݐ
tangential force balance, and the kinematic condition are 
presented below:  
െ݌∗ ൅ ∗࢔ ∙ ࣎∗ ∙ ∗࢔ ൌ         ,ߪ∗ߢ2
∗࢔ ∙ ࣎∗ ∙ ࢚∗ ൌ 0,         
߲௧∗݄∗ ൅ ∗௥ݒ ൅ ఏݒ

∗߲ఏ݄∗/ݎ∗ ൌ 0    (6) 
where ࢔∗ is the unit normal vector external to the liquid layer, 
࢚∗ is the unit tangent vector, ߪ is the surface tension, and ߢ∗ is 
the mean curvature of the free surface. The curvature is 
calculated from	2ߢ∗ ൌ સ∗ ∙  The vectors tangent and the .∗࢔
normal to the free surface are given by the following 
equations:   

࢚∗ ൌ ሺെ߲ఏ݄∗ࢋ௥ ൅ ఏሻ/൫ሺ߲ఏ݄∗ሻଶࢋ∗ݎ ൅ ଶ൯∗ݎ
1/2

 ,  
∗࢔ ൌ െሺࢋ௥ ൅ ߲ఏ݄∗/∗ݎ	ࢋఏሻ/ሺ1 ൅ ሺ߲ఏ݄∗/ݎ∗ሻଶሻ1/2				  
where ࢋ௥ and ࢋఏ are the radial and angular basis vectors. On 
the wall of the cylinder ݎ∗ ൌ  ଴, the no-slip conditions areݎ
applied such that	࢜∗ ൌ ሺݒ௥∗, ఏݒ

∗ሻ ൌ ሺ0, Ωݎ଴ሻ.  
 
GENERALIZED NEWTONIAN FLUIDS 
Generalized Newtonian Fluids (GNFs) admit a straightforward 
constitutive model that well describes polymer shear-thinning 
(see Chapter 4 in [25] for a thorough treatment of this 
rheological model). This simple constitutive law is given by 
࣎∗ ൌ  is the ∗ࢽ ,where ࣎∗ is the stress tensor deviator ,∗ࢽ∗ߤ2
rate of deformation tensor (see the Appendix for tensor 
components), and ߤ∗ ൌ ሶߛሺ∗ߤ ∗ሻ is the dynamic viscosity 
dependent on the shear rate ߛሶ ∗ ൌ ඥ2trሺࢽ∗ ∙ -ሻ. The power∗ࢽ
law fluid, for example, is governed by this viscosity: ߤ∗ ൌ
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݇ሺߛሶ ∗ሻ௠ିଵ, where m is a flow index and k is a material 
constant. This formulation also encompasses all other models 
within the category of Generalized Newtonian fluids, e.g. such 
as the Ellis and Carreau constitutive equations. 
 
1) Scale Analysis 
It is convenient for further analysis to convert variables to a 
nondimensional form. Rimming flow scaling laws for 
velocity, pressure, time, etc. are well-documented [8-10]. 
Taking Ωିଵ as the fast time scale as proposed in [21] and 
denoting	ߜ ൌ ݄଴/ݎ଴		as a small parameter that represents the 
ratio of the unknown characteristic film thickness ݄଴ to the 
cylinder radius, the nondimensional variables can be defined 
as follows:  
ఏݒ
∗ ൌ Ωݎ଴ݒఏ,					ݒ௥∗ ൌ Ωݎ଴ݒߜோ,						ݎ∗ ൌ ଴ሺ1ݎ െ ∗݌					,ሻܴߜ ൌ
∗ݐ					,݌଴ݎ݃ߩ ൌ Ωିଵ(7)   ݐ 
where ܴ is a modified radial coordinate. Using the velocity 
scaling laws given in (7) and the dimensional forms of the 
deformation tensor components given in the Appendix A, the 
following rate of deformation tensor and GNF stress scaling is 
presented for each tensor component (see [27]): 
∗௥௥ߛ ൌ Ωߛோோ,				ߛ௥ఏ

∗ ൌ Ω/δߛோఏ,			ߛఏఏ
∗ ൌ Ωߛఏఏ	  (8) 

߬௥௥∗ ൌ ߬௥ఏ				଴Ω߬ோோ,ߤ
∗ ൌ ߬ఏఏ			଴Ω/δ߬ோఏ,ߤ

∗ ൌ   (9)	଴Ω߬ఏఏߤ
where  ߤ଴  is a characteristic viscosity. Assuming the film is 
very thin, such that terms of ࣩሺߜሻ	are negligibly small and can 
be omitted, the nondimensional stress-strain correlations will 
take the following forms: 
߬ோோ ൌ ߬ோఏ				ோோ,ߛ	ߤ2 ൌ ߬ఏఏ			ோఏ,ߛ	ߤ2 ൌ  ఏఏ  (10)ߛ	ߤ2
ோோߛ ൌ െ߲ோݒோ,			ߛோఏ ൌ െ߲ோݒఏ/2, ఏఏߛ ൌ ߲ఏݒఏ (11) 
with ߤ ൌ ሶߛ|ሺߤ |ሻ and ߛሶ ൌ ߲ோݒఏ. Scale analysis of the boundary 
conditions on the free surface equations (6) gives a non-
dimensional capillary parameter	ܤ ൌ  , where the	଴Ω/σߤ଴ݎଶିߜ	
Bond number B reflects the importance of viscous forces over 
surface tension. Since ܤ ≫ 1 for rimming flow, surface 
tension effects can be neglected. Neglecting terms of ࣩሺߜሻ, 
the nondimensional free surface force balances and the 
kinematic condition at the free surface given in (6) yield: 
ܴ ൌ ݌			:݄ ൌ 0,  ߬ோఏ ൌ 0, ߲௧݄ ൅ ோݒ ൅ ఏ߲ఏ݄ݒ ൌ 0 (12) 
The no-slip conditions reduce to ࢜ ൌ ሺݒோ, ఏሻݒ ൌ ሺ0, 1ሻ at 
ܴ ൌ 0. By balancing the viscous and gravitational forces in 
the momentum equations (4) and (5), the characteristic 
thickness of the liquid layer ݄଴ ൌ  ଴ is defined in terms ofݎߜ
ߜ ൌ ඥߤ଴Ω/ݎ݃ߩ଴. The nondimensional mass conservation (3) 
and momentum equations (4), (5) to ࣩሺߜሻ take the following 
form: 
߲ோݒோ െ ߲ఏݒఏ ൌ 0      (13) 
߲ோ݌ ൌ 0       (14) 
cos ߠ ൅ ߲ఏ݌ ൅ ߲ோ߬ோఏ ൌ 0     (15) 
 
2)  Solution 
The solutions of equations (13)-(15) subject to free surface 
boundary conditions (12) are given below: 
݌ ൌ 0,  ߬ோఏ ൌ ሺ݄ െ ܴሻ cos  (16)   ߠ
The next step is to equate the relation for ߬ோఏ from the 
formulae (10), (11) with solution (16) and to solve for ݒఏ. At 
this stage, Fomin et al [26-27] introduce a monotonically 

increasing analytic function ܩ given as the inverse of function 
ሶߛሺܨ ሻ ൌ ሶߛ|ሺߤሶߛ |ሻ such that ܩ൫ߤݔሺ|ݔ|ሻ൯ ൌ  This ansatz allows .ݔ
expression of the shear rate in explicit form: 
ሶߛ ൌ െsgnሺ߬ோఏሻܩሺ|߬ோఏ|ሻ     (17) 
where the shear rate is given by ߛሶ ൌ ߲ோݒఏ. Integrating 
equation  (17) and accounting for the no-slip conditions yields: 

ఏݒ ൌ 1 െ sgnሺ߬ோఏሻ ׬ ሺ|߬ோఏ|ሻܴ݀ܩ
ோ
଴     (18) 

Using the mass conservation equation (13) and the kinematic 
equation at the free surface given in equation (12), the 
evolution equation governing the film’s free surface thickness 
variation is obtained: 
߲௧݄ሺߠ, ሻݐ ൅ ߲ఏΦሺߠ, ሻݐ ൌ 0     (19) 

For GNFs, the non-dimensional mass flux Φ ൌ ׬ ఏܴ݀ݒ
௛
଴  

through the liquid layer takes the following form [27]: 

Φ ൌ ݄ െ sgnሺcos ሻߠ ׬ ሺܴ|cosܩܴ ሻܴ݀|ߠ
௛
଴    (20) 

 
3) Linear Stability Analysis 
 We are interested in the stability of the evolution 
equation (19), where Φ is defined by the expression (20). In 
several studies of non-Newtonian effects on thin films of other 
geometries [28], shear-thinning was shown to have marked 
effects on the systems’ instabilities. A stability analysis of the 
Generalized Newtonian Fluid can show whether or a similar 
phenomenon exists. 
 We assume ݄ሺߠ,  ሻ can be given as the steady-stateݐ
solution ݄௦ሺߠሻ of equations (19), (20) perturbed by a small, 
angularly periodic, time-dependent disturbance of ࣩሺ߳ሻ: 
݄ሺߠ, ሻݐ ൌ ݄௦ሺߠሻ ൅ ,ߠሺߦ߳  ሻ    (21)ݐ
Substituting (21) into (20), the mass flux Φ becomes: 

Φ ൌ ݄௦ ൅ ߦ߳ െ sgnሺcos ሻߠ ׬ ሺܴ|cosܩܴ ሻܴ݀|ߠ
௛ೞାఢక
଴    (22) 

The integral term in (22) can be rewritten as such: 

׬ ሺܴ|cosܩܴ ሻܴ݀|ߠ
௛ೞାఢక
଴ ൌ ׬ ሺܴ|cosܩܴ ሻܴ݀|ߠ

௛ೞ
଴ ൅

׬ ሺܴ|cosܩܴ ሻܴ݀|ߠ
௛ೞାఢక
௛ೞ

    (23) 

Applying the mean-value theorem to the second integral on 
the right-hand side of (23) yields: 

׬ ሺܴ|cosܩܴ ሻܴ݀|ߠ
௛ೞାఢక
௛ೞ

ൌ ሺ݄௦ߦ߳ ൅ ሾሺ݄௦ܩሻߦ߳߯ ൅ ሻ|cosߦ߳߯  ሿ|ߠ

   (24) 
 where 0 ൏ ߯ ൏ 1. Since ܩ is a continuous function [27], 
ሾሺ݄௦ܩ  ൅ ሻ|cosߦ߳߯ ሿ|ߠ ൌ ሺ݄௦|cosܩ ሻ|ߠ ൅ ,ߠఢሺ݌	  ሻ   (25)ݐ
where 	݌ఢሺߠ, ሻݐ → 0  as ߳ → 0. With equations (23)-(25), and 
neglecting terms of ݋ሺ߳ሻ (i.e. linearizing in ߳), the linearized 
mass flux Φ of (22) is given by: 

Φ ൌ ݄௦ െ sgnሺcos ሻߠ ׬ ሺܴ|cosܩܴ ሻܴ݀|ߠ
௛ೞ
଴ ൅ ൫1ߦ߳ െ

݄௦sgnሺcos ሺ݄௦|cosܩሻߠ  ሻ൯  (26)|ߠ
Notice that the leading order terms in (26) cancel since ݄௦ሺߠሻ 
satisfies the steady-state form of equations (19), (20), as 
defined. Combining equations (19) and (26) and dropping ߳’s, 
the linear evolution equation for the traveling disturbance 
,ߠሺߦ  :ሻ is obtainedݐ
߲௧ߦሺߠ, ሻݐ ൅ ߲ఏሾߙሺߠሻߦሺߠ, ሻሿݐ ൌ 0    (27) 
Here, ߙሺߠሻ ൌ 1 െ ݄௦ሺߠሻsgnሺcos ሻ|cosߠሺ݄௦ሺܩሻߠ  ሻ|ߠ
represents the speed of the disturbance’s propagation about the 
free surface. In [27] it was shown that the steady-state solution  
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݄௦ሺߠሻ exists only if ߙሺߠሻ ൐ 0 for all ߠ. For a normal-mode 
analysis (see [29]), we assume that the disturbance ߦ is 
harmonic in time, such that ߦሺߠ, ሻݐ ൌ ࣬Ղሾ݂ሺߠሻ݁௦௧ሿ. Here, 
࣬Ղሾሿ denotes the real part, ݂ሺߠሻ is an unknown complex 
periodic function, and ݏ is an unknown complex growth 
factor. Depending on whether the growth rate ࣬Ղሾݏሿ is greater 
than, equal to, or less than zero, the steady-state ݄௦ሺߠሻ can be 
either unstable, neutrally stable, or asymptotically stable with 
respect to disturbance ߦ. Dropping ݁௦௧’s, the evolution 
equation (27) reduces to the following eigenvalue problem for 
݂ሺߠሻ and ݏ: 
െ݂ݏሺߠሻ ൌ ߲ఏሾߙሺߠሻ݂ሺߠሻሿ     (28) 
Since ߙሺߠሻ ് 0 according to [27], equation (28) has nonzero 
solution ሺߠሻ . Solution of this equation is straightforward: 

݂ሺߠሻ ൌ ݏሻିଵexpሺെߠሺߙܣ ׬ ߶ሺ߶ሻିଵ݀ߙ
ఏ
଴ ሻ   (29)  

where ܣ is an integration constant. This is analogous to what 
O’Brien obtains when specifically considering Newtonian 
fluids [16]. Applying to ݂ሺߠሻ the periodic boundary condition 
݂ሺߠሻ ൌ ݂ሺߠ ൅  ,periodic-ߨሻ is 2ߠሺߙ ሻ, and recognizing thatߨ2

it becomes clear that 1 ൌ exp	ሺെݏ ׬ ߶ሺ߶ሻିଵ݀ߙ
ଶగ
଴ ሻ. Since 

ሻߠሺߙ ൐ 0 for all ߠ, the integral term is nonzero, such that we 
must have the following condition for ݏ: 

ݏ ൌ ׬/݊݅ߨ2 ߶ሺ߶ሻିଵ݀ߙ
ଶగ
଴       (30) 

Since ߙ is real, ݏ must be purely imaginary (࣬Ղሾݏሿ ൌ 0) for all 
integers (wavenumbers) ݊, which is related to the 
disturbance’s spatial frequency. Therefore, since ࣬Ղሾݏሿ ൌ 0, it 
can be said that steady-state solutions for Generalized 
Newtonian Fluid rimming flows are neutrally stable to small 
perturbations. This result holds for many constitutive models, 
including the simple power-law model as well as the more 
sophisticated and realistic Ellis and Carreau models.  

 
Fig. 2 Numerical solution of equation (19) and (20) for 
Newtonian, power-law, and Ellis fluids viewed at ߠ ൌ 0 for  
݄଴ ൌ 0.2, ݉ ൌ 0.15, ܹ݅ ൌ 4, and ߳ ൌ 0.001. 
 
 To illustrate these neutral stability results 
numerically, the power-law and Ellis models are considered. 
For the power-law model, we have ߤሺߛሶሻ ൌ ሶߛ| |௠ିଵ and 
ሻݔሺܩ ൌ ݉ ଵ/௠, where m is a flow index [27]. For|ݔ| ൌ 1, the 
model is Newtonian, and for 0 ൏ ݉ ൏ 1, the model describes 
shear-thinning that occurs for polymers at large shear rates 
[25]. The Ellis model includes a more realistic and gradual 
transition from Newtonian to shear-thinning behavior as the 
shear-rate is increased [25]. For the Ellis model, we have 

ሻݔሺܩ ൌ ݔ ቀ1 ൅ ሺܹ݅	|ݔ|ሻ
భ
೘
ିଵቁ, where 0 ൏ ݉ ൏ 1/3 is a flow 

index and ܹ݅ is shear-thinning number [27]. For ܹ݅ ൌ 0, the 
model is Newtonian. Equations (19) and (20) are solved with 
the Newtonian, power-law and Ellis models. The initial 
condition is given for each model as the corresponding steady-
state distribution perturbed by a small periodic disturbance, 
specifically hሺθ, 0ሻ ൌ hୱሺθሻ ൅ ϵh଴ cos θ, where ϵ is a small 
parameter, and h଴ ൌ hୱሺ0ሻ. Each solution in Fig. 2 appears 
periodic and has bounded, unchanging amplitude given by the 
initial perturbation. These computations illustrate the 
analytically proven neutral stability of the viscous non-
Newtonian steady-state rimming flow.  
 
CONCLUSION 
 To summarize, non-Newtonian effects on rimming 
flow stability have been investigated theoretically. Shear-
thinning has been simulated with the Generalized Newtonian 
Fluid model. Analytical conclusions have been drawn using a 
perturbative approach in limiting two-dimensional flow 
regimes, namely the lubrication limit of ߜ ≪ 1 and ܴ݁ ≪ 1. 
For the GNF model of shear-thinning, all purely viscous 
steady-states were shown to be neutrally stable, as in the 
Newtonian case. 
 
Acknowledgments 
This research was funded by the NSF award DMS-1156612. 
 
REFERENCES 
[1] O’Brien, S. B. G. (1998). A model for the coating of 
cylindrical light bulbs. Progress in Industrial Mathematics at 
ECMI, 98, 45-54. 
[2] Throne, J. L., & Gianchandani, J. (1980). Reactive 
rotational molding. Polymer Engineering & Science, 20(13), 
899-919. 
[3] Melo, F. (1993). Localized states in a film-dragging 
experiment. Physical Review E, 48(4), 2704. 
[4] Debler, Walter R. and Yih, Chia, Shun. (1962). Formation 
of Rings in a Liquid Film Attached to the Inside of a Rotating 
Cylinder. Journal of the Aerospace Sciences, 29(3), p. 364.  
[5] Eres, M. H., Schwartz, L. W., & Roy, R. V. (2000). 
Fingering phenomena for driven coating films. Physics of 
Fluids, 12, 1278.  
[6] Thoroddsen, S. T., & Mahadevan, L. (1997). Experimental 
study of coating flows in a partially-filled horizontally rotating 
cylinder. Experiments in fluids, 23(1), 1-13. 
[7] Tirumkudulu, M., & Acrivos, A. (2001). Coating flows 
within a rotating horizontal cylinder: Lubrication analysis, 
numerical computations, and experimental 
measurements. Physics of Fluids, 13, 14. 
[8] Moffatt, H. K. (1977). Behaviour of a viscous film on the 
outer surface of a rotating cylinder. Journal de 
mécanique, 16(5), 651-673. 
[9] O’Brien, S.B.G.,  Gath, E.G. (1990). Location of a shock 
in rimming flow. Physics of Fluids, 10, 1040–1042. 

2316



 

 
 

[10] O'Brien, S. B. G. (2002). A mechanism for linear 
instability in two-dimensional rimming flow. Quarterly of 
Applied Mathematics, 60(2), 283-299.  
[11] Villegas-Díaz, M., Power, H., & Riley, D. S. (2005). 
Analytical and numerical studies of the stability of thin-film 
rimming flow subject to surface shear. Journal of Fluid 
Mechanics, 541(1), 317-344. 
[12] Villegas-Díaz, M., Power, H., & Riley, D. S. (2003). On 
the stability of rimming flows to two-dimensional 
disturbances. Fluid dynamics research, 33(1), 141-172.  
[13] Johnson, R.E. (1990). Coating Flow Stability in 
Rotational Molding. Journal of Engineering Science, 435-449. 
[14] Hinch, E. J., Kelmanson, M. A., & Metcalfe, P. D. 
(2004). Shock-like free-surface perturbations in low-surface-
tension, viscous, thin-film flow exterior to a rotating 
cylinder. Proceedings of the Royal Society of London. Series 
A: Mathematical, Physical and Engineering 
Sciences, 460(2050), 2975-2991. 
[15] Badali, D., Chugunova, M., Pelinovsky, D. E., & Pollack, 
S. (2011). Regularized shock solutions in coating flows with 
small surface tension. Physics of Fluids, 23, 093103. 
[16] O'Brien, S. B. G. (2002). Linear stability of rimming 
flow. The Quarterly Journal of Applied Mathematics, 60(2), 
201-211. 
[17] Hosoi, A. E., & Mahadevan, L. (1999). Axial instability 
of a free-surface front in a partially filled horizontal rotating 
cylinder. Physics of Fluids, 11, 97. 
[18] Benilov, E. S. (2004). Explosive instability in a linear 
system with neutrally stable eigenmodes. Part 2. Multi-
dimensional disturbances. Journal of Fluid Mechanics, 501(1), 
105-124. 
[19] Benilov, E. S. (2006). Does surface tension stabilize 
liquid films inside a rotating horizontal cylinder? Part 2: 
Multidimensional disturbances. Studies in Applied 
Mathematics, 116(1), 1-20. 
[20] Benilov, E. S., Kopteva, N., & O'Brien, S. B. G. (2005). 
Does surface tension stabilize liquid films inside a rotating 
horizontal cylinder? The Quarterly Journal of Mechanics and 
Applied Mathematics, 58(2), 185-200.  
[21] Benilov, E. S., & O’Brien, S. B. G. (2005). Inertial 
instability of a liquid film inside a rotating horizontal 
cylinder. Physics of Fluids, 17, 052106. 
[22] Benilov, E. S., O'Brien, S. B. G., & Sazonov, I. A. 
(2003). A new type of instability: explosive disturbances in a 
liquid film inside a rotating horizontal cylinder. Journal of 
Fluid Mechanics, 497, 201-224.  
[23] Hinch, E. J., & Kelmanson, M. A. (2003). On the decay 
and drift of free-surface perturbations in viscous thin-film 
flow exterior to a rotating cylinder. Proceedings of the Royal 
Society of London. Series A: Mathematical, Physical and 
Engineering Sciences, 459(2033), 1193-1213. 
[24] Kelmanson, M. A. (2009). On inertial effects in the 
Moffatt-Pukhnachov coating-flow problem. Journal of Fluid 
Mechanics, 633, 327. 
[25] Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). 
Dynamics of polymeric liquids. Vol. 1: Fluid mechanics.  

[26] Fomin, S., Watterson, J., Raghunathan, S., & Harkin-
Jones, E. (2002). Steady-State Rimming Flow of the 
Generalized Newtonian Fluid, Physics of Fluids, 14(9), 3350-
3353. 
[27] Fomin, S., Hashida, T., & Watterson, J. (2003). 
Fundamentals of steady-state non-Newtonian rimming 
flow. Journal of non-newtonian fluid mechanics, 111(1), 19-
40.  
[28] Lin, J., and Hwang, C. "Finite amplitude long-wave 
instability of power-law liquid films." International journal of 
non-linear mechanics 35(5) (2000): 769-777.  
[29] Chandrasekhar, S. (1961). Hydrodynamics and 
Hydromagnetic Stability. Oxford University. 

2317


