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ABSTRACT

In the present work, investigation of heat flow via heatlines
in addition to entropy generation due to natural convection
within differentially heated cavities with curved side walls
is carried out. Galerkin finite element method with penalty
parameter is used to solve the nonlinear coupled partial
differential equations governing the flow and thermal fields
and the finite element method is further used to solve the
Poisson equation for streamfunction and heatfunction. The
derivative terms in the expression of entropy generation is
calculated using the elemental basis sets. Numerical sim-
ulations are carried out for a range of Rayleigh numbers
(Ra =103-105) and the Prandtl number, Pr = 0.01. The
results are elucidated in terms of streamlines, heatlines and
isotherms to present the heat flow patterns in the cavity.
A comprehensive understanding on internal convective heat
flow is illustrated using heatline concept. Entropy gener-
ation due to heat transfer and fluid friction are also illus-
trated concave and convex cases. Based on high heat trans-
fer rate and lesser total entropy generation, case 3 (highly
concave) may be chosen over cases 1 (less concave) and 2
(moderate concave) for all Ra. Similarly, in convex cases,
case 1 with less convexity offers higher heat transfer rate
with less entropy generation compared to that of cases 2
(moderate convex) and 3 (highly convex).

INTRODUCTION

Natural convection heat flow in enclosures is frequently
encountered in various engineering and industrial applica-
tions such as, building and ventilation, cooling of electronic
chips, thermal storage tanks, food storage, solar collectors
etc. Thus, investigation of natural convection in confined
cavities with various geometric configurations is important
in thermal processing. Thus, a number of studies on natu-
ral convections have been carried out by researchers since
last few decades. However, in many earlier studies, the fluid
flow visualization via streamlines and temperature distri-
bution are given much importance while the thermal man-
agement in heat flow is not addressed properly. In order
to understand the trajectory of heat flow and heat distri-
bution, one has to study the heatlines. The basic concept

of heatline was first introduced by Kimura and Bejan [1].
Following Kimura and Bejan [1], many works on analysis of
heatlines are also carried out by researchers [2, 3, 4, 5, 6].
However, heatlines are not adequate to explain losses of
energy or efficiency of heating processes during convection.
Consequently, analysis of entropy generation can be car-
ried out to understand the efficiency of the heating process
as the loss in available energy is directly proportional to
the entropy generation. Bejan [7] introduced entropy gen-
eration minimization concept based on the second law of
thermodynamics. Many studies on entropy generation dur-
ing natural convection in enclosures with various shapes are
found in the literature [8, 9, 10].

The main objective of the present study is to an-
alyze the effect of wall curvature on the characteristics of
heat flow, fluid flow and entropy generation due to heat
transfer and fluid friction during natural convection within
a complex cavity with curved side walls. The enclosure
is bounded by horizontal adiabatic walls with hot left and
cold right walls [see Figure 1]. Numerical simulations were
carried out for various Rayleigh numbers (Ra = 103−105),
at Pr = 0.01. Galerkin finite element method [11] with a
penalty parameter is used in order to solve the non-linear
partial differential equations.

NOMENCLATURE

g [m s−2] acceleration due to gravity
L [m] height of enclosure
N [-] total number of nodes
Nu [-] local Nusselt number
Nu [-] average Nusselt number
p [Pa] pressure
P [-] dimensionless pressure
Pr [-] Prandtl number
R [-] Residual of weak form
Ra [-] Rayleigh number
S [-] dimensionless distance along the wall
Smax [-] length of the curved wall
s′ [-] dummy variable
T [K] temperature
Th [K] temperature of hot right wall
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Tc [K] temperature of cold left wall
u [m s−1] x component of velocity
U [-] x component of dimensionless velocity
v [m s−1] y component of velocity
V [-] y component of dimensionless velocity
x [m] distance along x coordinate
X [-] dimensionless distance along x coordinate
y [m] distance along y coordinate
Y [-] dimensionless distance along y coordinate

Greek symbols

α [m2 s−1] thermal diffusivity
β [K−1] volume expansion coefficient
γ [-] penalty parameter
θ [-] dimensionless temperature
ν [m2 s−1] kinematic viscosity
ρ [kg m−3] density
Φ [-] basis functions
Π [-] dimensionless heatfunction
ϕ [-] angle made by tangent of curved wall

with positive x axis
ψ [-] dimensionless streamfunction
Ω [-] two dimensional domain
ξ [-] horizontal coordinate in a unit square
η [-] vertical coordinate in a unit square

Subscripts

k node number
l left wall
r right wall
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Figure 1: Schematic diagram of the computational domain
for enclosure with (a) concave and (b) convex side walls.

MATHEMATICAL MODELLING AND SIMULA-

TIONS

The computational domain is shown in Figure 1(a-b) based
on semi-infinite approximation along Z direction. Thermo-
physical properties of the fluid in the flow field are assumed
to be constant except density. The variation of density with
temperature can be calculated using Boussinesq approxi-
mation. In this way, the temperature field and flow fields
are coupled. Under these assumptions, governing equations
for steady two-dimensional natural convection flow in the
square enclosure with curved side walls using conservation
of mass, momentum and energy can be written with fol-

Table 1: Values of P1P
′

1, a, b, c for left wall and P2P
′

2,
a′, b′, c′ for right wall for all (a) concave and (b) convex
cases.
(a)

Concave

P1P
′

1
P2P

′

2
a b c a′ b′ c′ Smax

Case 1 0.1 -0.1 -0.4 0.4 0 0.4 -0.4 1 1.026

Case 2 0.2 -0.2 -0.8 0.8 0 0.8 -0.8 1 1.098

Case 3 0.4 -0.4 -1.6 1.6 0 1.6 -1.6 1 1.333

(b)

Convex

P1P
′

1
P2P

′

2
a b c a′ b′ c′ Smax

Case 1 -0.1 0.1 0.4 -0.4 0 -0.4 0.4 1 1.026

Case 2 -0.2 0.2 0.8 -0.8 0 -0.8 0.8 1 1.098

Case 3 -0.4 0.4 1.6 -1.6 0 -1.6 1.6 1 1.333

lowing dimensionless variables or numbers:

X =
x

L
, Y =

y

L
, U =

uL

α
, V =

vL

α
, θ =

T − Tc
Th − Tc

P =
pL2

ρα2
, P r =

ν

α
, Ra =

gβ(Th − Tc)L
3Pr

ν2

The governing equations in dimensionless forms for
continuity [Eq. (1)], momentum balance [Eq. (2) and (3)]
and energy balance [Eq. (4)] are as follows:

∂U

∂X
+
∂V

∂Y
= 0, (1)

U
∂U

∂X
+ V

∂U

∂Y
= −

∂P

∂X
+ Pr

(

∂2U

∂X2
+
∂2U

∂Y 2

)

, (2)

U
∂V

∂X
+V

∂V

∂Y
= −

∂P

∂Y
+Pr

(

∂2V

∂X2
+
∂2V

∂Y 2

)

+RaPrθ, (3)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
(4)

and the governing equations [Eqs. (2)-(4)] are subjected to
the following boundary conditions;

U = V = 0,
∂θ

∂Y
(X, 0) = 0, for Y = 0 on wall AB

U = V = 0, θ = 0, for X = aY 2+ bY + c on wall BC

U = V = 0,
∂θ

∂Y
(X, 1) = 0, for Y = 1 on wall CD

U = V = 0, θ = 1, for X = a′Y 2+b′Y+c′ on wall DA
(5)

Note that, a, b, c, a′, b′ and c′ are dimensionless numbers.
The coefficients of the quadratic equation are calculated
by Cramer’s Rule using three coordinates for various con-
vex and concave curves. The values of the dimensionless
numbers for all the considered cases are given in Table 1(a-
b).

The momentum and energy balance equations
(Eqs. 2-4) are solved using the Galerkin finite element
method. The continuity equation [Eq. (1)] has been used as
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a constraint due to mass conservation and this constraint
may be used to obtain the pressure distribution. In or-
der to solve Eqs. (2)-(3), we use the penalty finite element
method where the pressure, P is eliminated by a penalty
parameter, γ and the incompressibility criteria given by
[Eq. (1)] which results in

P = −γ

(

∂U

∂X
+
∂V

∂Y

)

(6)

The continuity equation [Eq. (1)] is automatically satisfied
for large values of γ. Typical values of γ that yield con-
sistent solutions are 107. Using Eq. (6), the momentum
balance equations [Eqs. (2) and (3)] reduce to

U
∂U

∂X
+ V

∂U

∂Y
= γ

∂

∂X

(

∂U

∂X
+
∂V

∂Y

)

(7)

+ Pr

(

∂2U

∂X2
+
∂2U

∂Y 2

)

and

U
∂V

∂X
+ V

∂V

∂Y
= γ

∂

∂Y

(

∂U

∂X
+
∂V

∂Y

)

(8)

+ Pr

(

∂2V

∂X2
+
∂2V

∂Y 2

)

+Ra Pr θ

The system of equations [Eqs. (4), (7) and (8)]
with boundary conditions [Eq. (5)] are solved using the
Galerkin finite element method [11]. Expanding the veloc-
ity components (U, V ) and temperature (θ) using basis set
{Φk}

N
k=1

as,

U ≈

N
∑

k=1

Uk Φk(X,Y ) , V ≈

N
∑

k=1

Vk Φk(X,Y ) and

θ ≈

N
∑

k=1

θk Φk(X,Y ) (9)

The Galerkin finite element method yields nonlin-
ear residual equations for Eqs. (4), (7) and (8) at nodes
of internal domain Ω. The detailed solution procedure is
given in an earlier work [4].

Streamfunction

The fluid motion is displayed using the streamfunction (ψ)
obtained from velocity components U and V . The rela-
tionships between streamfunction, (ψ) and velocity com-
ponents for two dimensional flows are

U =
∂ψ

∂Y
, V = −

∂ψ

∂X
(10)

which yield a single equation

∂2ψ

∂X2
+
∂2ψ

∂Y 2
=
∂U

∂Y
−
∂V

∂X
(11)

Using the above definition of the streamfunction, the pos-
itive sign of ψ denotes anticlockwise circulation and the
clockwise circulation is represented by the negative sign of
ψ. The no-slip condition is valid at all boundaries as there
is no cross flow, hence ψ = 0 is used as residual equa-
tions at the nodes for the boundaries. The bi-quadratic
basis function is used to evaluate the integrals in the resid-
ual equation and ψ’s are obtained by solving the N linear
residual equations and the detailed solution procedure are
reported in an earlier work [4].

Nusselt number

The heat transfer coefficient in terms of the local Nusselt
number (Nu) is defined as

Nu = −
∂θ

∂n
(12)

where n denotes the normal direction on a plane. The
normal derivative is evaluated using the bi-quadratic basis
set. The local Nusselt numbers at left wall (Nul) and right
wall (Nur) are defined as

Nul =

9
∑

i=1

θi

(

sinϕ
∂Φi
∂X

− cosϕ
∂Φi
∂Y

)

(13)

Nur =

9
∑

i=1

θi

(

–sinϕ
∂Φi
∂X

+ cosϕ
∂Φi
∂Y

)

(14)

The average Nusselt numbers at the side walls are

Nul =

S
∫

0

Nul ds
′

S
∫

0

ds′
and Nur =

S
∫

0

Nur ds
′

S
∫

0

ds′
(15)

Here S is the length and ds′ is the small elemental length
along the curved wall.

Heatfunction

The heat flow within the enclosure is displayed using the
heatfunction (Π) obtained from conductive heat fluxes

(− ∂θ
∂X

, − ∂θ
∂Y

) as well as convective heat fluxes (Uθ, V θ).
The heatfunction satisfies the steady energy balance equa-
tion [Eq. (4)] [1] such that

∂Π

∂Y
= Uθ −

∂θ

∂X

−
∂Π

∂X
= V θ −

∂θ

∂Y
(16)

which yield a single equation

∂2Π

∂X2
+
∂2Π

∂Y 2
=

∂

∂Y
(Uθ)−

∂

∂X
(V θ) (17)

The residual equation is further supplemented with vari-
ous Dirichlet and Neumann boundary conditions in order
to obtain an unique solution. Neumann boundary condi-
tions of Π are obtained for isothermal (hot or cold) walls
as derived from Eq. (16) and are specified as n· ∇Π = 0 for
isothermal hot left wall or isothermal cold tight wall.

The top and bottom insulated walls may be repre-
sented by Dirichlet boundary condition as obtained from

Eq. (16) which is simplified into ∂Π
∂X

= 0 for an adia-
batic wall. A reference value of Π is assumed as 0 at
X = 0, Y = 0 and hence Π = 0 is valid for Y = 0, ∀X . The
value of Π at the top wall is obtained as, Π = SmaxNul
for Y = 1, ∀X . Note that, Smax is length of the curved
wall. It may be noted that, the unique solution of Eq. (17)
is strongly dependent on the non-homogeneous Dirichlet
conditions. At the top horizontal wall BC, boundary con-
dition for Π may be obtained by integrating Eq. (16).

Π(0, 1) = Π(0, 0) +

Smax
∫

0

(

∂Π

∂s′

)

ds′

= Π(0, 0) + SmaxNul

= SmaxNul = Π(1, 1) = Π(X, 1) (18)
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Entropy generation

During natural convection, entropy generation occurs due
to heat transfer irreversibility and fluid friction irreversibil-
ity. Considering a control volume which allows both mass
and energy transport with the surrounding and assuming
local thermodynamic equilibrium, the total local entropy
generation for a two-dimensional natural convection sys-
tem [7] in Cartesian coordinates may be written as follows:

Ṡ′′′

gen =
k

T0
2

[

(

∂T

∂x

)2

+

(

∂T

∂y

)2
]

+
µ

T0

[

2

(

(

∂u

∂x

)2

+

(

∂v

∂y

)2
)

+

(

∂v

∂x
+
∂u

∂y

)

]

(19)
The first term [square bracketed] in Eq. 19 is the

entropy generation due to heat transfer caused by temper-
ature gradient and second term [square bracketed] repre-
sents the entropy generation due to fluid friction caused by
velocity gradient. As seen from Eq. 19, the entropy gen-
eration rate is positive and finite as long as temperature
and velocity gradients are present in the system. Also, the
entropy generation due to fluid friction and heat transfer
are strongly interrelated with geometric characteristics the
system. The dimensionless form of Eq. 19 based on in-
dividual terms of entropy generation due to heat transfer
(Sθ) and entropy generation due to fluid friction (Sψ) may
be written as follows:

Sθ =

[

(

∂θ

∂X

)2

+

(

∂θ

∂Y

)2
]

(20)

Sψ = φ

{

2

[

(

∂U

∂X

)2

+

(

∂V

∂Y

)2
]

+

(

∂U

∂Y
+
∂V

∂X

)2
}

(21)

In above equation, φ is called irreversibility distribution
ratio, defined as:

φ =
µTo
k

( α

L∆T

)2

(22)

In the current study, φ is taken as 10−4. A similar value
for φ was considered by Ilis et al. [8]. After calculating the
velocity components and temperature field, the known tem-
perature and velocity fields are incorporated in the deriva-
tive terms of the expression for entropy generation. As
mentioned earlier, the derivatives are evaluated based on
finite element method. Nine node bi-quadratic elements are
used with each element mapped using iso-parametric map-
ping [4] from X − Y to a unit square ξ − η domain. The
domain integrals in the residual are evaluated using nine
node bi-quadratic basis functions in ξ − η domain. The
derivative of any function f over an element e is written
as:

∂fe

∂n
=

9
∑

k=1

fek
∂Φek
∂n

(23)

where, fek is the value of the function at local node k in
the element e and Φek is the value of basis function at local
node k in the element e. Further, since each node is shared
by four elements (in the interior domain) or two elements
(along the boundary), the value of the derivative of any
function at the global node number (i), is averaged over
those shared elements (Ne), i.e.,

Table 2: Comparisons of present results with benchmark
solution [12, 13] for natural convection in square cavity in
presence of air (Pr = 0.71), at various Ra.

Present work Deng and Tang [12] Wan et. al. [13]

Ra |ψ|max Nu |ψ|max Nu |ψ|max Nu

103 1.17 1.118 1.17 1.118 - 1.117

104 5.07 2.248 5.04 2.254 - 2.254

105 9.61 4.564 9.50 4.557 - 4.598

∂fi
∂n

=
1

Ne

Ne

∑

e=1

∂fei
∂n

(24)

Therefore, at each node, local entropy generation for ther-
mal (Sθ,i) and fluid friction (Sψ,i) are given by,

Sθ,i =

[

(

∂θi
∂X

)2

+

(

∂θi
∂Y

)2
]

(25)

Sψ,i = φ

{

2

[

(

∂Ui
∂X

)2

+

(

∂Vi
∂Y

)2
]

+

(

∂Ui
∂Y

+
∂Vi
∂X

)2
}

(26)

Note that, the derivatives, ∂θi
∂X

, ∂θi
∂Y

, ∂Ui
∂X

, ∂Ui
∂Y

, ∂Vi
∂X

, ∂Vi
∂Y

are evaluated following Eq. 24. The combined total en-
tropy generation (Stotal) in the cavity is given by the sum-
mation of total entropy generation due to heat transfer
(Sθ,total) and fluid friction (Sψ,total), which in turn are ob-
tained via integrating the local entropy generation rates
(Sθ,i and Sψ,i) over the domain Ω.

Stotal = Sθ,total + Sψ,total (27)

where,

Sθ,total =

∫

Ω







[

∂

∂X

(

N
∑

k=1

θkΦk

)]2

+

[

∂

∂Y

(

N
∑

k=1

θkΦk

)]2






dXdY

(28)

Sψ,total = φ

∫

Ω







2

[

∂

∂X

(

N
∑

k=1

UkΦk

)]2

+ 2

[

∂

∂Y

(

N
∑

k=1

VkΦk

)]2

+

[

∂

∂Y

(

N
∑

k=1

UkΦk

)

+
∂

∂X

(

N
∑

k=1

VkΦk

)]2






dXdY (29)

The integrals are evaluated using three-point element-wise
Gaussian quadrature integration method. The relative
dominance of entropy generation due to heat transfer and
fluid friction is given by Bejan number (Beav), a dimen-
sionless parameter defined as

Beav =
Sθ,total

Sθ,total + Sψ,total
=
Sθ,total
Stotal

(30)

Therefore, Beav>0.5 implies dominance of heat transfer ir-
reversibility and Beav<0.5 implies dominance of fluid fric-
tion irreversibility.
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Figure 2: Local entropy generation due to heat transfer
Sθ and fluid friction Sψ for a square enclosure with hot
left wall, cold right wall and adiabatic horizontal walls as
reported by Ilis et. al. [8] for Pr = 0.71, (a) Ra = 103 and
(b) Ra = 105.

RESULTS AND DISCUSSION

Numerical tests and parameters

The computational domain in ξ−η coordinate system con-
sists of 28 × 28 bi-quadratic elements which correspond to
57 × 57 grid points. The computational grid with curved
side walls is generated by mapping the curved domain into
a regular square domain in ξ − η coordinate system [4].
The bi-quadratic elements with a lesser number of nodes
smoothly capture the nonlinear variations of the field vari-
ables, which are in contrast with finite-difference/finite-
volume solutions. In the current investigation, Gaussian
quadrature based finite element method provides smooth
solutions at the interior domain including the corner re-
gions as evaluation of residuals depends on interior Gauss
points and thus the effect of corner nodes is less pronounced
in the final solution. Benchmark studies were carried out
for the square cavity with a hot left wall and a cold right
wall in presence of adiabatic horizontal walls, similar to the
case reported by Deng and Tang [12] and Wan et. al. [13].
Results are compared in terms of average Nusselt number
(Nur) and maximum streamfunction (|ψ|max) value for a
square enclosure as reported by Deng and Tang [12] for
various Ra [see Table 2]. The results in terms of average
Nusselt number as reported by Wan et al. [13] are com-
pared with the current work [see Table 2] and the results
are in good agreement with earlier works [12, 13]. Bench-
mark studies are also carried out in terms of Sθ and Sψ for
a differentially heated square enclosure at Pr = 0.71 and
Ra = 103 − 105 as reported by Ilis et. al. [8]. The re-
sults in terms of Sθ and Sψ [see Figure 2] are in very good
agreement with the previous work [8].

Three cases based on three different curvatures of
the concave side walls are considered. The original square
enclosure is modified to a curved walled enclosure by shift-
ing the mid points of the side walls, P1 and P2 in the inward
direction to P ′

1
and P ′

2
, respectively, such that AP ′

1
D and

BP ′

2
C form curves which obey the quadratic equations;

X = aY 2 + bY + c and X = a′Y 2 + b′Y + c′, respectively
[see Figure 1(a) and Table 1(a)]. The values of P1P

′

1
or
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Figure 3: Isotherms (θ), entropy generation due to heat
transfer (Sθ) heatlines (Π), streamlines (ψ) and entropy
generation due to fluid friction (Sψ) at Pr = 0.01 and
Ra = 103 for all concave cases: (a) case 1, (b) case 2 and
(c) case 3.

P2P
′

2 are assumed to be L/10, 2L/10 and 4L/10 for case
1, case 2 and case 3, respectively, where L is the height or
length of base of the cavity.

Figure 3(a-c) illustrate isotherms (θ), streamlines
(ψ), entropy generation maps (Sθ and Sψ) and heatlines
(Π) for concave cases (cases 1-3) at low Ra (Ra = 103)
and Pr = 0.01. The isotherms are smooth vertical lines
perpendicular to the adiabatic horizontal walls indicating
conduction dominant heat transfer for all cases at low Ra.
The boundary layer thickness gradually becomes larger at
the corner regions of the enclosure as the wall curvature
increases from case 1 to case 3. Thus, heat distribution is
inadequate in the corner regions of the enclosure in case 3
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as seen from the presence of hot stagnant fluid at the left
corner regions and cold stagnant fluid at the right corner
regions. Conductive heat transfer is intense at the throat
region in case 3 and that can also be explained based on
compressed isotherms near the middle portion of the en-
closure. It is found that Sθ is observed to be negligible at
the corner region of the enclosure, especially in case 3 due
to very less heat transfer rate at those region. Also, Sθ is
maximum near the middle portion of the side walls for all
the cases. Largest value of Sθ in case 3 is attributed to very
high conductive heat transfer at the middle portion of side
walls based on compressed isotherms. At the interior loca-
tions of the enclosure, except the corner regions local Sθ is
found to be significant in case 3, compared to cases 1 and
2. Thus, overall entropy generation due to heat transfer
(Sθ) is larger in case 3 throughout the enclosure, especially
at the core compared to that of cases 1 and 2. At lower
Ra and Pr, single and smooth fluid circulation cells span
the entire enclosure for cases 1 and 2 [Figure 3(a-b)]. Due
to the imposed thermal boundary condition, fluid from the
lower part of the left wall gets heated up and moves upward
due to buoyancy force and flows down along the cold right
wall. Fluid circulation cell gets segregated at the core and
two clockwise rotating loops are observed in case 3 due to
the effect of highly concave side walls. Strength of fluid
circulation cell is highest in case 1 and least in case 3. As
the flow circulation cells are weaker at low Ra, entropy
generation due to flow irreversibilities (Sψ) is also smaller
for all cases. Velocity gradient between the rotating fluid
and solid wall is very high near the stagnant walls, thus,
Sψ is significant near the solid walls for all cases. At the
core, velocity gradient between the rotating fluid layers is
quite less and the entropy generation due to fluid friction
is negligible near the central regime compared to that of
solid walls for all cases. It may be noted that, Sψ,max is
highest for case 1 compared to cases 2 and 3. Due to larger
available area for fluid circulation for case 1 which in turn
results in comparatively high magnitude of streamfunction
which further leads to larger velocity gradient at the solid
walls. In contrast, due to highly curved side walls, the
available area for fluid flow is very less and |ψ| is less for
case 3, that leads to lesser velocity gradients. Note that,
Sψ,max = 0.77, 0.64 and 0.09 for case 1, case 2 and case 3,
respectively.

The direction and magnitude of heat flow in the
enclosure can be demonstrated via heatlines and heatfunc-
tions, respectively [see Figure 3(a-c)]. As the intensity of
fluid flow is less at low Ra, end-to-end heatlines connect-
ing two side walls are observed in the cavity. Slightly dis-
torted heatlines are observed in the core region for case 1
and case 2 due to comparatively stronger convective effect
in those cases. Heatlines are smooth and almost straight
lines at core in case 3 depicting highly conductive heat
transfer. Overall, the heat transfer in the cavity is con-
duction dominant in all the cases and highest heat transfer
rate is observed in case 3. This can also be explained from
the heatline contours where dense end-to-end heatlines are
observed in the central portion of the enclosure in case 3.

At high Ra, isotherms at the core are highly dis-
torted and compressed along bottom portion of the left
wall and top portion of the right wall especially in cases
1 and 2, signifying dominance of convection as seen from
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Figure 4: Isotherms (θ), entropy generation due to heat
transfer (Sθ) heatlines (Π), streamlines (ψ) and entropy
generation due to fluid friction (Sψ) at Pr = 0.01 and
Ra = 105 for all concave cases: (a) case 1, (b) case 2 and
(c) case 3.

Figure 4(a-c). The thicknesses of thermal boundary layer
at the bottom portion of left wall and top portion of right
wall are observed to be lesser compared to that of low Ra
cases [see Figure 3 and 4]. Isotherms are observed to be
highly compressed towards the entire left and right walls,
except the top left and bottom right corners for case 3. As
a result of highly concave walls, compression of isotherms
along the left and right walls are more pronounced for case
3 compared to that of cases 1 and 2. As a consequence,
larger thermal gradient in case 3 results in higher Sθ for
case 3. Note that, Sθ,max is almost identical for cases 1
and 2, as there is no significant variation in thermal gra-
dients. Note that, Sθ,max = 45.7 and 46.6 occur for cases
1 and 2, respectively. Zones of Sθ,max are found near the
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lower portion of left wall and upper portion of right wall for
case 1, whereas for case 2, Sθ,max occurs almost at the mid-
dle portions of side walls. In contrast, Sθ,max is observed at
the top portion of the left wall and bottom portion of the
right walls with Sθ,max = 58.04 for case 3. Due to signif-
icant temperature uniformity based on intense convection
for case 1, thermal gradients are less and thus, Sθ is less at
the interior region. At the core, local Sθ is slightly larger
for case 2 than that of case 1 due to comparatively higher
temperature gradient for case 2. It is interesting to note
that, Sθ is significantly larger at the interior region for case
3 due to very high thermal gradient at the throat region.
Note that, boundary layer thickness is larger at the cor-
ner regions and Sθ is negligible at the corner regions in all
cases and this effect is more prominently visible in case 3.
Enhanced buoyancy force results in stronger fluid circula-
tion cells as seen from the magnitude of streamfunctions
for all cases at Ra = 105 [see Figure 4(a-c)]. In addition
to primary fluid circulation cell, multiple fluid circulation
cells are also observed near the corner regions of the enclo-
sure especially in cases 1 and 2. Larger velocity gradient
exists near the side walls due to larger velocity gradients
at high Ra compared to that of low Ra cases. Thus, Sψ
is comparatively higher for all cases compared to low Ra
cases. It may be noted that, Sψ,max for cases 1 and 2 are
observed at the middle portions of curved side walls due to
larger velocity gradients at those zones. The complex fluid
flow pattern in case 3 results in higher velocity gradient
near the top and bottom portions of the side walls. Conse-
quently, Sψ,max for case 3 is observed near the top portion
of left wall and bottom portion of right wall. Comparative
study of all cases shows that due to higher velocity gradi-
ent at the side walls in case 2, Sψ,max is highest in case
2 followed by case 1 and case 3. It may be noted that,
Sψ,max = 1190, 1259 and 834 for cases 1, 2 and 3, respec-
tively. Active zones of Sψ also occur at the middle portions
of the horizontal walls for all cases. One circular pattern in
the Sψ contours are observed at the core for cases 1 and 2.
Due to effect of segregated streamline cells at the top and
bottom halves, two circular patterns of Sψ are observed at
the top and bottom halves of the enclosure in case 3. At
the interior zone, velocity gradient is larger for case 3 than
that of cases 1 and 2 which can also be explained based on
the magnitude of Sψ .

In contrast to low Ra, intense closed loop heatline
cells are seen at the core of the cavity for cases 1 and 2,
whereas the circulation cells are segregated and two heat-
line cells are seen at the top and bottom halves of the cavity
for case 3 [see Figure 4(a-c)]. As a result of high thermal
mixing in case 1, convective heat transfer rate is highest in
case 1. Denser heatlines at the middle portion of left wall
signify large amount of heat being drawn from the middle
portion of the wall for all cases. Sparse heatlines are ob-
served near the lower right corner of the cavity depicting
very less amount of heat being delivered to those regions for
all cases. In addition, very small secondary heat circulation
cells are observed at the corner regions of the cavity for all
cases. Note that, central portion of the cavity is filled with
closed loop heatlines for case 1 and 2, whereas dense end-
to-end heatlines are observed in the central portion (throat
region) for case 3. Heatlines are denser at the middle por-
tion of left and right walls depicting high heat transfer at
those regions for cases 1 and 2. On the other hand, sparse

end-to-end heatlines are seen at the middle portion of the
cavity for case 3. Also, it may be noted that, dense heat-
lines are found at the top and bottom portion of the left
wall for case 3.
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Figure 5: Isotherms (θ), entropy generation due to heat
transfer (Sθ) heatlines (Π), streamlines (ψ) and entropy
generation due to fluid friction (Sψ) at Pr = 0.01 and
Ra = 105 for all convex cases: (a) case 1, (b) case 2 and
(c) case 3.

The enclosure with convex side walls is considered
with three cases based on three different curvatures of side
walls. Similar to the concave case, the square enclosure
is modified to a curved walled enclosure by shifting the
point P1 and P2 to P ′

1 and P ′

2, respectively in the outward
direction such that AP ′

1
D and BP ′

2
C form curves which

obey the quadratic equations; X = aY 2 + bY + c and X =
a′Y 2+b′Y+c′, respectively [see Figure 1(b) and Table 1(b)].
The values of P1P

′

1
or P2P

′

2
are same as in the concave case

which are L/10, 2L/10 and 4L/10 for case 1, case 2 and case
3, respectively.

Figure 5(a-c) display isotherms, streamlines and
entropy generation maps due to heat transfer and fluid
friction (Sθ and Sψ) and heatlines (Π) at Ra = 105 and
Pr = 0.01 for all convex cases. Due to large convective
effect at high Ra, thermal mixing is significant at the core
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for all cases. Consequently, isotherms are highly distorted
at the core and compressed towards the entire left and right
walls. Note that, the strength of compression of isotherms
are high for convex cases compared to that of concave cases
[see Figure 4 and 5] As a result, Sθ is significantly large
throughout the left and right walls in all cases. Larger
compression of isotherms towards the top right and bot-
tom left corner results in larger thermal gradient which
further results in maximum Sθ at those regions for all con-
vex cases. As wall curvature increases from case 1 to case 3,
heat transfer irreversibility at the top right corner and bot-
tom left corner increases, which is similar to concave cases.
Note that, Sθ,max = 46.8, 121 and 326 occur for cases 1,
2 and 3, respectively. It may be noted that, thermal gra-
dients are larger for convex cases due to higher convective
effect and that results in larger Sθ,max for convex cases
compared to that of concave cases. At the core of the cav-
ity, local Sθ is observed to be almost similar for all convex
cases with Sθ ≈ 0.5. Due to high thermal mixing for convex
cases, isotherms are distorted and temperature gradient is
less and thus, Sθ is lesser for convex cases than that of con-
cave cases at the core [see Figure 4 and 5]. Active zones
for Sθ are also observed at the corner regions for all convex
cases which is in contrast to concave cases, where Sθ was
very less at the corner zones. At Ra = 105, the fluid flow
intensity is high and that results in enhanced convective
transport inside the cavity for all cases [see Figure 5]. Due
to large thermal diffusivity, tiny secondary fluid circulation
cells are observed at the top right and bottom left corner
of the cavity for all cases. Maximum entropy generation
due to fluid friction is largest in case 1 (Sψ,max = 543)
compared to that of case 2 (Sψ,max = 528) and case 3
(Sψ,max = 419), which occur near the left portions of top
wall and right portion of bottom wall for all cases, which
is in contrast to concave cases. Velocity gradients at the
core decrease with increase in wall curvature from case 1
to case 3 and Sψ at the core is least for case 3.

As Ra increases to 105, many interesting features
are observed in the trends of heatlines [see Figure 5].
Highly intense closed loop heatline cells are found at the
core and they are compressed towards the top left corner
of the enclosure. Both end-to-end and closed loop heat-
lines are found in the enclosure, however, the magnitude
of closed loop heatline circulation cells are significantly
higher. Higher intensity of closed loop heatlines depict re-
circulation of heat energy due to enhanced thermal mixing
in the core for all cases. Dense heatlines emanating from
the left wall illustrate high convective heat transfer from
the entire left wall to the entire right wall in all the cases.
The convective heat transport is more dominant in convex
case compared to that of convex cases [see Figure 4 and 5].
This can also be inferred from more intense heatline cells
for convex cases compared to concave cases. Enhanced
thermal mixing causes the heatlines to get pushed towards
the bottom left corner and top right corner for all cases.

Average Nusselt number, total entropy generation

and average Bejan number

The variations of total entropy generation due to heat
transfer and fluid friction irreversibilities (Stotal), average
Bejan number (Beav) and average Nusselt number on the
curved right wall (Nur) vs logarithmic Rayleigh number
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Figure 6: Variations of total entropy generation (Stotal:
bottom panel), average Bejan number (Beav: middle
panel), and average Nusselt number at the right wall (Nur:
top panel) with Ra at Pr = 0.01 for (a) concave cases [case
1 (- - - - -), case 2 (– – – – ) and case 3 (——–)] and (b)
convex cases [case 1 (- - - - -), case 2 (– – – – ) and case 3
(——–)].

(Ra) are presented in bottom, middle and top panels of
Figure 6(a-b), respectively, for both concave and convex
cases at Pr = 0.01.

Figure 6(a) represents distributions of Stotal, Beav
and Nur for Pr = 0.01 for all concave cases. The total en-
tropy generation (Stotal) in the cavity increases slowly un-
til Ra ≤ 104 for all cases [see bottom panel of Figure 6(a).
This is due to the fact that Sψ,total is very less compared to
Sθ,total due to negligible convective effect and contribution
of Sψ,total on Stotal is negligible at low Ra. Note that, at
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Ra = 103, Sθ,total = 1.22 and Sψ,total = 0.02 occur for case
1; Sθ,total = 1.45 and Sψ,total = 0.01 occur for case 2 and
Sθ,total = 3.02 and Sψ,total = 0.002 occur for case 3. It
may also be noted that, Sθ,total = 1.92 and Sψ,total = 0.69
occur for case 1; Sθ,total = 1.77 and Sψ,total = 0.40 occur
for case 2 and Sθ,total = 3.10 and Sψ,total = 0.19 occur for
case 3 at Ra = 104. As seen from the magnitudes of Sθ,total
and Sψ,total, it is observed that although Sψ,total is less for
case 3, Sθ,total is significantly larger for case 3 compared to
that of cases 1 and 2 at low Ra. As a result, larger Stotal
is observed for case 3 compared to all other cases at low
Ra. Convection heat transfer is observed to be initiated
at Ra = 104 all cases. Due to gradual increase of both
fluid friction and heat transfer irreversibility at higher Ra,
Stotal increases rapidly for Ra ≥ 104 for all cases. Note
that, at Ra = 105, fluid flow irreversibility is larger and
that can also be observed from the Sψ contours of Figure
5. At Ra = 105, Sθ,total = 2.23 and Sψ,total = 10.46 occur
for case 1; Sθ,total = 2.82 and Sψ,total = 7.12 occur for case
2 and Sθ,total = 4.25 and Sψ,total = 5.84 occur for case 3.
As area available for fluid motion is larger for case 1 that
results in larger fluid velocity. Hence, fluid flow irreversibil-
ity is significantly higher and thus, Stotal is largest for case
1 at Ra = 105. In contrast to lower Ra, Stotal is least for
case 3 which is due to lesser Sψ,total at high Ra.

Distribution of average Bejan number (Beav) in-
dicates the dominance of entropy generation due to heat
transfer or fluid friction during natural convection. Note
that, Beav ≥ 0.5 indicates entropy generation is due to
heat transfer and Beav ≤ 0.5 indicates entropy generation
due to fluid friction. A generalized decreasing trend of
Beav with Ra may be observed for all cases [see the middle
panel plots of Figure 6(a)]. At Ra = 103, Beav = 1, which
signifies that the entropy generation in the cavity is mainly
due to heat transfer for all cases. As Ra increases further,
Beav decreases for cases 1 and 2 depicting dominance of
fluid flow irreversibility over heat transfer irreversibility at
high Ra. Due to larger magnitude of Sψ,toal over of Sθ,total,
Beav is found to be 0.23 and 0.28 for case 1 and 2, respec-
tively at Ra = 105. On the other hand, even at high Ra
(Ra = 105), Sθ,total dominates over Sψ,total for case 3 as
seen from value of Beav (Beav = 0.43).

It is observed that, Nur increases slowly for Ra ≤
104 for all cases due to smaller temperature gradient near
the right wall [top panel of Figure 6(a)]. This is due to
less fluid velocity at low Ra that results in lesser convec-
tive force throughout the cavity. This can also be depicted
from the smooth isotherms along the right wall for all case
[see Figure 3(a-c)]. Due to larger thermal gradients at the
throat region of case 3, Sθ,total is larger for case 3 for low
Ra. In addition, it is interesting to observe that Nur is
also larger for case 3 for Ra ≤ 104. This is due to the
fact that overall heat transfer rate due to thermal gradi-
ents is sufficiently high even with loss of available energy
due to thermal gradients (Sθ,total) for case 3 at low Ra.
At high Ra, convective effect is high and several zones of
compressed isotherms are seen at the right wall for all cases
[see Figure 4(a-c)]. Thus, total entropy generation due to
heat transfer and fluid friction is larger than that of low
Ra for all cases. It is interesting to note that, Sθ,total is
high, but Nur is also high for all cases at high Ra. This
is due to larger convective effect at high Ra that results in

stronger compression of isotherms at the right wall for all
cases. It may be noted that, the loss of available energy in
terms of Sθ,total is very less compared to that of the heat
transfer due to temperature gradients. Largely compressed
isotherms are seen at the top portion of right wall for case
1 and the top and middle portion of right wall for case 3.
Thus, at Ra = 105, heat transfer rate due to thermal gra-
dients are larger for cases 1 and 3 compared to that of case
2.

Figure 6(b) shows the distributions of Stotal, Beav
andNur with Ra at Pr = 0.01 for all convex cases. Similar
to concave cases, Stotal increases very slowly till Ra = 104

for all cases. This is due to conductive heat transfer in the
cavity that results in negligible Sψ,total with larger and ap-
proximately constant Sθ,total. At Ra = 103, Sθ,total = 1.01
and Sψ,total = 0.03 occur for case 1; Sθ,total = 0.93 and
Sψ,total = 0.03 occur for case 2 and Sθ,total = 0.85 and
Sψ,total = 0.02 occur for case 3. Note that, Sθ,total = 1.76
and Sψ,total = 0.70 occur for case 1; Sθ,total = 1.52 and
Sψ,total = 0.59 occur for case 2 and Sθ,total = 1.28 and
Sψ,total = 0.49 occur for case 3 for Ra = 104. Due to
almost similar values of Sθ,total and Sψ,total, the qualita-
tive and quantitative trends of Stotal are similar for all
cases for 103 ≤ Ra ≤ 105. As Ra increases further, Stotal
increases exponentially due to convection dominant heat
transfer that results in rapid increase of both Sψ,total and
Sθ,total for all cases. It may be noted that, Sψ,total = 10.19,
9.69, 8.49 for cases 1, 2 ad 3, respectively at Ra = 105.
Due to high convective force, the thermal gradients are
also found to be high for all cases which can also be de-
picted from the magnitude of Sθ,total at high Ra. It may
also be noted that, Sθ,total = 3.21, 3.15, 2.94 for cases 1, 2
ad 3, respectively at Ra = 105. At high Ra, total entropy
generation is largest for case 1, due to both high Sθ,total
and Sψ,total.

A steep decreasing trend of Beav with Ra is ob-
served for all convex cases case as seen from the middle
panel of Figure 6(b). Note that, the qualitative as well
as quantitative trends of Beav are similar for all convex
cases. Similar to concave cases, the maximum value for
Beav (Beav = 0.98 for all cases) occurs at low Ra = 103,
indicating that entropy generation in the cavity is primarily
due to heat transfer irreversibility (Sθ,total) at conduction
dominant mode. As Ra increases to 105, fluid friction irre-
versibility (Sψ,total) increases and that is significant com-
pared to heat transfer irreversibility (Sθ,total) due to en-
hanced convection heat transfer in the cavity. Thus, Beav
decreases with Ra for all cases as seen in the middle panel
plot of Figure 6(b).

As Ra increases from 103 to 104, amount of heat
transport to the right wall is found to be almost constant
for all convex cases as seen from the top panel plot of Fig-
ure 6(b). At low Ra, smaller temperature gradient exists
near the right wall which is due to weak fluid circulation
cell that results in a low heat transport. This can also
be illustrated from the smooth isotherms along the right
wall for all convex cases at low Ra [figure not shown].
Slightly stronger compression of isotherms for case 1 re-
sults in larger thermal gradients at the top portion of the
right wall for case 1 at low Ra. Thus, Sθ,total is slightly
larger for case 1 compared to cases 2 and 3 for low Ra. In
addition, overall heat transfer rate (Nur) is also larger for
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case 1 at low Ra (Ra ≤ 104) as the temperature gradients
is sufficiently high for case 1 although loss of available en-
ergy due to thermal gradients (Sθ,total) is larger for case
1. As Ra increases (Ra ≥ 104), due to enhanced convec-
tion, isotherms are highly compressed along the upper half
of the right wall for all convex cases [see Figure 5(a-c)].
Thus, Sθ,total is higher at high Ra for all cases. The loss
of available energy due to thermal gradients in terms of
Sθ,total is less compared to that of the heat transfer due
to temperature gradients at high Ra for all cases. As a
result, overall heat transfer (Nur) is higher for all cases at
high Ra. Comparing all convex cases, largely compressed
isotherms may be observed at the top half of right wall for
case 1 at for all Ra. Thus, largest value of Nur is observed
for case 1 eventhough considerable amount of energy is uti-
lized to overcome significant heat transfer and fluid friction
irreversibilities for all Ra.

CONCLUSION

In the present study, the analysis of heatlines and en-
tropy generation due to heat transfer and fluid friction
irreversibilities during natural convection within differen-
tially heated cavities with concave/convex side walls has
been performed. The flow and temperature distributions
in addition to the entropy generation due to heat trans-
fer and fluid friction are obtained for Pr = 0.01 and
(103 ≤ Ra ≤ 105) for all cases. Direction and intensity
of heat flow is also determined using heatlines concept.
Further, analysis of average Nusselt number, total entropy
generation and average Bejan number are carried out.

At low Ra (Ra = 103), heat transfer is primar-
ily due to conduction based on less intense streamlines
and smooth isotherms and heatlines for all cases. En-
hanced convection is observed based on larger magnitudes
of streamlines and closed loop heatlines in addition to dis-
torted isotherms at Ra = 105 for all concave and convex
cases. At low Ra, local entropy generation due to heat
transfer and fluid friction are lower due to less velocity and
temperature gradients for all cases. Due to enhanced con-
vective effect higher Ra, streamline cells are stronger and
isotherms are largely compressed that results in larger Sθ
and Sψ for all cases. Significant Sθ occurs near the middle
portion of left and right walls for all concave cases at all
Ra, whereas for convex cases, Sθ is significant at the top
right and bottom left corners of the cavity. Also, Sψ,max is
seen at the middle portion of the side walls for all concave
cases while for convex cases, Sψ,max is seen at the middle
portion of top and bottom walls.

At low Ra, Nur is largest for case 3 (concave) with
moderate Stotal. Largest Nur is observed for cases 1 and
3 for high Ra. It was also concluded that, Stotal is largest
for case 1 and lowest for case 3 at high Ra. Thus, through-
out the range of Ra, case 3 may be chosen over cases 1
and 2 based on high Nur and less Stotal. Based on moder-
ate Stotal and larger Nur, case 1 (convex) may be energy
efficient for all Ra.
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