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ABSTRACT 
This paper studies the effects of thermal radiation and 

chemical reaction on two dimensional incompressible couple 
stress fluid flow with mixed convective heat and mass transfer 
between two vertical parallel plates in a porous space. The 
plates are kept at different but constant temperature and 
concentrations. The governing non-linear partial differential 
equations are transformed into a system of ordinary differential 
equations using similarity transformations. The resulting 
equations are then solved using the homotopy analysis method. 
The effects of the radiation parameter, chemical reaction 
parameter and couple stress fluid parameter on velocity, 
temperature and concentrations are discussed and shown 
graphically. Also the effects of the pertinent parameters on the 
rates of heat and mass transfer are tabulated. 

 
INTRODUCTION 

In space technology applications and at higher operating 
temperatures, radiation effects can be quite significant. Since 
radiation is quite complicated, many aspects of its effect on free 
convection or combined convection have not been studied in 
recent years. The combined radiation and mixed convection 
from a vertical wall with suction/injection in a non- Darcy 
porous medium was studied by Murthy et al. [1]. Grosan and 
Pop [2] considered the effect of thermal radiation on fully 
developed mixed convection flow in a vertical channel. Raptis 
[3] studied the influence of radiation on free convection flow 
through a porous medium. Most recently, radiation effects on 
mixed convection about a cone embedded in a porous medium 
filled with a nanofluid have been presented numerically by 
Chamkha et al. [4].  

Diffusion rates can be tremendously altered by chemical 
reactions. Chemical reactions can be codified as either 
heterogeneous or homogeneous processes. This depends on 
whether they occur at an interface or as a single phase volume 
reaction. Studies on chemical reaction in channel/near plate 
date back to 1958, when Chambre and Young [5] have 
analyzed a first- order chemical reaction near a stationary 
horizontal plate using a similarity transformation. Das et al. [6] 
have studied the effect of a homogeneous first-order chemical 
reaction on the flow past an impulsively started infinite vertical 
plate with uniform heat flux and mass transfer using Laplace 

NOMENCLATURE 
A  Constant pressure gradient  
Br  Brinkman number  
C   Concentration  
Cp  Specific heat at constant pressure  
CS  Concentration susceptibility  
CT  Temperature ratio 
D  Solutal diffusivity      
f  Reduced stream function 
g  Acceleration due to gravity 
GrC  Mass Grashof number 
GrT  Temperature Grashof number  
Kf  Coefficient of thermal conductivity 
KT  Thermal diffusion ratio  
Nu  Nusselt number 
p  Pressure 
Pr  Prandtl number  
qr   Radiation heat flux 
R  Suction induction parameter 
Ra  Radiation parameter 
Re  Reynolds number  
S  Couple stress parameter 
Sc  Schmidt number  
Sh  Sherwood number 
T  Temperature 
Tm  Mean fluid temperature  
u, v  Velocity components in the x and y directions 

respectively  
x, y  Cartesian coordinates along the plate and  

normal to it  
Special characters 

a  Thermal diffusivity 

CT
 ,

 
 Coefficients of thermal and solutal expansion 

c  Mean absorption coefficient 
   Similarity variable 

1
   Coupling material constant  

s   Stefan-Boltzman constant 
    Dimensionless temperature  
   Dimensionless concentration 
μ   Dynamic viscosity 
ν  Kinematic viscosity 
ρ  Density of the fluid 
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transform technique. Recently, Prathap Kumar et al. [7] prese- 
nted the effect of homogeneous and heterogeneous reactions on 
the solute dispersion in composite porous medium analytically. 
Most recently, Saleh et al. [8] discussed the reversal flow of 
fully developed mixed convection in a vertical channel with 
chemical reaction. 
 

With the growing importance of non- Newtonian fluids in 
modern technology and industries, the investigations on such 
fluids are desirable. The theory of polar fluids and related 
theories are models for fluids whose microstructure is 
mechanically significant. The micro-continuum theory of 
couple stress fluid proposed by Stokes [9], defines the 
rotational field in terms of the velocity field for setting up the 
constitutive relationship between the stress and strain rate. In 
view of applications, Muthuraj et al. [10] have studied the heat 
and mass transfer effects on MHD flow of a couple-stress fluid 
in a horizontal wavy channel with viscous dissipation and 
porous medium. Most recently Hayat et al. [11] analyzed the 
stagnation point flow of couple stress fluid with melting heat 
transfer and the analytical study of Hall and Ion-slip effects on 
mixed convection flow of couple stress fluid between parallel 
disks have been presented by Srinivasacharya and Kaladhar 
[12].  

 
The Homotopy analysis method (HAM) was first proposed 

by Liao in 1992, is one of the most efficient methods in solving 
different types of nonlinear equations such as coupled, 
decoupled, homogeneous and non- homogeneous. Also, HAM 
provides us a great freedom to choose different base functions 
to express solutions of a nonlinear problem [13]. The 
application of the HAM in engineering problems is highly 
considered by scientists, because HAM provides us with a 
convenient way to control the convergence of approximation 
series, which is a fundamental qualitative difference in analysis 
between HAM and other methods. Later, Liao [14] presented 
an optimal Homotopy Analysis approach for strongly nonlinear 
differential equations. HAM is used to get analytic approximate 
solutions for heat transfer of a micropolar fluid through a 
porous medium with radiation by Rashidi et al. [15]. Recent 
developments of HAM, like convergence of HAM solution, 
Optimality of convergence control parameter discussed by 
Srinivasacharya and Kaladhar [16] for the couple stress fluid. 

 In this paper, we have investigated the Radiation effect 
on steady mixed convective heat and mass transfer flow 
between two vertical parallel plates in couple stress fluid with 
chemical reaction. The Homotopy Analysis method is 
employed to solve the governing nonlinear equations. The 
behavior of emerging flow parameters on the velocity, 
temperature and concentration are discussed. 
 
MATHEMATICAL FORMULATION 
 
The Consider a steady fully developed laminar mixed 
convection flow of a couple stress fluid between two vertical 
parallel plates distance 2d apart. Choose the coordinate system 
such that x - axis be taken along vertically upward direction 
through the central line of the channel, y is perpendicular to the 

plates and the two plates are infinitely extended in the direction 
of x. The plate y = −d has given the uniform temperature T1 and 
concentration C1, while the plate y = d is subjected to a uniform 
temperature T2 and concentration C2. Since the boundaries in 
the x direction are of infinite dimensions, without loss of 
generality, we assume that the physical quantities depend on y 
only. The fluid properties are assumed to be constant except for 
density variations in the buoyancy force term. The fluid is 
considered to be a gray, absorbing/emitting radiation, but non-
scattering, medium and the Rosseland approximation [17] is 
used to describe the radiative heat flux in the energy equation. 
In addition, the thermo diffusion effects considered. The flow is 
a mixed convection flow taking place under thermal buoyancy 
and uniform pressure gradient in the flow direction. The flow 
configuration and the coordinates system are shown in Figure 
1. The fluid velocity u is assumed to be parallel to the x-axis, so 
that only the x-component u of the velocity vector does not 
vanish but the transpiration cross-flow velocity v0 remains 
constant, where v0 < 0 is the velocity of suction and v0 > 0 is the 
velocity of injection.   

 
Figure 1: Physical model and coordinate system 

 
With the above assumptions and Boussinesq approximations 
with energy and concentration, the equations governing the 
steady flow of an incompressible couple stress fluid are 
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where u is the velocity component along x direction, ρ is the 
density, g is the acceleration due to gravity, p is the pressure, μ 
is the coefficient of viscosity, βT is the coefficient of thermal 
expansion, βC is the coefficient of solutal expansion, α is the 
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thermal diffusivity, D is the mass diffusivity, CP is the specific 
heat capacity, CS is the concentration susceptibility, Tm is the 
mean fluid temperature, KT is the thermal diffusion ratio, Kf is 
the coefficient of thermal conductivity, η1 is the additional 
viscosity coefficient which specifies the character of couple-
stresses in the fluid and qr is the radiation heat flux. 
 
Using the Rosseland approximation for radiation [17] the 
radiative heat flux qr is simplified as 

y
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             (5) 

where s is the Stefan - Boltzman constant,  c is the mean 
absorption coefficient  
 
The boundary conditions are 
u=0  at  y=≤d           (6a)   
uyy=0  at y=≤d           (6b)                                          
T=T1, C=C1  at  y=-d and  T=T2, C=C2  at y=d                   (6c) 
The boundary condition (6a) corresponds to the classical no-
slip condition from viscous fluid dynamics. The boundary 
condition (6b) implies that the couple stresses are zero at the 
plate surfaces.  
 
Introducing the following similarity transformations 
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in equations (2) - (4), we get the following nonlinear system of 
differential equations 

0
ReRe

''')(2  A
GrGr

RfffS CTiv                        (8) 

   0)''()'(2
3

4
'Pr'' 222''  fBrSfBrCRR Td    (9) 

0'''   KScScR                       (10) 

where primes denote differentiation with respect to η alone, 


du0Re   is the Reynolds number, 

D
Sc


  is the Schmidt 

number, 
T

P

K

C
Pr  is the Prandtl number, 


dv

R 0 is the 

suction/induction parameter, 
dx

dP
A  is the constant pressure 

gradient, 
2

3
12 )(


 dTTg

Gr T
T


 is the temperature Grashof 

number, 
2

3
12 )(


 dCCg

Gr T
C


 is the mass Grashof number, 

12

1

TT

T
CT 

  is the temperature ratio, 




T
d K

TT
R

3
12 )(4 

 is the 

radiation parameter, 
)( 12

2

2

TTdK
Br

T 



 is the Brinkman 

number, 
)(

)(

12

12

CCT

TTDK
S

m

T
r 





 is the Soret number, 


11

d
S  is 

the couple stress parameter. 
 
Boundary conditions (6) in terms of f, θ,   become 
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The physical quantities of interest in this problem the Nusselt 
number and the Sherwood number. The heat and mass fluxes at 
the vertical plate surfaces can be obtained from  
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Effect of the various parameters involved in the investigation 
on these coefficients is discussed in the following section. 
 
 THE HAM SOLUTION OF THE PROBLEM 
 
For HAM solutions, we choose the initial approximations of 
f(η), θ(η) and (η) as follows: 
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where ci(i = 1, 2, ..., 6) are constants. Introducing non-zero 
auxiliary parameters h1, h2 and h3, we develop the Zeroth-order 
deformation problems as follow: 
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where p  [0, 1] is the embedding parameter and the non-linear 
operators N1, N2 and N3 are defined as: 
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For p = 0 we have the initial guess approximations 
)()0;(),()0;(),()0;( 000   ff         (24) 

When p = 1, equations (17) - (19) are same as (8) - (10) 

respectively, therefore at p = 1 we get the final solutions  
)()1;(),()1;(),()1;(   ff               (25) 

Hence the process of giving an increment to p from 0 to 1 is 
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The initial guess approximations f0(η), θ0(η) and 0(η), the 
linear operators L1, L2 and the auxiliary parameters h1, h2 and h3 

are assumed to be selected such that equations (17) – (19) have 
solution at each point p[0,1] and also with the help of 
Taylor’s series and due to Eq. (24); f(η; p), θ(η; p) and (η; p) 
can be expressed as 
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series (34) - (36) are convergent at p = 1. Therefore we have 
from (25) that  
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for which we presume that the initial guesses to f, θ and   
the auxiliary linear operators L and the non-zero auxiliary 
parameters h1, h2 and h3 are so properly selected that the 
deformation f(η; p), θ(η; p) and (η; p) are smooth enough and 
their mth -order derivatives with respect to p in equations (37)-
(39) exist and are given respectively by  

0

);(

!

1
)(





p

m

m

m
p

pf

m
f

 ,
0

);(

!

1
)(





p

m

m

m
p

p

m

 , 

0

);(

!

1
)(





p

m

m

m
p

p

m

  It is clear that the convergence of 

Taylor series at p = 1 is a prior assumption, whose justification 
is provided via a theorem (Srinivasacharya and Kaladhar, [21]), 
so that the system in (37)-(39) holds true. The formulae in (37)-
(39) provide us with a direct relationship between the initial 
guesses and the exact solutions. All the effects of interaction of 
the chemical reaction as well as of the mass transfer, Soret and 
Dufour effects and couple stress flow field can be studied from 
the exact formulas (37)-(39). Moreover, a special emphasize 
should be placed here that the mth-order deformation system 
(26) - (29) is a linear differential equation system with the 
auxiliary linear operators L whose fundamental solution is 
known.

 
 
 
RESULTS AND DISCUSSION 
 
In the absence suction/injuction parameter R and Buoyancy 
ratios GrT/Re and GrC/Re, Eq. (8) reduces to the equation of 
motion for the flow between parallel plates given in text book 
by Stokes ([18], page no. 44). Analytical solution of that 
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equation with type A conditions and HAM solution at different 
S are shown in Table 1. The comparisons are found to be in a 
very good agreement. Therefore, the HAM code can be used 
with great confidence to study the problem considered in this 
paper. 
 
The expressions for f, θ and f contain the auxiliary parameters 
h1, h2 and h3. As pointed out by Liao (2003), the convergence 
and the rate of approximation for the HAM solution strongly 
depend on the values of auxiliary parameter h. For this purpose, 
h-curves are plotted by choosing h1, h2 and h3 in such a manner 
that the solutions (34) - (36) ensure convergence [9].  Here to 
see the admissible values of h1, h2 and h3, the h-curve is plotted 
for 15th-order of approximation in Fig. 2 by taking the values of 
the parameters Sc = 0.22, Pr=0.7, Br = 0.1, K = 1, S = 1, Rd = 
0.5 and CT = 0.1. It is clearly noted from Fig. 2 that the range 
for the admissible values of h1, h2 and h3 are −1.15 < h1 < -0.6, 
−1.2 < h2 < −0.6 and −1.15< h3 < −0.4 respectively. A wide 
valid zone is evident in these figures ensuring convergence of 
the series.  

      
 Figure 2: h curve for f, q and f 
 
The average residual errors are calculated at different order of 
approximations (m) and found that they are minimum at h1=-
0.75, h2 = -0.9 and h3 = -0.9 respectively. Therefore, the 
optimum values of convergence control parameters are taken as 
h1=-0.75, h2 = -0.9, h3 = -0.9. 
 
The solutions for f(η), q(η) and f(η) have been computed and 
shown graphically in Figs. 3 to 10. The effects of radiation 
parameter (Rd), chemical reaction parameter (K) and couple 
stress fluid parameter (S) have been discussed. To study the 
effect of Rd, K and S, computations were carried out by taking 
Pr = 0.7, GrT = GrC =10, Re = 2, R=2, Br = 0.1, Sc = 0.7, CT = 
0.1 and A=1. 
 

Figures 3 to 4 represent the effect of radiation parameter Rd on 
f(η) and q(η). It can be seen from these figures that the velocity 
f(η) increase with an increase in the parameter Rd. This implies 
that the radiation have a retarding influence on the mixed 
convection flow. The dimensionless temperature increases as 
Rd increases. The effect of radiation parameter Ra is to increase 
the temperature significantly in the flow region. The increase in 
radiation parameter means the release of heat energy from the 
flow region and so the fluid temperature increases.  
 
Figures 5 to 7 indicate the effect of the couple stress fluid 
parameter S on f(η), q(η) and f(η). As the couple stress fluid 
parameter S increases, the velocity f(η) decreases. It is also 
clear that the temperature q(η) decreases with an increase in S. 
It can be noted that the velocity in case of couple stress fluid is 
less than that of a Newtonian fluid case. Thus, the presence of 
couple stresses in the fluid decreases the velocity and 
temperature. As the diffusion equation is independent of couple 
stress fluid parameter, concentration has no significant change 
with the couple stress parameter. 
 
Figures 8 to 10 represent the effect of chemical reaction K on 
f(η), q(η) and f(η). It can be seen from these figures that the 
velocity f(η) decrease with an increase in the parameter K. The 
dimensionless temperature decreases as K increases. The 
concentration f(η) decreases with an increase in the parameter 
K. Higher values of K amount to a fall in the chemical 
molecular diffusivity, i.e., less diffusion. Therefore, they are 
obtained by species transfer. An increase in K will suppress 
species concentration. The concentration distribution decreases 
at all points of the flow field with the increase in the reaction 
parameter. This shows that heavier diffusing species have 
greater retarding effect on the concentration distribution of the 
flow field. 
 
Variation of chemical reaction parameter (K), Radiation 
parameter (Rd) together with the Suction/induction parameter 
(R) is presented in Table 2 with fixed values of other 
parameters. It can be noted that the heat and mass transfer rates 
decreases with an increase in K. Further the behavior of the 
remaining parameters is self evident from the Table 2 and 
hence is not discussed for brevity. 
 
 
                S=0.5                 S=0.75 

 Analytical HAM Analytical HAM 

-1 0 0 0 0 

-0.5 0.227538568 0.22753853 0.153714468 0.153714468 

0 0.316450557 0.31645062 0.214780383 0.214780383 

0.5 0.227538568 0.22753853 0.153714468 0.153714468 

1 0 0  0 0 

Table 1: Comparison of flow velocity (f) for R = GrT/Re = 
GrT/Re= 0. 
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         Figure 3: Effect of Rd on f at S = 1.0, K = 1 

 

  

 Figure 4: Effect of Rd on q at S = 1.0, K = 1 

 
 

 

     Figure 5: Couple stress parameter effect S on f at K = 1,                       
           Rd = 0.5 

         
Figure 6: Couple stress parameter S effect on q at K = 1,            
 Rd = 0.5 
 

 

Figure 7: Couple stress parameter effect S on f(η)   
     at K = 1, Rd = 0.5 

 
 

 

Figure 8: Effect of K on f at S = 1.0, Rd = 0.5 
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    Figure 9: Effect of K on q at S = 1.0, Rd = 0.5 

 

 
Figure 10: Effect of K on f(η) at S = 1.0, Rd = 0.5 

 
K Rd R Nu1 Nu2 Sh1 Sh2 

0.2 1 2 -1.07087 0.074101 -0.30301 -0.78013 
0.4 1 2 -1.06213 0.067131 -0.2945 -0.80779 
0.6 1 2 -1.05376 0.060443 -0.28632 -0.83485 
1 0.2 2 -0.9296 0.07258 -0.27088 -0.88731 
1 0.4 2 -1.00293 0.052767 -0.27088 -0.88731 
1 0.6 2 -1.07219 0.076515 -0.27088 -0.88731 
1 0.5 0 -1.26799 0.117392 -0.43356 -0.63873 
1 0.5 1 -1.14956 0.087198 -0.3453 -0.75593 
1 0.5 2 -1.03803 0.047852 -0.27088 -0.88731 

Table 2: Variation of heat mass transfer rates at different values    
 of K, Rd, R 
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