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ABSTRACT 

In the paper the new method for the identification of two-

phase flow patterns in a minichannel has been proposed. The 

two-phase flow (water-air) occurring in rectangular 

minichannel (3x3 mm) has been analysed. It was tested whether 

the change of the two-phase flow pattern was accompanied by 

changing the dynamics of two-phase flow. The signal from 

laser - phototransistor sensor, recorded during the experiment, 

was analysed. The proposed method was based on the 

recurrence plot and the principal component analysis.  

The thirteen coefficients describing the dynamics of 

considered data (results of recurrence quantification analysis) 

have been treated as a set of variables describing the dynamics 

of two phase flow patterns. The principal component analysis 

(PCA) has been used to obtain the set of independent variables, 

which characterise the dynamics of system under consideration. 

Obtained results show that the first two components explain the 

91% of input data variation. It has been shown that in the plots 

of two first components the points are grouped in the four 

separated clusters, which correspond to different flow patterns 

(two types of bubbly flow, and two types of slug flow - small 

and long slugs).  

 

INTRODUCTION 
Numerous experimental studies carried out in recent years 

in many universities indicate that the two-phase flows in 

minichannels are accompanied by fluid behaviours different 

from those observed in traditional channels [1, 2]. Despite 

many experimental and theoretical researches in the literature 

there is no clear classification of patterns of two-phase flow and 

types of channels [3].  

The identification of flow patterns in minichannels often 

depends on the subjective evaluation of the observer and used 

experimental technique. For parameters characterizing the 

transition between flow patterns the two phase flow is usually 

unsteady. In such situation the criteria based on average values 

of the various parameters are not suitable for identification the 

border between flow patterns. Therefore, the new criterion 

based on properties of dynamics of two phase flow is needed.  

 

NOMENCLATURE 
 
I  Mutual information 
n, N  Number of samples 

p  Probability 

q
 

[l/min] Volume flow rate 
R  Recurrence plot 

RR  Recurrence rate 

t  Time 
x [V] Signal from laser-phototransistor sensor  

 

Special characters 

  Time delay 

ε  Recurrence plot parameter   

Θ  Heaviside function 

 
Subscripts 

a  Air  

w  Water 

 

Wang at. al in the paper [9] shown that the non-linear 

analysis, which allows us the identification of flow patterns of 

the mixture of oil-gas-water. The results of non-linear analysis 

of temperature and pressure fluctuations in microchannels are 

discussed by Mosdorf at.al in the paper [10]. Wang at. al in the 

paper [11], used the non-linear analysis of the pressure 

fluctuations to identify the flow structures of air in water. 

Methods characterizing the non-linear dynamics of the flow of 

oil-water [12] were useful for identification of the flow patterns 

and for assessment of the complexity of these patterns. Jin at al. 

in the paper [13] shows that the correlation dimension and 

Kolmogorov entropy are sufficient to identify the flow patterns. 

Faszczewski at al. in the paper [14] used the recurrence plot 

method to analyse the flow patterns in a vertical mini channel. 
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It has been shown that this method allows us to determine the 

parameters which define the borders between flow patterns. 

The subject of the research is the development of methods 

for identifying the types of flow patterns which occur during 

the movement of the liquid-gas mixture in the minichannel. It 

was assumed that the loss of stability of the two-phase flow 

pattern and the formation of the new flow pattern is 

accompanied by the change of parameters describing the 

dynamics of two-phase flow. The determination of those 

parameters requires an analysis of the dynamics of two-phase 

flow. The method proposed in the paper is based on the 

recurrence plot and the principal component analysis. The 

signal from laser - phototransistor sensor was analysed. 

 

EXPERIMENTAL SETUP, MEASUREMENT 
TECHNIQUES 

 

During the experiment it was analysed the data recorded for 

different flow patterns (water-air at 21
o
 C) in a rectangle 

channel 3x3 mm. In Figure 1 the schema of experimental stand 

is presented. Due to the size of the minichannel the obtaining 

the bubbly flow inside it requires the usage of a special 

generator of mini bubbles (8 - Figure 1a). The proportional 

pressure regulator (Metal Work Regtronic with an accuracy of 

1 kPa) was used to maintain the constant overpressure in the 

supply tank (10 - Figure 1a) - the overpressure was 50 kPa. 

Flow patterns were recorded with using the Casio EX-F1 digital 

camera at 1200 fps (336 x 96 pixels). Pressure difference 

between the inlet and outlet of minichannel was measured using 

the silicon pressure sensor MPX12DP (range 0 - 10 kPa, 

sensitivity 5.5 mV/kPa, response time 1 ms, accuracy ±0.05 

kPa). The amount of vapour flowing through the minichannel 

was measured by laser-phototransistor sensor (3 - Figure 1a). 

Data from the sensors was acquired by the acquisition system 

(Data translation 9804, an accuracy of 1 mV for voltages in the 

range of -10 V to 10 V), (11 - Figure 1a) at a sampling rate of 1 

kHz. 

The content of the minichannel (bubbles or liquid) has been 

qualitatively assessed using the laser - phototransistor sensor (3 

- Figure 1a). The schema of laser-phototransistor sensor is 

presented in Figure 1b. The sensor consisted with a laser which 

generated the laser beam with a diameter of 3 mm, the lens and 

silicon sensor placed in focal point of lens. Bubbles inside the 

minichannel bend the light which modifies the light intensity on 

the silicon sensor. When the channel is filled with water, the 

sensor generates a high voltage signal. When the bubble or slug 

occurs inside the minichannel, then the sensor generates a low 

voltage signal (about the 3 V). However, when the front of slug 

or bubble is passing through the laser beam, then the sensor 

voltage level drops to about 2 V. Small voltage drops below the 

maximum voltage level indicate that small bubbles are in the 

minichannel. The above properties of laser - phototransistor 

sensors allow us to use the signal from sensors for qualitative 

assessment of the presence of bubbles or slugs in the 

minichannel. 

 

 
Figure 1 Scheme of experimental stand. a) Experimental 

setup: 1. minichannel, 2. pressure sensors (MPX12DP), 3. 

laser-phototransistor sensor. 4. Casio EX-FX1 camera, 5. 

lighting, 6. pumps (air or water), 7. flow meters. 8. mini 

bubbles generator, 9. air tank, 10. automatic valve to maintain a 

constant pressure in the tank 9, 11. data acquisition station 

(DT9800), 12. computer, 13. water tank, 14 air tank. b) Schema 

of laser-phototransistor sensor. 

 

In Figure 2 it has been shown the examples of signal 

recorded from the laser-phototransistor sensor for different air 

volume flow rates and almost constant liquid flow rate. In each 

charts the examples of flow pattern occurring in the 

minichannel have been presented. 

In the present paper, the three groups of time series have 

been considered. The two groups of time series were recorded 

in the same conditions but for different time periods. The third 

group of time series was recorded for higher water flow rate 

qw = 0.17 l/min. 

NON-LINEAR DATA ANALYSIS 
 

Attractor reconstruction 

The analysis of attractor of non-linear dynamical system 

gives us information about the properties of the system such as 

system complexity and its stability. In non-linear analysis the 

reconstruction of attractor in a certain embedding dimension is 

carried out using the stroboscope coordination [17]. In this 

method the subsequent co-ordinates of attractor points are 

calculated basing on the subsequent samples, between which 

the distance is equal to time delay τ. The time delay is a 

multiplication of time between the samples. The subsequent co-

ordinates of attractor points are as follows [17]. 
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        )1(,...,, ntxtxtx  (1) 

 

where x is a measure quantity. 

 

 
Figure 2 Example of time series from laser-phototransistor 

sensor recorded during the experiment. a) qw = 0.056 l/min, 

qa = 0.001 l/min, b) qw = 0.058 l/min, qa = 0.0424 l/min, 

c) qw = 0.059 l/min, qa = 0.1 l/min d) qw = 0.056 l/min, 

qa = 0.4 l/min. 

 

In Figure 3 it has been shown the 3D attractor 

reconstruction from signals recorded from the laser-

phototransistor sensor.  

The image of the attractor in n-dimensional space depends 

on the time delay - . When the time delay is too small, the 

attractor gets flattened, that makes further analysis of its 

structure impossible [17,18]. The mutual information between 

time series: x(t) and x(t+τ) can be used to determine the proper 

time delay for reconstruction of attractors. 

 
Figure 3 The attractor reconstruction for time series of laser-

phototransistor signal for  = 70. a) qw = 0.059 l/min, 

qa = 0.0127 l/min. b) qw = 0.057 l/min, qa = 0.4 l/min. 

 

As τ is increased, the mutual information decreases and then 

usually rises again [5,6,16]. The time delay for which the 

mutual information obtains the first minimum is a proper value 

of τ. The mutual information of x(t) and x(t+τ) can be defined 

as [5,6]: 

 

 ( (    (      

∑ ∑    (    (         {
   (    (     

   (      (     
} (   (     (2) 

 

where p[x(t),x(t+τ)] is the joint probability distribution function 

of x(t) and x(t+τ), and p[x(t)] and p[x(t+τ)] are the marginal 

probability distribution functions of x and x(t+τ). 

 

The mutual information is equal to zero if x(t) and x(t+τ) are 

independent random variables.  

In Figure 4 it has been shown the mutual information 

functions vs time delay (number of samples) for the time series 

recorded from the laser-phototransistor sensor for 

qw = 0.059 l/min, qa = 0.0127 l/min. The function reaches its 

first minimum at τ ~ 70 samples. 

The false nearest neighbour algorithm [16] has been used 

for estimation of the proper embedding dimension of attractors. 

In this method the changes of number of neighbouring points in 

embedding space with increasing embedding dimension is 

examined. For each point xi the distances to its nearest 

neighbour xj are calculated, in m and in m+1 dimensional space. 

The point is treated as a false neighbour when the distance 
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between points (i, j) becomes large in case when the embedding 

space dimension increases.  

 

 
Figure 4 The mutual information functions vs time delay 

(number of samples) for the time series recorded from the laser-

phototransistor sensor for qw = 0.059 l/min, qa = 0.0127 l/min. 

The calculations have been made using the Matlab Toolbox 

[16]. 

 

 
Figure 5 The changes of number of false nearest neighbours 

points [4] for the time series recorded from the laser-

phototransistor sensor for qw = 0.059 l/min, qa = 0.0127 l/min. 

The calculations have been made using the Matlab Toolbox 

[16]. 

 

The number of false neighbours is calculated for the whole 

time series and for several dimensions until the fraction of false 

points reaches zero. Such dimension is treated as a proper 

embedding dimension for attractor reconstruction. In Figure 5 it 

has been shown the changes of percent of number of false 

neighbours vs the embedding dimension. In case under 

consideration the proper embedding dimension for attractor 

reconstruction is equal to 8.  

 

Recurrence plot 

 

Recurrence plot is a technique of visualization of the 

recurrence of states xi in m-dimensional phase space. The 

recurrence of states at time i and at a different time j is marked 

with black dots in the 2D plot, where both axes are time axes. 

The recurrence plot is defined as [15]: 

 

      (  ‖     ‖)                (3) 

 

where N is the number of considered states xi, ε is a threshold 

distance, || ⋅ || is a norm and Θ( ⋅ ) is the Heaviside function. 

 

A line parallel to main diagonal line occurs when a segment 

of the trajectory runs parallel to an another segment and the 

distance between trajectories is less than ε. The length of this 

diagonal line is determined by the duration of this phenomenon. 

A vertical (horizontal) line indicates a time in which a state 

does not change or changes very slowly. The diagonal lines 

(structures) periodically occurred in the recurrence plot are 

characteristic for periodic system [15]. In Figure 6 it has been 

shown the recurrence plots of signal from laser – 

phototransistor sensor for different flow patterns in 

minichannel.  

Recurrence rate, RR, is a measure of the percentage of 

recurrence points in the recurrence plot. It is defined as follows 

[15]:  

 

   
 

  
∑     

 
      (4) 

 

The value of RR corresponds to the correlation sum.  

 

The number of points which appears in the recurrence plot 

depends on the value of ε. Recurrence rate is a non-linear 

function of ε. In Figure 7 it is presented the function RR(ε) 

obtained for time series under consideration. Strong 

nonlinearity of function RR(ε) is visible for the small value of ε. 

For higher value of ε the nonlinearity becomes smaller (the 

function becomes quasi linear). It has been assumed that the 

lowest value of ε in the linear part of function RR(ε) is a proper 

value of ε for the reconstruction of recurrence plot. For time 

series under consideration it is equal to 3 (Figure 7).  

The quantitative recurrence analysis generates the 

coefficients which describe the dynamics of two-phase flow 

patterns. The thirteen coefficients [15, 16] have been 

considered as a set of variables describing the dynamics of two 

phase flow patterns. The calculations have been made using the 

Matlab Toolbox [16]. 

The following properties of the recurrence plot have been 

considered [16]: 

1. The overall quantity characteristic of the recurrence 

plot is described by the recurrence rate, RR eq(4). 

2. The characteristics of diagonal lines are described by: 

Determinism: 

 

    
∑    (   

      

∑     
    

   

  (5) 

(where P(l) is the distribution of the lengths of 

diagonal structures and N is the absolute number of 

diagonal lines); 
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Figure 6 Recurrence plots for embedding dimension 8, time 

delay 70 and ε = 3. a) qw = 0.056 l/min, qa = 0.001 l/min, 

b) qw = 0.058 l/min, qa = 0.0424 l/min, c) qw = 0.059 l/min, 

qa = 0.1 l/min d) qw = 0.056 l/min, qa = 0.4 l/min. The 

calculations have been made using the Matlab Toolbox [16]. 

 

 

 
Figure 7 Recurrence rate, RR, vs ε for the time series recorded 

from the laser-phototransistor sensor for qw = 0.059 l/min, 

qa = 0.0127 l/min. The calculations have been made using the 

Matlab Toolbox [16]. 

 

Averaged length of the diagonal line:  

 










N

ll

N

ll

lP

llP

AVG

min

min

)(

)(   (6) 

where   (   
  (  

∑   (   
      

; 

 

Length of the longest diagonal line; 

Entropy of occurrence of the diagonal line lengths: 

 

       ∑  (      (   
      ;  (7) 

 

 

3. The characteristics of vertical lines are described by: 

Laminarity: 

The percentage of recurrent points which belong to the 

vertical structures (lines) 

    
∑    (   

      

∑    (   
   

; (8) 

where P(v) denotes the distribution of the lengths of 

vertical structures; 

Trapping time: 

The average length of vertical line structures: 

 

   
∑    (   

      

∑   (   
      

; (9) 

 

Length of the longest vertical line; 

Recurrence time of 1st type, the recurrence time of 

2nd type: 

The recurrence time is calculated as the distance 

between the points belonging to the vertical lines in 

RP. In case of recurrence time of the first type T
1
, all 

points of RP are considered. Such value of T
1
 depends 

on the trajectory density and value of .  
In case of recurrence time of the second type T

2
, 

the vertical distances between the pairs "white" 
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pixel/"black" pixel in the columns are measured. The 

T
2
 accurately estimates the period of time series. This 

type of recurrence time is related to the entropy and to 

the information dimension of the attractor [20, 21]. 

Recurrence period density entropy: 

Little et al. [22] developed a Recurrence Period 

Density Entropy method. In this method the 

recurrences into the neighborhood, , of each points  

are tracked, and such obtained time intervals are used 

for construction of the histogram of recurrence times. 

This histogram is used for calculation of the recurrence 

period density function. The normalized entropy of 

this density has a form [22]. 

 

       (       
  ∑  (     (  

    
     (10) 

 

The value of Hnorm changes in the range from zero to 

one. For the periodic signals, Hnorm = 0 whereas for the 

uniform white noise, Hnorm = 1. 

 

4. Overall characteristic of recurrence plot (based on the 

analysis of complex network) is described by 

clustering and transitivity coefficients. In this approach 

the recurrence plot is treated as the adjacency matrix 

of a complex network [23]. 

Clustering coefficient: 

The clustering coefficient is a probability that two 

neighbours (i.e. recurrences) of any state are also 

neighbours [25]. It is obtained as the average of the 

local clustering coefficient. The clustering coefficient 

is calculated as follows: 

 

  ∑
∑     

   
    

   
    

    
     

∑     
    

   

 
     (11) 

 

Transitivity: 

The clustering coefficient places more weight on the 

low degree nodes, while the transitivity ratio places 

more weight on the high degree nodes. The transitivity 

coefficient is calculated as follows: 

 

   ∑
∑     

   
    

   
    

    
       

∑     
    

           
   

 
     (12) 

 

IDENTIFICATION OF TWO-PHASE FLOW PATTERNS 
 

The coefficients generated by the quantitative recurrence 

analysis describe the different aspects of dynamical system but 

they are correlated. Therefore, they cannot be treated as 

independent variables describing the system dynamics. For that 

reason, the principal component analysis (PCA) has been used 

to obtain the set of independent variables which characterise the 

dynamics of the system under consideration.  

The principal component analysis is a method that uses the 

orthogonal transformation to convert an input set of data into a 

new set of data, in a new set of coordinates called the principal 

components. This transformation is defined in such a way that 

the data has the largest possible variance around the first 

principal component. For the successive components the 

variance of data decreases.  

In PCA method the matrix, A, containing the values of 13 

coefficients characterising the RP-s (name of columns) and 

rows representing the number of measurement (in case under 

consideration it was 13 measurements) is analysed. In the first 

step of analysis the data in columns of matrix A is normalised. 

In the next step the covariance matrix is created.  

 

  (     (      (13) 

 

where n is a number of measurements. 

 

The dimension of covariance matrix is 13x13. Then, the 

eigenvectors and eigenvalues of the covariance matrix are 

calculated using the SVD decomposition.  

 

 
Figure 8 2D map of different patterns of two phase flow in 

minichannel in the space of two first components. 

 

In this method a rectangular matrix A can be broken down 

into the product of three matrices - an orthogonal matrix U, a 

diagonal matrix S and the transpose of an orthogonal matrix V. 

The SVD decomposition has the following form: 

 

Amn=UmmSmnV
T

nn (14) 
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where S is a diagonal matrix containing the square roots of 

ordered eigenvalues.  The columns of U are orthonormal 

eigenvectors of AA
T
, the columns of V are orthonormal 

eigenvectors of A
T
A.  

Columns of matrix U contain the eigenvectors of the 

covariance matrix which define the new coordinates 

characterising the data. In the end step of analysis the data is 

expressed in the new coordinates (called components) by the 

multiplication of eigenvectors by data matrix. 

The results of calculations show that the two first 

components explain the 48% + 43% = 91% of input data 

variation. In Figure 8 it has been shown the plot of data in the 

space of the two first components. The points are gathered in 

the four separated groups, which correspond to different flow 

patterns. In Figure 8 there is presented the results of analysis of 

three groups of time series under consideration.  

 

CONCLUSION  
 

In the paper the new method of two-phase flow 

identification has been presented. The method is based on the 

analysis of dynamics of signal recorded from the laser-

phototransistor sensor. It has been shown that in the plots of 

two first components the points are grouped in the four 

separated areas, which correspond to different flow patterns 

(two types of bubbly flow and two types of slug flow - small 

and long slugs).  

In the proposed method, the quantitative recurrence analysis 

uses the normalized signals, so the average values of the signal 

do not affect the results of the analysis. Despite of the neglect 

of quantitative signal characteristics, the qualitative analysis of 

its dynamics allows us for the identification of the two-phase 

flow patterns. This confirms that this type of analysis can be 

used to identify the two-phase flow patterns in the minichannel. 

The final verification of the proposed method requires a much 

larger number of analyses of different types of two-phase 

flows. 
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