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ABSTRACT 

A novel computational tool based on the 

Localized Radial-basis Function (RBF) Collocation 

(LRC) Meshless method coupled with a Volume-of-

Fluid (VoF) scheme capable of accurately and 

efficiently solving transient multi-dimensional heat 

conduction problems in composite and heterogeneous 

media is formulated and implemented. While the 

LRC Meshless method lends its inherent advantages 

of spectral convergence and ease of automation, the 

VoF scheme allows to effectively and efficiently 

simulate the location, size, and shape of cavities, 

voids, inclusions, defects, or de-attachments in the 

conducting media without the need to regenerate 

point distributions, boundaries, or interpolation 

matrices. To this end, the Inverse Geometric problem 

of Cavity Detection can be formulated as an 

optimization problem that minimizes an objective 

function that computes the deviation of measured 

temperatures at accessible locations to those 

generated by the LRC-VoF Meshless method. The 

LRC-VoF Meshless algorithms will be driven by an 

optimization code based on the Simplex Linear 

Programming algorithm which can efficiently search 

for the optimal set of design parameters (location, 

size, shape, etc.) within a predefined design space. 

Initial guesses to the search algorithm will be 

provided by the classical 1D semi-infinite composite 

analytical solution which can predict the approximate 

location of the cavity. The LRC-VoF formulation is 

tested and validated through a series of controlled 

numerical experiments. The proposed approach will 

allow solving the onerous computational inverse 

geometric problem in a very efficient and robust 

manner while affording its implementation in modest 

computational platforms, thereby realizing the 

disruptive potential of the proposed multi-

dimensional high-fidelity non-destructive evaluation 

(NDE) method. 

 

NOMENCLATURE 
T [K] Temperature 

c [J/KgK] Specific heat capacity 

q  [W/m2] Heat flux 

k [W/mK] Thermal conductivity 

e [J/m2Ks1/2] Thermal effusivity 

  [kg/m3] Density 

x, y, z [m] Cartesian coordinates 

ˆ
j


 [-] Boundary condition coefficients 

j
  [-] RBF expansion coefficients 

( )
j

x  [-] Radial-basis functions (RBF) 

( )
j

r x  [m] Euclidean distance from x to xj 

d [m] RBF shape parameter 

c
x  [m] Topology data center 

 L  [-] Derivative interpolation vector 

s  [-] Volume-of-Fluid (VoF) parameter 

( )S z  [-] Objective function 

m
N  [-] Number of measurements 

r
N  [-] Number of cluster rays 
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INTRODUCTION 

In 2010, the Federal Highway Administration 

estimated that 89.5% ($12.8 billion) [1] of the total 

capital outlay for bridges in the U.S. was applied to 

replacement or rehabilitation. As the large proportion 

of the nation’s bridge inventory constructed between 

1950 and 1970 continues to age, with one-half of all 

bridges in the U.S. constructed before 1964 [2], the 

total spending required to maintain the functionality 

of our nation’s bridge infrastructure has increased an 

average of 7.3% per year between 2000 and 2008 [1]. 

For over three decades, considerable research has 

been conducted in the field of strengthening existing 

reinforced concrete (RC) structures with fiber-

reinforced polymer (FRP) composite materials [3]. 

This research has resulted in design standards and 

specifications that engineers can apply to achieve a 

wide variety of strengthening objectives [4]-[6], such 

as increasing the shear and flexural capacity of 

reinforced concrete (RC) members and providing 

additional confinement for RC columns. A primary 

advantage of external strengthening with FRP 

composites is the on-site flexibility that is afforded 

by these materials (Figure 1). Reinforced concrete 

strengthening applications often utilize the wet lay-up 

method, which involves saturating dry fibers on-site 

with a polymer matrix material (typically epoxy) and 

applying the wetted composite directly to the 

concrete surface. Mechanical and chemical bond is 

established between the concrete and the composite 

during curing and stresses are transferred from the 

concrete to the composite via shear through the 

bondline as the structure is loaded. 

The flexibility afforded by the wet lay-up method 

also makes these systems vulnerable to installation 

defects. The extent to which installation defects 

manifest as long-term durability concerns is not well 

understood, and there is no universally accepted non-

destructive evaluation method for monitoring the 

long-term health and durability of these systems in 

the field. Thermal imaging techniques have shown 

great promise for identifying the presence/absence of 

defects in a qualitative sense [7]-[9]. Quantitative 

methods have also been employed in laboratory 

settings to demonstrate the potential for defect 

characterization [10]-[11]. There is a great need, 

however, for a rapid, robust method for fully 
characterizing the location, size, depth, and material 

composition of any anomalies that are encountered 

during an infrared thermography inspection.  

Figure 1 represents a typical FRP strengthening 

application for an interstate overpass that was 

damaged in a collision with an over-height vehicle 

outside of Jacksonville, Florida. The qualitative 

thermal images indicated numerous installation 

defects, but, without employing more rigorous 

quantitative methods to characterize the nature of the 

anomalies, it is impossible to determine the 

underlying cause of the defects or their potential 

impact on the long-term efficacy of the repair. The 

proposed research will lay the foundation for new 

research thrusts in the area of FRP durability in civil 

infrastructure applications. A rapidly deployable 

method that provides a comprehensive description of 

the nature of encountered defects is the first step 

towards advancing materials processing techniques to 

minimize the occurrence of defects in the first place. 

For systems that are currently in-service, the 

proposed research will lead to more effective means 

for structural health monitoring and ensuring that 

installed systems perform as expected. 

 

 
 (a) (b) (c) 

Figure 1 Application of FRP composite to strengthen 

existing interstate overpass. a) Workers applying 

carbon-fiber composite. b) Completed project. c) 

Qualitative thermal imaging results obtained during 

non-destructive evaluation. 

 

Within the family of inverse heat transfer 

problems [12], the inverse geometric problem finds 

its application in the nondestructive evaluation of 

subsurface flaws and cavities. Here, the governing 

equation, the thermophysical properties, the initial 

condition, the boundary conditions, and the portion of 

the geometry which is exposed, are all known. 

However, the portion of the problem geometry that is 

hidden from view is unknown and to be determined 

with the help of an overspecified (Cauchy) condition 

at the exposed surface; see Figure 2. Specifically, the 

surface temperature and heat flux are given at the 

exposed surface and the geometry of the cavity(ies) 

that generated the measured temperature footprint is 

to be determined. The boundary condition at the 

cavity side is specified as either homogeneous or 

nonhomogeneous first, second, or third kind of 

boundary condition. Solution of the inverse 

geometric problem can be undertaken by considering 

either the transient or steady-state thermal response 

of the system subjected to a thermal load. 

Consequently, there are two general categories of 

techniques for the solution of the inverse geometric 

problem: transient based (also known as thermal 

wave imaging methods) [13]-[14] and steady-state 

based (also known as infrared computerized axial 

tomography, IR CAT) [15]. In the case of the steady-
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state inverse geometric problem Ramm [16] 

demonstrates mathematically that the solution is 

unique for media with constant thermal conductivity. 

The inverse geometric problem, which has been 

solved by a variety of numerical methods [17], and 

its closely related shape optimization problem [18], 

are arguably the most computationally intensive of all 

inverse heat transfer problems. This is due to their 

inherent nature, regardless of whether a numerical or 

analytical approach is taken to solve the associated 

direct problem, which requires a complete 

regeneration of the mesh as the geometry evolves. 

Moreover, the continuous evolution of the geometry 

itself poses certain difficulties in arriving at analytical 

or numerical sensitivity coefficients [19]-[20] for 

gradient-based optimization approaches and in the 

updates of the subsurface geometry(ies) and 

associated mesh(es), particularly in three dimensions, 

whether using domain-meshing methods such as 

finite-element or finite-volume methods, or 

boundary-meshing methods such as boundary 

elements [21]-[22], which have been developed 

extensively by the co-authors Divo and Kassab along 

with their research team [23].  

                                    

 
Figure 2 Problem setup using IR scanner to measure 

thermal footprint at the exposed boundary. 

 

An efficient approach was introduced by Divo and 

Kassab [24] where singularity clusters were 

employed in a boundary element method (BEM) heat 

conduction formulation to simulate the presence of 

subsurface cavities in 2D and 3D geometries. The 

efficiency of this approach comes from the fact that 

the problem geometry does not need to be 

regenerated during the search process. Instead, the 

search is performed for the location, distribution, and 

strength of singularity clusters that act as voids 

within the medium. This allowed for accurate and 

efficient identification of subsurface cavities without 

the need of regenerating geometries or BEM 

interpolation matrices. This technique was later 

extended by Ojeda, Divo, and Kassab [25] for 

biomechanical applications of cavity detection in 

cortical bones. In this case, the deformation field 

difference with respect to a measured field at the 

exposed boundaries was minimized by using an 

elastostatics BEM code and employing a variety of 

differently shaped anchored grid patterns (AGP) that 

adapt to the shape of the internal cavity using the 

efficient singularity superposition idea.   

While finite-element methods (FEM), finite-

volume methods (FVM), and boundary-element 

methods (BEM) have been developed to a mature 

stage such that they are now utilized routinely to 

model complex multi-physics problems, they require 

significant effort in mesh generation and problem 

setup. Meshless methods are a relative newcomer to 

the field of computational methods, and the term 

“Meshless Methods” refers to the class of numerical 

techniques that rely on either global or localized 

interpolation on non-ordered spatial point 

distributions. As such, there has been much interest 

in the development of these techniques as they have 

the hope of reducing the effort devoted to model 

preparation [26]-[28]. The approach finds its origin in 

classical spectral or pseudo-spectral methods [29]-

[30] that are based on global orthogonal functions 

such as Legendre or Chebyshev polynomials 

requiring a regular nodal point distribution. In 

contrast, Meshless methods use a nodal or point 

distribution that is not required to be uniform or 

regular due to the fact that most such techniques rely 

on global radial-basis functions (RBF) [31]-[34]. 

RBF have proved quite successful in their application 

to an earlier mesh-reduction method, namely the dual 

reciprocity boundary element method (DRBEM). 

However, global RBF-based Meshless methods have 

some drawbacks, including poor conditioning of the 

ensuing algebraic set of equations, which can be 

addressed to some extent by domain decomposition 

and appropriate pre-conditioning [35]-[37]. 

Moreover, care must be taken in the evaluation of 

derivatives in global RBF-based Meshless methods. 

Although very promising, these techniques can also 

be computationally intensive. Recently, localized 

collocation Meshless methods [38] have been 

proposed to address many of the issues posed by 

global RBF Meshless methods. 

In a series of recent publications [39]-[43], Divo, 

Kassab, and their group have developed a Localized 

Collocation Meshless Method (LCMM) based on 

Radial-Basis Function (RBF) interpolation for 

modeling of coupled viscous fluid flow, heat transfer 

problems, and fluid-structure interaction problems. 

The LCMM features Hardy Multiquadrics RBF 

augmented by polynomial expansions over a local 

topology of points for the sought-after unknowns 

with an efficient formulation for computing the 

interpolations in terms of vector products. This 

approach is applicable to explicit or implicit time 

marching schemes as well as steady-state iterative 

methods. The LCMM technique lends itself very well 

to parallel computations and has been shown to be 
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computationally more efficient than a comparative 

finite volume method (FVM) code whilst affording 

the distinct advantage of solving the partial 

differential conservation field equations of fluid flow 

and heat transfer on a non-ordered set of points. The 

method has been extensively verified against 

benchmarks and validated finite volume codes for 

several cases. This technique has been implemented 

in the solution of inverse heat transfer problems [44] 

as well as shape optimization problems [45]. An 

alternative approach to the cavity detection problem 
using Meshless methods was proposed by 

Karageorghis et al [46] by formulating a moving 
pseudo-boundary method of fundamental solutions to 

detect voids and boundary locations.  
The need arises for an efficient technique that 

avoids the implicit requirement of performing 

completely new solutions as the geometry is sought 

while offering the possibility for automation and the 

robustness of predicting the location, size, and shape 

of cavities, voids, inclusions, defects, or de-

attachments within the conducting media.  

 

THE LOCALIZED RBF COLLOCATION (LRC) 

MESHLESS METHOD 

The Meshless formulation begins by defining a set 

of data centers, NC, comprised of points on the 

boundary, NB, and points on the interior, NI. These 

data centers will serve as collocation points for the 

localized expansion of the different field variables in 

the domain, , and on the boundary, , see Figure 3. 

The essential difference between boundary points and 

internal points is simply that boundary conditions 

will be applied at the first while governing equations 

will be applied at the last. 

 

 
Figure 3 Scattered point distribution in a 

generalized domain 
         

To illustrate the Meshless formulation the 

diffusion equation for the temperature, T , in a 

generalized coordinate system, x , and time, t , will 

be taken into consideration as the governing equation 

valid in the domain,  , with constant conductivity, 

k , density,  , and specific heat capacity, c , as: 

2
( , ) ( , )

T k
x t T x t

t c


 


    (1) 

In addition, a set of generalized boundary conditions 

on the boundary,  , are given by: 

1 2 3
ˆ ˆ ˆT

T
n

  


 


    (2) 

Where 
1 2 3

ˆ ˆ ˆ, , and    are imposed coefficients of 

( , )x t  that dictate the boundary condition type and 

constraint values. A linear localized expansion over a 

group or topology of influence points, NF, around 

each data center is sought such that: 

1 1

( ) ( ) ( )

NF NP

j j j NF j

j j

T x x P x  


 

     (3) 

The terms 
j

  represent the unknown expansion 

coefficients while the terms ( )
j

x  are expansion 

functions defined a-priori. While NP is a number of 

additional polynomial functions, ( )
j

P x , added to the 

expansion to guarantee that constant and linear fields 

can be retrieved by the expansion exactly. Notice that 

the time dependency has been dropped as a different 

expansion will be performed for each time level and, 

therefore, the expansion coefficients, 
j

 , will vary 

as time progresses. The time dependency of the 

expansion coefficients, 
j

 , is implicit as these are 

not explicitly computed as time progresses but 

instead algebraic manipulations of the expansion 

allow to express the derivative fields directly in terms 

of the field variable values within the influence 

topology, as it will be shown later. The expansion 

functions ( )
j

x  are selected as the Inverse Hardy 

Multiquadrics Radial-basis functions (RBF), defined 

as: 
1

2 2
( )

( ) 1
j

j

r x
x

d




  
   
   

   (4) 

Here, the term ( )
j

r x  is the Euclidean distance 

from any point x  to an expansion point 
j

x , while 

the term d  is a shape parameter. The larger this 

shape parameter d  the flatter the expansion function 

becomes and therefore the derivative field becomes 

smoother. However, the value of the shape parameter 

d  cannot be increased indefinitely as the resulting 

coefficient matrix from the collocation process 

becomes ill-conditioned. A simple search process is 

performed to determine the optimal value of this 

shape parameter d  for each localized expansion. The 

behavior of this RBF expansion function has been 

widely studied in the literature [32]-[37].   



Boundary data center

Internal data center


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The selection of an influence region or localized 

topology of expansion around each data center is 

easily accomplished by a circular (spherical in 3D) 

search around each data center. The search is 

automated to guarantee that a minimum number of 

points is included and additional criteria, such as 

including all directions around internal data centers, 

are met. In addition, this search must guarantee that 

topologies around boundary data centers do not 

include opposing boundaries or points around a re-

entry corner. Figure 4 shows a typical collocation 

topology for a non-uniform point distribution. 

 
Figure 4 Collocation topology selection on a non-

uniform point distribution. 

 
The collocation of the known temperature field 

(from previous time level or iteration step) at the 

points within the localized topology, can be 

expressed in matrix-vector form as: { } [ ]{ }T C  , 

and, therefore, the expansion coefficients can be 

determined as: 
1

{ } [ ] { }C T


 . Where the 

resulting collocation matrix is given by: 

1 1 1 1 1 1

1 1

1 1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
[ ]

( ) ( ) 0 0

( ) ( ) 0 0

N F N P

N F N F N F N F N P N F

N F

N P N P N F

x x P x P x

x x P x P x
C

P x P x

P x P x

 

 

 

 

 

 
  

 

 

 
  

 (5)  

And the right-hand side known vector is augmented 

as: 

      1 1,
... 0 ...0

T

NF NF NP
T T x T x


   (6) 

Note that the polynomial-augmented matrix in Eqn. 

(5) guarantees constant and linear (or as high as the 

polynomial order employed) temperature fields to be 

expanded exactly. The augmentation of the 

temperature vector in Eqn. (6) with values of zero 

does not indicate zero temperatures but rather the 

dimensional consistency with the expansion matrix.      

The real advantage of the localized collocation 

approach is capitalized in the way the derivatives of 

the field variable are calculated at the data center, 
c

x

of each topology. For instance, any linear differential 

operator, L , can be applied over the localized 

expansion equation as: 

1 1

( ) ( ) ( )

NF NP

c j j c j NF j c

j j

LT x L x LP x  


 

     (7)

 

Or, in matrix-vector form: { } { }
T

c c
LT L  , where 

the derivative expansion vector  c
L  is given as: 

 
 

     

1

1

...

...

T

c

c

NF c c NP c

L x
L

L x LP x LP x





  
  
  

 (8)  

Substitution of the expansion coefficients, { } , 

leads to: 1
{ } [ ] { }

T

c c
LT L C T


 , and defining the 

derivative interpolation vector  L  as: 

1
{ } { } [ ]

T T

c
L L C


     (9) 

Leads to the final expression: 

{ } { }
T

c
LT L T     (10) 

The coefficients of the derivative interpolation 

vector { }L  of size ( ,1)NF  directly retrieve the 

value of the derivative of the temperature field { }T  

at the data center of the topology 
c

x . Therefore, 

evaluation of the temperature derivatives at each of 

the data centers 
c

x   is provided by a simple inner 

product of two small vectors: { }L  which can be pre-

built and stored at a setup stage of the problem as it is 

only dependent on geometry and point distribution, 

and { }T , which is the updated temperature field in 

the topology of the data center. 

       Furthermore, imposition of the generalized 

boundary conditions in Eqn. (2), at the boundary data 

centers, 
c

x , can be accomplished in a similar 

fashion. To aid the boundary interpolation an 

additional set of internal points that “shadow” each 

boundary point in the direction of the normal vector 

into the domain, as seen in Figure 5, are included in 

the point distribution and used to directly 

approximate the normal derivatives at each boundary 

data center.  

 

 
Figure 5 Distribution of internal shadow points to 

compute normal derivatives. 

re

xc

nj

j

Boundary Point

Internal Shadow Point

Internal Point
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This localized expansion approach reduces the 

burden of the more common global interpolation 

methods [35] by expanding the field variable locally 

around each data center to obtain its derivatives that 

are then used in time-marching or iterative schemes. 

This approach yields the generation of multiple but 

small derivative interpolation vectors that can be pre-

built and stored at a setup stage of the problem as 

they are only dependent on geometry and point 

distribution. Additional interpolation vectors for 

Moving Least-Square (MLS) smoothing and 

Upwinding schemes can be pre-computed and stored 

in an analogous fashion, see [40]-[43]. 

 
THE VOLUME-OF-FLUID (VOF) METHOD 

The Volume-of-Fluid (VoF) method was 

introduced by Hirt and Nichols [47] to approximate 

the behavior of two-phase non-mixing fluid flow 

problems by implicitly tracing the interface between 

the two dissimilar fluids through the transport of a 

continuous variable s  that quantifies the content of 

one of the fluids ( 1)s  (and absence of the other 

one) or the absence of this fluid ( 0)s   (and 

content of the other one) as: 

  0
s

V s
t


  



    (11) 

Therefore, the VoF parameter s  is used to post-

determine the location of the interface between the 

two phases, ( 0.5)s  . This approach offers the great 

advantage that a two-phase flow problem can be 

modeled in a single domain through a single set of 

governing equations while the VoF parameter s  is 

used as a weighting factor for the thermo-physical 

properties of the two fluids as, for instance, in the 

case of the thermal conductivities 
1

k  and 
2

k : 

 
1 2

1k s k sk       (12) 

One of the premises of this research is that the 

presence of a cavity within a thermally conducting 

medium can be simulated and approximated using a 

static version of the VoF method, where the 

parameter s  is not transported through the static 

field 0V   but simply fixed at a value 0s   at the 

hypothetical location of the cavity and 1s   

elsewhere. And, therefore, there is no need to model 

the actual geometry of the cavity.  

 

NUMERICAL IMPLEMENTATION  
      To illustrate this approach, the LRC Meshless 

method coupled with the VoF method is tested in a 

composite domain made of a (1 1m m ) Concrete 

block ( 3
2300 /kg m  , 880 /c J kgK  and 

1.4 /k W mK ) with an attached ( 0.1 1m m ) 

epoxy layer ( 3
1000 /kg m  , 1000 /c J kgK , 

and 14 /k W mK ) with perfect thermal contact. 

The composite domain is at an initial temperature 

20
i

T C   and heated with a constant heat flux 

2

0
1000 /q W m  through the exposed epoxy wall 

while insulated elsewhere. A uniform LRC Meshless 

point distribution with 0.01x y m     was 

employed to model this problem as shown in Figure 6 

along with the resulting temperature field after 1000s 

of heating. 

 

Figure 6 Meshless point distribution and resulting 

temperature field after 1000s of heating 

Furthermore, a cavity is modeled by a  

 0.01 0.2m m  sliver centered at the contact mid-

point of the composite. In order to simulate this 

cavity using the VoF approach, the LRC Meshless 

points at the location of the expected cavity were 

imposed with a VoF parameter 0s  , while a value 

of 1s   was imposed elsewhere. The VoF 

parameter s  essentially weights the thermo-physical 

properties of the epoxy with those of Air 

 3
1.2 / ,kg m   1000 / ,c J kgK  and 

0.05 /k W mK  which acts as an almost perfect 
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insulator ( ~ 0k ) but capable of diffusing energy 

 /k c  better than the epoxy. The resulting LRC 

Meshless temperature field after 1000s of heating is 

shown in  Figure 7 for the case of (a) the actual 

cavity and (b) the VoF-simulated cavity. Notice that 

the temperature footprint provided by the VoF-

simulated cavity is qualitatively very similar to that 

provided by the actual cavity. This feature is revealed 

in more detail in Figure 8 where the temperature 

profiles at the exposed wall are compared after 1000s 

of heating. Notice that the profiles are in very close 

agreement, demonstrating the capacity of the VoF 

method to simulate not only the presence of a cavity 

but also its location, size, and shape, as these features 

are captured by the cluster of LRC Meshless points 

that were imposed with the VoF parameter 0s  . 

Figure 8 also shows the constant temperature profile 

produced by the attached domain (or composite in 

perfect thermal contact), revealing that there is 

sufficient sensitivity ( ~ 2 C ) to detect the thermal 

footprint produced by a de-attachment or cavity by 

standard measurement techniques such as infrared 

(IR) thermography. 

 

  
 Figure 7 LRC Meshless temperature field after 

1000s of heating. (a) Actual cavity and (b) VoF-

simulated cavity. 

 

 
Figure 8 Temperature distribution on left-hand 

side wall after t=1000s of heating. 

 
THE INVERSE PROBLEM FORMULATION 

The inverse problem of determining the location, 

size, and shape of the cavity may be formulated as an 

optimization problem whose objective is to minimize 

a function that computes the standard deviation 

between the LRC-VoF-computed temperatures 
i

T  at 

the exposed boundaries and the temperatures 

acquired through IR measurements ˆ
i

T . This can be 

expressed as a least-squares function over a finite 

number of measurement locations
m

N , or: 

   
2

1

1 ˆ
mN

i i

im

S z T z T
N 

  
    (13) 

The measurement locations may be fixed or 

movable throughout the solution process. The 

solution may also be expected to be sensitive to the 

location and number 
m

N  of measurements. A full 

sensitivity analysis will be performed in a follow-up 

work to optimize the number and location of such 

measurements. The objective function S  depends on 

a number of geometric parameters z  that define the 

location, size, and shape of the cluster of LRC 

Meshless points that are imposed with a VoF value 

0s  , i.e. a simulated cavity. For instance, in 2D, 

the cluster may be generally defined by an anchored 

Cubic spline set centered at ( , )
o o

x y  with a number 

of rays 
r

N  each extending a distance 
i

r  from the 

center, expressed in polar coordinates as: 
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     (14)     
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Where 
i

M  is the value of the second derivative of 

the spline at the node i , and 
i

  is the angular 

spread of each spline, i.e. / 4
i

    for 8
r

N  . 

Requiring that the first and second derivatives are 

continuous at all nodes of the spline set results in a 

simple 8-dof tri-diagonal system for the values of 
i

M  

A sample anchored Cubic spline set is shown in 

Figure 9 for 8
r

N  . All the LRC Meshless points 

that lie within the resulting anchored Cubic spline set 

will then be imposed with a VoF parameter value of 

0s  . 

 

 
Figure 9 Anchored Cubic spline set for 8

r
N 

 
 

Therefore, the parameters z  in the objective 

function are the coordinates of the center and the size 

i
r  of the N  rays of the cubic (in 2D) or bi-Cubic (in 

3D) spline set. The minimization of the objective 

function ( )S z  may be accomplished by a non-

gradient based method such as Nelder and Mead’s 

linear programming Simplex search method [48]. The 

simplex method is defined by the number of 

unknown parameters that are of interest. The 

“Simplex” is a geometrical figure with 1N   points 

and N  dimensions, where N  is the number of 

parameters. For example, in a 2-dof problem the 

Simplex is a triangle, and in a 3-dof problem the 

simplex is a tetrahedron. As for the solution marching 

logic, the Simplex can be manipulated by expansion, 

contraction, and reflection. These three tools are 

utilized to move the solution with the highest error 

around the solutions of low error to find a new 

minimum. In essence, the Simplex is moved in a 

downhill manner until a tolerance between solutions 

is reached. The current work attempts to establish the 

feasibility of the Simplex search process aided by the 

LRC-VoF scheme. To this end, the computational 

framework was established however, its 

implementation is currently under way. A follow-up 

work will include full detail about the numerical 

implementation of the Simplex search method 

including the convergence or stopping criteria.   

The Simplex search process may be aided by a 

good initial guess provided by the classical 1D 

temperature distribution solution. For instance, for 

the case of the composite domain studied in the 

previous section, the 1D temperature evolution at the 

heated wall of a finite layer of length L  and 

properties 
0

k , 
0

 , and 
0

c , attached to a semi-

infinite substrate with properties 
1

k , 
1

 , and 
1

c  is 

given by (recall that the thermal diffusivity 

/k c   and the thermal effusivity e k c ): 
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  (15)  

To predict the temperature response produced by 

a de-attachment, the properties of the substrate 

material index 1 can be substituted for those of air 

(for example). The temperature responses for the 

problem described in the previous section with 
2

0
1000 /q W m are shown in Figure 10. Here, the 

transient response at the center point of the heated 

wall ( 0.5y m ) provided by the LRC Meshless 

solution with the actual cavity and the VoF-simulated 

cavity are shown in comparison with the temperature 

response provided by the 1D solution in Eqn. (15). 

Notice that the 1D solution tends to under-predict the 

actual temperature response due to its inability to 

factor in the actual size of the de-attachment. 

 

 
Figure 10 Temperature response at the mid-point of 

the heated wall provided by the LRC-VoF Meshless 

and the 1D solutions. 
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CONCLUSIONS 
A novel computational tool based on the 

Localized Radial-basis Function (RBF) Collocation 

(LRC) Meshless method coupled with a Volume-of-

Fluid (VoF) scheme capable of accurately and 

efficiently solving transient multi-dimensional heat 

conduction problems in composite and heterogeneous 

media is formulated and implemented. While the 

LRC Meshless method lends its inherent advantages 

of spectral convergence and ease of automation, the 

VoF scheme allows to effectively and efficiently 

simulate the location, size, and shape of cavities, 

voids, inclusions, defects, or de-attachments in the 

conducting media without the need to regenerate 

point distributions, boundaries, or interpolation 

matrices. To this end, the Inverse Geometric problem 

of Cavity Detection is formulated as an optimization 

problem that minimizes an objective function that 

computes the deviation of measured temperatures at 

accessible locations to those generated by the LRC-

VoF Meshless method. The LRC-VoF Meshless 

algorithms is driven by an optimization code based 

on the Simplex Linear Programming algorithm which 

can efficiently search for the optimal set of design 

parameters (location, size, shape, etc.) within a 

predefined design space. Initial guesses to the search 

algorithm are provided by the classical 1D semi-

infinite composite analytical solution which can 

predict the approximate location of the cavity. The 

LRC-VoF formulation is tested using numerical 

experiments that reveal a high degree of accuracy and 

serve to validate the approach.   
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