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Abstract

One-dimensional models are important for developing, demonstrating and

testing new methods and approaches, which can be extended to more complex

systems. We design for a linear delay differential equation a reliable numerical

method, which consists of two time splits as follows: (a) It is an exact scheme at

the early time evolution −τ ≤ t ≤ τ, where τ is the discrete value of the delay;

(b) Thereafter, it is a nonstandard finite difference (NSFD) scheme obtained by

suitable discretizations at the backtrack points. It is shown theoretically and

computationally that the NSFD scheme is dynamically consistent with respect

to the asymptotic stability of the trivial equilibrium solution of the continuous

model. Extension of the NSFD to nonlinear epidemiological models and its good

performance are tested on a numerical example.
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1 Introduction

Delay differential equations are extensively used in the modeling of biological systems,

specifically in the epidemiology of infectious diseases [3, 7, 11]. One of the popular

approaches in the study of the qualitative behaviour of such models is their linearization

about the equilibria [3, 10, 11, 18, 19]. As a motivation, we consider the logistic

delay model that arises in the modeling of communicable diseases [11], including the

transmission dynamics of gonorrhea in a homosexually active population, [6]. In the

latter specific case, the model is given by

I ′(t) = β

(
1− 1

R0

)
I(t)

(
1− I(t− τ)

N(1− 1
R0

)

)
, (1)

where β is the contact rate, R0 the basic reproduction number, N the total population;

τ , is here and after the delay in infectivity. It is evident from (1) that when R0 ≤ 1,

the only equilibrium is the disease free equilibrium (DFE), I∗ = 0. However, if R0 > 1,

in addition to the DFE, there is an endemic equilibrium (EE), I∗∗ = N(1 − 1
R0

).

Linearizing (1) about the equilibria I∗ and I∗∗, we have

I ′(t) = β

(
1− 1

R0

)
I(t) and

X ′(t) = −β
(
1− 1

R0

)
X(t− τ), X(t) = I(t)−N(1− 1

R0

),

(2)

respectively. More generally, if the spread of a disease is modeled by a system of delay

differential equations, such as in [10, 18, 19], then linearization about the equilibrium

points, with the Jacobian matrix assumed to be diagonizable, leads to linearized delay

differential equations of the type in (2). Thus, the general setting of this work is a

linear delay differential equation (LDDE),

x′(t) = Ax(t) +Bx(t− τ) + f(t) t > 0,

x(t) = ϕ(t) t ∈ [−τ, 0],
(3)

where A and B are constants, while f : [0,+∞) → R and ϕ : [−τ, 0] → R are

continuous functions, with ϕ being the initial function.

The well-posedness of LDDE (3) can be stated as follows [9]:

Theorem 1. Under the assumptions stated above, there exists a unique continuously

differentiable function x : [−τ,+∞) → R which solves LDDE (3). The solution is

represented by the Volterra integral equation

x(t) = ϕ(t), t ∈ [−τ, 0],

x(t) = eAtϕ(0) +

∫ t

0

eA(t−s)[Bx(s− τ) + f(s)]ds, t ≥ 0.
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Regarding the qualitative feature of (3), we consider the homogeneous equation

x′(t) = Ax(t) +Bx(t− τ), (4)

in which we assume without loss of generality that A + B ̸= 0 so that x = 0 is

the only equilibrium point of (4). The characteristic equation of (4) is the following

transcendental function of the complex argument λ:

λ− A−Be−λτ = 0. (5)

We have the following stability result ([5], Theorem 13.8):

Theorem 2. The equilibrium x = 0 is asymptotically stable, or equivalently, all roots

of (5) have their real parts strictly less than zero if, and only if, the following two

conditions hold:

(a) A < 1/τ ;

(b) A < −B <
√
(a1/τ)2 + A2 where a1 is the root of the equation a = A tan a with

0 < a1 < π, a ∈ R, on the understanding that a1 = π/2 if A = 0.

In the absence of delay (τ = 0) and if f ≡ 0, Equation LDDE (3) reduces to

x′(t) = (A+B)x(t), (6)

Equation (6) is the well-known exponential equation, which is of paramount importance

from both the theoretical and numerical analysis point of view in the study of dynamical

systems, without delay, of the form

x′(t) = g(x), g(0) = 0. (7)

The relevance of (6) from the constructive point of view hinges on the explicit and

implicit knowledge of its exact scheme, which is [17],

xn+1 − xn
(exp[(A+B)∆t]− 1)/(A+B)

= (A+B)xn, (8)

or

xn+1 − xn
[1− exp(−(A+B)∆t)]/(A+B)

= (A+B)xn+1, (9)

where xn denotes here and after an approximation of the solution x(t) at the discrete

time tn = n∆t, n = 0, 1, 2, . . ., ∆t being the time step size. Most reliable nonstandard

finite difference (NSFD) schemes for Equation (7) are designed on the basis of the exact

scheme (8) or (9), assuming that (6) is the linearized equation of (7) about the trivial

equilibrium.

3



The purpose of this work is to design reliable NSFD schemes for LDDE (3). The

ideal situation is to produce its exact scheme. According to Theorem 1.1 in [17], an ex-

act scheme is readily determined once the solution of the continuous differential model

is known. However, this theorem does not apply here because the second formula in

Theorem 1 is an integral equation, which therefore does not give the solution explic-

itly. A further complication with the numerical approximation of the delay differential

equation (3), already observed in the literature [4], is that the backtrack points (tn−τ),
n ≥ 0, do not in general coincide with the grid points. To overcome these difficulties,

we use the following time splitting strategy:

(a) We design an exact scheme of (3) for early times t ∈ [−τ, τ ];

(b) When t > τ, we switch to the construction of a NSFD scheme.

This leads to the combined exact and θ-NSFD schemes below in which x̃n is a suit-
able approximation of the solution at the backtrack points and ψ(∆t) is a complex
denominator function to be specified shortly:

xn+1 − xn
ψ(∆t)

=



Axn + 1
ψ(∆t)

∫ tn+1

tn
eA(tn+1−s)(Bϕ(s− τ) + f(s))ds, if tn+1 ≤ τ,

Axn +Bϕ(tn − τ) + f(tn), if tn ≤ τ < tn+1,

A [(1− θ)xn + θxn+1] +B [(1− θ)x̃n + θx̃n+1] + f(tn), if tn > τ.

(10)

To the authors’ best knowledge, exact schemes have never been constructed for delay differential

equations, while the design and implementation of NSFD schemes for such problems are not well

developed.

The rest of the paper is organized as follows. In the next section, we give details on the construction

of the NSFD scheme (10), while Section 3 is devoted to its dynamic consistency. Numerical simulations

that support the theory are presented in Section 4. In anticipation to our future work announced in

the concluding Section 5, the numerics in Section 4 are enriched with the logistic delay model on which

it is shown how reliable NSFD schemes can be constructed for nonlinear epidemiological models with

delay.

2 Combined Exact and Theta-NSFD Schemes

Let x(t) be the unique solution of equation (3) given in Theorem 1. Considering the second equation

at the discrete times tn+1 = (n+ 1)∆t and tn = n∆t, we have

x(tn+1)− x(tn) = eAtn(eA∆t − 1)ϕ(0) +

∫ tn

0

(eA∆t − 1)eA(tn−s)[Bx(s− τ) + f(s)]ds

+

∫ tn+1

tn

eA(tn−s)eA∆t[Bx(s− τ) + f(s)]ds.

(11)

Hence,

x(tn+1)− x(tn)
(eA∆t−1)

A

= A

[
eAtnϕ(0) +

∫ tn

0

eA(tn−s)(Bx(s− τ) + f(s))ds

]
+

AeA∆t

(eA∆t − 1)

∫ tn+1

tn

eA(tn−s)(Bx(s− τ) + f(s))ds.

(12)
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By using again the second equation in Theorem 1, Equation (12) becomes

x(tn+1)− x(tn)

ψ1(∆t)
= Ax(tn) +

1

ψ1(∆t)

∫ tn+1

tn

eA(tn+1−s)(Bx(s− τ) + f(s))ds, (13)

where,

ψ1(∆t) =
eA∆t − 1

A
= ∆t+O(∆t2). (14)

It follows, by applying the mean-value theorem to the integral in (13), that there exists sn ∈ [tn, tn+1]

such that

1

ψ1(∆t)

∫ tn+1

tn

eA(tn+1−s)(Bx(s− τ) + f(s))ds = [Bx(sn − τ)

+ f(sn)]
1

ψ1(∆t)

∫ tn+1

tn

eA(tn+1−s)ds,

= Bx(sn − r) + f(sn).

(15)

We consider three different cases regarding the time intervals.

Case 1: Suppose that tn+1 ≤ τ . Then s− τ ≤ tn+1 − τ ≤ 0 for s ∈ [tn, tn+1].

It follows from the first equation in Theorem 1 that Equation (13) reduces to the exact scheme:

x(tn+1)− x(tn)

ψ1(∆t)
= Ax(tn) +

1

ψ1(∆t)

∫ tn+1

tn

eA(tn+1−s)(Bϕ(s− τ) + f(s))ds. (16)

Case 2: Suppose that tn+1 > τ ≥ tn. In this case, the initial condition (given by the first equation

of Theorem 1) can be used to show that x(tn − τ) = ϕ(tn − τ).

Case 3: Suppose that tn > τ . In this case, the backtrack point tn − τ does not necessarily coincide

with a discrete time. Let n∗ be the positive integer such that tn∗ ≤ tn − τ < tn∗+1. We consider

P (t) = xn∗+1

(
t− tn∗

∆t

)
− xn∗

(
t− tn∗+1

∆t

)
, (17)

the Lagrange interpolation polynomial of degree one at the points (tn∗ , xn∗) and

(tn∗+1, xn∗+1). We approximate x(tn − τ) as follows (see Figure 1):

x(tn − τ) ≃ x̃n := P (tn − τ).

To make the approximation more explicit, we note that by construction, n∗ < n and n∗ is the

integer part

[
tn − τ

∆t

]
of

tn − τ

∆t
. It should further be noted that

[
tn − τ

∆t

]
= n − m − 1, where

m ≡ m∆t =
[ τ
∆t

]
. Setting u =

(m+ 1)∆t− τ

∆t
∈ [0, 1], we have,

x̃n = xn∗+1

(
tn − τ − tn∗

∆t

)
− xn∗

(
tn − τ − tn∗+1

∆t

)
,

or,

x̃n = uxn−m + (1− u)xn−m−1. (18)

In addition to (18), we consider the following approximation of x(tn+1 − τ):

x̃n+1 = uxn−m+1 + (1− u)xn−m. (19)
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The approximation in (18) or (19) is implicit or explicit according as m = 0 or m > 0.

It follows from the above reasoning that the denominator function ψ1(∆t) appeared naturally.

However, for our numerical scheme to capture the parameter values of the continuous model (3), we

use the denominator function

ψ2(∆t) =
∆t

1 + (Q∆t)2
= ∆t+O(∆t3), (20)

where Q ≥ |A|+ |B|. Indeed, the denominator function in (20) involves the underlying parameters A

and B instead of the function ψ1(∆t) in (14) and (13). Hence, using the weighted average of (18) and

(19) through a parameter value θ ∈ [0, 1], Equation (13) is approximated by

xn+1 − xn
ψ2(∆t)

= A [(1− θ)xn + θxn+1] +B [(1− θ)x̃n + θx̃n+1] + f(tn). (21)

It can be observed that when θ = 0, 1/2 and 1, we have the nonstandard version of the forward Euler

method, trapezoidal rule and backward Euler method, respectively. To put the three cases together,

we introduce the denominator function

ψ(∆t) =

{
ψ1(∆t), in Cases 1 and 2

ψ2(∆t), in Case 3
(22)

Assume that the exact solution x(t) is smooth enough and has bounded derivatives. In (18) and (19),

let us replace xn−m+1, xn−m and xn−m−1 by the values of x(t) at tn−m+1, tn−m and tn−m−1. Observe

that

x(tn+1)− x(tn) = ∆tx′(tn) +
(∆t)2

2!
x′′(tn) + · · · .

Note that the local truncation error of (21) (i.e. the amount by which the solution of the continuous

model fails to satisfy this numerical scheme) is defined by

Tn+1 = x(tn+1)− x(tn)− ψ2(∆t)A [(1− θ)x(tn) + θx(tn+1)]

− ψ2(∆t)B [(1− θ)P (tn − τ)− θP (tn+1 − τ)]− ψ2(∆t)f(tn).
(23)

Performing the Taylor expansion of all involved functions about tn and using (20), we have established

the following result:

Theorem 3. The combined Exact-NSFD scheme

xn+1 − xn
ψ(∆t)

=



Axn + 1
ψ(∆t)

∫ tn+1

tn
eA(tn+1−s)(Bϕ(s− τ) + f(s))ds, if tn+1 ≤ τ,

Axn +Bϕ(tn − τ) + f(tn), if tn ≤ τ < tn+1,

A [(1− θ)xn + θxn+1] +B [(1− θ)x̃n + θx̃n+1] + f(tn), if tn > τ,

approximates the LDDE (3). This scheme is convergent, with global error being zero in the time

interval [−τ, τ ]. On the interval [τ,∞), the local truncation error is in O(∆t) if θ ̸= 1/2 and in

O(∆t2) if θ = 1/2.

It should be noted that the numerical method in Theorem 3 is a NSFD scheme in the sense of

[2, 17]. Indeed, the rule on the complex denominator function of the discrete derivatives and the rule

of the nonlocal approximation of right hand sides are reinforced.
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Remark 4: The NSFD theta-method was introduced in [1, 14] for reaction-diffusion equations and

general dynamical systems. In these references, other examples of denominator functions satisfying

the asymptotic relations in (14) and (20) that leads to second order convergence when θ = 1/2 are

given. When tn > τ , computations of the NSFD scheme are performed by observing that it is a linear

equation in xn+1 which has the explicit solution

xn+1 =



[1 +A(1− θ)ψ2(∆t)]xn +B(1− θ)ψ2(∆t)x̃n +Bθψ2(∆t)x̃n+1 + ψ2(∆t)f(tn)

1−Aθψ2(∆t)
,

if m > 0,

[1 +A(1− θ)ψ2(∆t) +Buθψ2(∆t)]xn +B(1− θ)ψ2(∆t)x̃n + ψ2(∆t)f(tn)

1−Aθψ2(∆t)−Bθ(1− u)ψ2(∆t)
,

if m = 0.

(24)

3 Dynamic consistency of the NSFD scheme

In this section, we show that the NSFD scheme preserves the stability property of the LDDE (4),

as stated in Theorem 2. The conditions in this theorem regarding the parameters A,B and τ are

supposed to be satisfied in what follows. The NSFD scheme under consideration for (4) is given by

(24) with f(tn) = 0, i.e.

xn+1 =


[1 +A(1− θ)ψ2(∆t)]xn +B(1− θ)ψ2(∆t)x̃n +Bθψ2(∆t)x̃n+1

1−Aθψ2(∆t)
, if m > 0,

[1 +A(1− θ)ψ2(∆t) +Buθψ2(∆t)]xn +B(1− θ)ψ2(∆t)x̃n
1−Aθψ2(∆t)−Bθ(1− u)ψ2(∆t)

, if m = 0.

(25)

It is clear that x∗ = 0 is the only fixed-point of the NSFD scheme. Thus, it preserves the unique

equilibrium point x∗ = 0. In view of (18) and (19), the characteristic equation of the difference

equation (25) is

H(λ) ≡ Hτ,∆t(λ) ≡ am+2λ
m+2 + am+1λ

m+1 + a2λ
2 + a1λ+ a0 = 0, (26)

where

am+2 = 1−Aθψ2, am+1 = −(1 +A(1− θ)ψ2), am,= · · · ,= a3 = 0,

a2 = −Bθψ2u, a1 = −[B(1− θ)ψ2u+Bθψ2(1− u)], a0 = −B(1− θ)ψ2(1− u),

if m > 0, while

a2 = 1−Aθψ2 −Bθ(1− u)ψ2, a1 = −(1 +A(1− θ)ψ2 +Bψ2u),

a0 = −B(1− θ)ψ2(1− u), if m = 0.

The stability of the fixed-point using the linear delay difference equation (25) is presented by the

following theorem:

Theorem 4. The fixed-point x∗ = 0 is asymptotically-stable for equation (25) if and only if all the

roots λ of (26) lie within the unit circle: |λ| < 1

The task ahead is to check the condition |λ| < 1 for every m. This is normally done by using the

Jury’s conditions [13]. However, this is a challenge because for fixed τ , the degree m of the polynomial

in (26) increases to ∞ as ∆t decreases to zero. Nevertheless, we have the following partial result.
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Theorem 5. For A + B < 0, the roots λ of (26) satisfy the condition |λ| < 1 for any m whenever

B > 0 or B < 0 with A < B.

Proof. Equation (26) is a special case of Volterra difference equations of convolution type in-

vestigated in [8]. According to Theorem 6.18 in this reference, the condition |λ| < 1 is satisfied

if

1

|1−Aθψ2|
[|1 + ψ2A(1− θ)|+ |ψ2B(1− θ) + ψ2Bθ|]

=
1

|1−Aθψ2|
[|1 + ψ2A(1− θ)|+ |ψ2B|] < 1.

(27)

Assume that B > 0 (so that A < 0). Then,

1

|1−Aθψ2|
[|1 + ψ2A(1− θ)|+ |ψ2B|] = 1

|1−Aθψ2|
[|1− ψ2|A|(1− θ)|+ ψ2B] ,

=
1

(1−Aθψ2)
[1− ψ2Aθ + ψ2(A+B)] ,

<
(1−Aθψ2)

(1−Aθψ2)
, since A+B < 0,

< 1.

Next, we assume that B < 0 and A < B. Then,

1

|1−Aθψ2|
[|1 + ψ2A(1− θ)|+ |ψ2B|] = 1

(1−Aθψ2)
[|1− ψ2|A|(1− θ)| − ψ2B] ,

=
1

(1−Aθψ2)
[1− ψ2|A|(1− θ)− ψ2B] ,

=
1

(1−Aθψ2)
[1 + ψ2A− ψ2Aθ − ψ2A] ,

since −B < −A,

<
(1−Aθψ2)

(1−Aθψ2)
,

< 1.

�

In view of Theorem 5, the challenge raised before this result occurs actually when A and B satisfying

the conditions in Theorem 2 are such that B < 0 and A > B. Since the theorem in [8] that was used

in the proof of Theorem 5 is not a necessary condition for |λ| < 1 to hold, we will for the case under

consideration check Theorem 4 fully for m = 0, 1, and partially for m = 2.

The case m = 0, i.e. 0 ≤ τ < ∆t

The Jury conditions for the polynomial in (26) read:

(1) H(1) > 0, H(−1) > 0.

(2) a0 − a2 < 0, a0 + a2 > 0.

By definition,

H(1) = 1− θψ2(A+B) +Bψ2θu−Bψ2θu− 1− ψ2(A+B) + θψ2(A+B),

= −ψ2(A+B) > 0, since A+B < 0.
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Similarly,

H(−1) = 2 + ψ2A− 2ψ2θA+ 2ψ2Bu− ψ2B,

= 2 + (A−B)ψ2 − 2ψ2θA+ 2ψ2Bu,

> 2− 2ψ2θA+ 2ψ2Bu, as (A−B) > 0,

> 1 + 2Bψ2θ, (−A > B),

> 1 + 2Bψ2θ

> 0, sinceψ2 <
1

−B
in view of the definition ofψ2 in (20)which implies that

ψ2 <
1

|A|+ |B|
. (28)

From condition (2) above, we have

a0 − a2 = −Bψ2 +Bψ2u+Bψ2θ −Bψ2uθ − 1 +Aθψ2 +Bψ2θ −Bψ2θu,

< −1 +B −Bψ2(u− 1) +Bψ2θ −Bψ2θ +Aθψ2 +Bψ2θ −Bψ2θ,

< −1 +Aθψ2,

< −1 +Bθψ2,

< 0, sinceB < 0.

Similarly,

a0 + a2 = −Bψ2 +Bψ2u+Bψ2θ −Bψ2uθ + 1−Aθψ2 −Bψ2θ +Bψ2θu,

= Bψ2(u− 1) + 1−Aθψ2,

> Bψ2(u− 1) + 1 +Bθψ2,

> 1 +Bψ2,

> 0 by (28).

Therefore, according to Jury’s stability conditions, when m = 0, all the roots of H(λ) lie within the

unit circle. Hence, x∗ = 0 is asymptotically stable.

The case m = 1, i.e. ∆t ≤ τ < 2∆t

The Jury conditions for the polynomial in (26) read:

H(1) > 0,

H(−1) < 0,

b0 − b2 < 0,

b0 + b2 < 0,

(29)

where,

b0 = (Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)
2 − (1−Aθψ2)

2,

b2 = (Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)(1 +Aψ2 −Aθψ2 +Bψ2θu)

+ (Bψ2u−Bψ2θu+Bψ2θ −Bψ2θu)(1−Aθψ2).

The condition (29)1 is straightforward because

H(1) = −ψ2(A+B) > 0 as A+B < 0.
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Likewise, from condition (29)2, we have,

H(−1) = −2 + 2ψ2θA− ψ2(A+B)− 4Bθψ2u+ 2Bψ2θ + 2Bψ2u,

< −2 + 2Aψ2θ − ψ2(A+B)− 2Bψ2u+ 2Bψ2u− 2Bψ2θ + 2Bψ2θ,

< −2 + 2Bψ2θ − ψ2(−B +B), (B < A,−B > A)

< −2 +Bψ2θ

< 0, (B < 0).

From the expression,

b0 − b2 = (Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)
2

− (Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)(1 +Aψ2 −Aθψ2 +Bψ2θu)

− (Bψ2u−Bψ2θu+Bψ2θ −Bψ2θu)(1−Aθψ2),

< [Bψ2θ(u− 1)]2 − [Bψ2θ(u− 1)(1 +Aψ2 −Aθψ2 +Bψ2θu)],

< Bψ2θ(u− 1)− 1−Aψ2 +Aθψ2 −Bψ2θu,

< Bψ2θ(u− 1− u)− 1−Aψ2 +Aθψ2,

< −Bψ2θ − 1−Aψ2(1− θ), ifA > 0,

< −Bψ2 − 1,

< 0, by (28).

If A < 0, then

b0 − b2 < −Bψ2θ − 1−Aψ2(1− θ),

< −Bψ2 − 1−Aψ2,

< 0, since ψ2 <
1

−(A+B)
by (28).

Similarly, from the condition (29)4,

b0 + b2 = (Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)
2

+ (Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)(1 +Aψ2 −Aθψ2 +Bψ2θu)

− (Bψ2u−Bψ2θu+Bψ2θ −Bψ2θu)(1−Aθψ2),

< [Bψ2θ(u− 1)]2 + [Bψ2θ(u− 1)(1 +Aψ2 −Aθψ2 +Bψ2θu)],

< Bψ2θ(u− 1) + 1 +Aψ2 −Aθψ2 +Bψ2θu,

= Bψ2θ(2u− 1) + 1 +Aψ2 −Aθψ2,

< Bψ2θ + 1 +Aψ2 −Bθψ2,

< 0, since ψ2 <
1

|A|
by (28).

From (29), the Jury’s stability conditions are satisfied, with m = 1, hence all the roots of H(λ) lie

within the unit circle. Therefore the equilibrium point x∗ = 0 is asymptotically stable.
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The case m = 2, i.e. 2∆t ≤ τ < 3∆t

The Jury conditions for the polynomial in (26) read:

H(1) > 0,

H(−1) > 0,

a0 − a4 < 0,

a0 + a4 > 0,

c0 − c2 > 0,

c0 + c2 > 0,

(30)

where,

c0 = b20 − b23 =
[
(Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)

2 − (1−Aθψ2)
2
]2

− [(Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)(1 +Aψ2 −Aθψ2)

+(Bψ2u−Bψ2θu+Bψ2θ −Bψ2θu)(1−Aθψ2)]
2

c2 = b0b2 − b1b3 =
[
(Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)

2 − (1−Aθψ2)
2
]

[((Bψ2 −Bψ2u−Bψ2θ +Bψ2θu) + (1−Aθψ2))Bψ2θu]

− [(Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)(Bψ2u−Bψ2θu+Bψ2θ −Bψ2θu)

+(1−Aθψ2)(1 +Aψ2 −Aθψ2)] [(Bψ2 −Bψ2u−Bψ2θ +Bψ2θu)

(1 +Aψ2 −Aθψ2) + (Bψ2u−Bψ2θu+Bψ2θ −Bψ2θu)(1−Aθψ2)]

The conditions (30)1, is obtained as follows,

H(1) = −ψ2(A+B)

> 0, as A+B < 0.

To check (30)2, we have,

H(−1) = 2− 2Aψ2θ +Aψ2 − 4Bθψ2u+ 2Buψ2 + 2Bθψ2u+ 2Bθψ2 −Bψ2,

> 2 + ψ2A(2θ − 1)− 2ψ2Bu(2θ − 1) +Bψ2(2θ − 1),

= 2 + ψ2(2θ − 1)(A+B)− 2ψ2Bu(2θ − 1).

we distinguish two cases :

When θ ∈ [0, 1/2], i.e. (2θ − 1) ≤ 0, we have

H(−1) > 2− 2ψ2Bu(2θ − 1),

> 1− 1ψ2B(2θ − 1),

> 0, since ψ2 <
1

B(2θ − 1)
, by (28).

When θ ∈ (1/2, 1], i.e. (2θ − 1) ≥ 0, we have

H(−1) > 2 + ψ2(2θ − 1)(A+B)− 2ψ2Bu(2θ − 1),

> 1 + ψ2(2θ − 1)(A+B),

> 0, as ψ2 <
1

−(A+B)(2θ − 1)
by (28).
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Condition (30)3 and (30)4, are obtained as follows from (28):

a0 − a4 = −Bψ2 +Bψ2u+Bψ2θ −Bψ2uθ − 1 +Aθψ2,

< −Bψ2 +Bψ2θu−Bψ2θu− 1 + (A+B)θψ2,

< −1−Bψ2,

< 0

and

a0 + a4 = −Bψ2 +Bψ2u+Bψ2θ −Bψ2uθ + 1−Aθψ2,

> 1 + (B −A)ψ2θ,

> 1 + (B −A)ψ2,

> 0.

After some computations, the quantities involved in conditions (30)5 and (30)6 are given by

c0 − c2 =
[
(Bψ2(1− θ)(1− u))2 − (1−Aθψ2)

2
]2

− [(Bψ2(1− u)(1− θ))(1 +Aψ2 −Aθψ2) + (Bψ2u(1− θ) +Bψ2θ(1− u)(1−Aθψ2)]
2

−
[
(Bψ2(1− θ)(1− u))2 − (1−Aθψ2)

2
]
[(Bψ2(1− θ)(1− u))Bψ2θu

+(1−Aθψ2)Bψ2θu] + [(Bψ2(1− θ)(1− u))(Bψ2u(1− θ))

+(1−Aθψ2)(1 +Aψ2 −Aθψ2)] [(Bψ2(1− θ)(1− u))(1 +Aψ2 −Aθψ2)

+(Bψ2u(1− θ) +Bψ2θ(1− u))(1−Aθψ2)] .

(31)

and

c0 + c2 =
[
(Bψ2(1− θ)(1− u))2 − (1−Aθψ2)

2
]2

− [(Bψ2(1− u)(1− θ))(1 +Aψ2 −Aθψ2) + (Bψ2u(1− θ) +Bψ2θ(1− u)(1−Aθψ2)]
2

+
[
(Bψ2(1− θ)(1− u))2 − (1−Aθψ2)

2
]
[(Bψ2(1− θ)(1− u))Bψ2θu

+(1−Aθψ2)Bψ2θu]− [(Bψ2(1− θ)(1− u))(Bψ2u(1− θ))

+(1−Aθψ2)(1 +Aψ2 −Aθψ2)] [(Bψ2(1− θ)(1− u))(1 +Aψ2 −Aθψ2)

+(Bψ2u(1− θ) +Bψ2θ(1− u))(1−Aθψ2)] ,

(32)

respectively.

Due to the complex expressions (31) and (32), conditions (30)5 and (30)6 are checked partially namely

for θ = 0 and 1.

When θ = 0, (31) gives

c0 − c2 =
[
ψ2
2B

2(1− u)2 − 1
]2 − [(1 + ψ2A)(ψ2B − ψ2Bu) + ψ2Bu]

2

+
[
ψ2
2B

2u(1− u) + (1 + ψ2A)
]
[ψ2B(1 + ψ2A)(1− u) + ψ2Bu] ,

≥ −ψ2
2B

2u2 +
[
ψ2
2B

2u(1− u) + (1 + ψ2A)
]
ψ2Bu,

= −ψ2
2B

2u2 +
[
ψ2
2B

2u− ψ2
2B

2u2 + 1 + ψ2A
]
ψ2Bu,

= −ψ2B
[
ψ2B − (ψ2

2B
2 − ψ2

2B
2u)− 1− ψ2A

]
,

> ψ2B − 1− ψ2A,

> 0, by using ψ2 <
1

(B −A)
, from (28).
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Also when θ = 1, (31) becomes

c0 − c2 = (1−Aψ2)
4 − [(Bψ2(1− u)(1− θ))]

2 −
[
−(1−Aψ2)

2
]
[(1−Aψ2)Bψ2u]

+ (1−Aψ2)Bψ2(1− u)(1−Aψ2),

= (1−Aψ2)
4 − (Bψ2(1− u))2(1− θ)2 + (1−Aψ2)

3Bψ2u

+ (1−Aψ2)
2Bψ2(1− u),

> (1−Aψ2)
2 − (Bψ2(1− u))2 + (1−Aψ2)Bψ2u+Bψ2(1− u),

> (1−Aψ2)(1− ψ2(A−B)) + (−Bψ2u+Bψ2u)(Bψ2 −Bψ2u+ 1),

> (1−Aψ2)(1− ψ2(A−B)),

> 0, by (28).

If θ = 0, (32) reduces to

c0 + c2 =
[
ψ2
2B

2(1− u)2 − 1
]2 − [(1 + ψ2A)(ψ2B − ψ2Bu) + ψ2Bu]

2

−
[
ψ2
2B

2u(1− u) + (1 + ψ2A)
]
[ψ2B(1 + ψ2A)(1− u) + ψ2Bu] ,

> −ψ2
2B

2 −
[
ψ2
2B

2u(1− u) + (1 + ψ2A)
]
ψ2B,

> −ψ2B
[
ψ2B + (ψ2

2B
2 − ψ2

2B
2u2) + (1 + ψ2A)

]
,

> ψ2B + 1 + ψ2A,

> 0, by (28).

For θ = 1, we have from (32),

c0 + c2 = (1−Aψ2)
4 − [(Bψ2(1− u)(1− θ))]

2
+
[
−(1−Aψ2)

2
]
[(1−Aψ2)Bψ2u]

− (1−Aψ2)Bψ2(1− u)(1−Aψ2),

= (1−Aψ2)
4 − (Bψ2(1− u))2(1− θ)2 − (1−Aψ2)

3Bψ2u− (1−Aψ2)
2Bψ2(1− u),

> (1−Aψ2)
2 − (Bψ2(1− u))2 − (1−Aψ2)Bψ2u−Bψ2(1− u),

> (1−Aψ2)(1− ψ2(A+B))−Bψ2(1− u)[Bψ2(1− u) + 1],

> 0 by (28).

Since all the conditions in (30) are satisfied, all the roots, λ of (26) lie within the unit circle for

the case under consideration. Therefore the equilibrium point x∗ = 0 is asymptotically stable.

Apart from Theorem 5, the case when B > 0 guarantees the dynamic consistency of our NSFD

scheme with respect to positivity as stated in the following result:

Theorem 6. If B > 0, then the NSFD scheme (25) preserves positivity at all time t whenever the

initial conditions are positive.

Proof. Assume that B > 0 and x0, x1, · · · , xn ≥ 0. From (18) and (25) we have, for m > 0,

xn+1 =
[1 +Aψ2(∆t)−Aθψ2(∆t)]xn +B(1− θ)ψ2(∆t)x̃n +Bθψ2(∆t)x̃n+1

1−Aθψ2(∆t)
,

>
[1 +Aψ2(∆t) +Bθψ2(∆t)]xn

1−Aθψ2(∆t)
, withB < −A,

>
[1− (−A−Bθ)ψ2(∆t)]xn

1−Aθψ2(∆t)
,

>
1− (−A−B)ψ2(∆t)

1−Aθψ2(∆t)
,

> 0, sinceψ2 <
1

−(A+B)
and

1

|A|
by (28).

13



Similarly if m = 0, we have

xn+1 =
[1 +Aψ2(∆t)−Aθψ2(∆t) +Buθψ2(∆t)]xn +B(1− θ)ψ2(∆t)x̃n

1−Aθψ2(∆t)−Bθψ2(∆t) +Buψ2(∆t)
,

>
[1 +Aψ2(∆t) +Bθψ2(∆t) +Buθψ2(∆t)]xn
1−Aθψ2(∆t)−Bθψ2(∆t) +Buψ2(∆t)

, withB < −A,

>
1− (−A−Bθ)ψ2(∆t)

1− (A+B)θψ2(∆t) +Bθuψ2(∆t)
,

> 0, since ψ2 <
1

−(A+B)
, by (28).

�
Remark 7: A few comments are in order with respect to the results obtained above. For fixed τ , the

case when m = 0 i.e. ∆t > r is highly relevant from the nonstandard approach perspective as it allows

us to consider arbitrary values of ∆t, a situation which is impermissible in the standard numerical

analysis setting. In other words, the impact of the delay on the long term dynamics of the model

could be to reduce the step size ∆t or to increase it.

In view of the analysis done above for m = 0, 1, 2 and of the numerical results displayed in Figures

5, 6 and 7, we conjecture that Theorem 5 is valid in the case when B < 0 and A > B meet the

requirements in Theorem 3. Equally, the positivity of the scheme (Theorem 6) when B < 0 is an issue

of interest.

4 Numerical simulations

In this section, we present numerical simulations that support the theoretical results obtained in the

previous sections. As mentioned above and also pointed out in [15], the problem of analysing the

location of zeros of a general polynomial such as (26) is a nontrivial problem. This is evident when

the delay value τ or m is large. Moreover, at each value there are different conditions to be satisfied

by ∆t. Hence the numerical approach is essential. Here, we show the convergence of solution to

the equilibrium point x∗ = 0 or the asymptotic stability of this equilibrium using different values of

the time step size, ∆t (different m values), for fixed value of the delay, τ , θ = 0, 1/2 and different

values of A and B. In Figure 2 (a) and (b), it has been shown that, starting with initial values

close to the fixed-point, delay τ = 2, A = −0.7 and B = −1.3, the solutions of (25) converge to the

fixed-point x∗ = 0. Furthermore, the robustness of the NSFD is evident against the Euler scheme

and Trapezoidal rule for the same fixed value of the delay. Figure 2 (a), (b) are the NSFD, in which

the solutions converge irrespective of ∆t sizes, in contrast to the Euler scheme and Trapezoidal rule

Figure 3 (a) and (b) respectively, which diverges even with much smaller values of ∆t as indicated.

The effect of delay is also apparent in the two schemes: NSFD Figure 2 (c) and Euler Figure 2 (d)

without delay, respectively. It should be noticed that models with delay cause the solutions to oscillate

before converging to the fixed point, while such phenomenon is absent from models without delay.

Moreover, the Euler scheme without delay causes the trajectories to diverge from the fixed point only

with slightly higher values of ∆t, compared with the scheme with delay. These facts and simulations

regarding models without delay are in agreement with existing results in the literature (see for instance

[2]). However, the NSFD scheme still converges even with higher values of ∆t.

In Figure 4 (a), the combined Exact and NSFD schemes are shown with θ = 0. The exact scheme

is defined when t is in [−τ, τ ]. When t > τ , the solution of the linear delay differential equation (4), is

shown to be approximated by the NSFD scheme. Figure 4 (b), is the Euler scheme in which the exact

nature of our scheme is lost and the poor performance of Euler is observed even with much smaller

step size. Figure 4 (c) depicts Theorem 6, in which the solution is positive at all times when B > 0

for any positive initial condition.
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From Theorems 4 and 5, the point x∗ = 0 is asymptotically stable fixed-point, for Equation (25)

if and only if all the roots of (26) are within a unit circle. This has been shown analytically for some

values of m and in Theorem 5 for any value of m. For higher values of m, this result can be shown

numerically. In Figures 5, 6 and 7 with θ = 0, 1/2 and 1, respectively, it can be seen that all the roots

of (26) are located within the unit circles for values of m = 0, 1, 2, . . . 1000 (different values of time

step sizes, ∆t) with fixed delay τ = 2 for B < A < 0.

The Exact-NSFD scheme presented in this paper is primarily designed to handle epidemiological

models in a reliable manner. In anticipation to this goal, we consider the delay logistic equation:

x′(t) = Bx(t)[1− x(t− τ)], t > 0, B > 0,

x(t) = ϕ(t) > 0, −τ ≤ t ≤ 0,
(33)

which models the transmission dynamics of a wide range of viral diseases such as gonorrhea. For this

model, we consider the NSFD scheme

xn+1 − xn
ψ(∆t)

=



− B
ψ(∆t)

∫ tn+1

tn
ϕ(s− τ)ds+ ∆t

ψ(∆t)B −B(xn − 1)[ϕ(tn − τ)− 1], if tn+1 ≤ τ,

Bϕ(tn − τ) +B −B(xn − 1)[ϕ(tn − τ)− 1], if tn ≤ τ < tn+1,

−B(1− θ)x̃n −Bθx̃n+1 +B

−B[(1− θ)xn + θxn+1 − 1][(1− θ)x̃n + θx̃n+1 − 1], if tn > τ.

(34)

It is clear that the NSFD scheme (34) reduces to the combined Exact-NSFD scheme for the lin-

earized delay logistic equation about the asymptotically stable equilibrium x∗ = 1 when we ignore the

nonlinear term, B[(1− θ)xn + θxn+1 − 1][(1− θ)x̃n + θx̃n+1 − 1].

For computation, we use the following explicit expression instead of (34):

xn+1 = xn +



−B
∫ tn+1

tn
ϕ(s− τ)ds+∆tB −Bψ(xn − 1)[ϕ(tn − τ)− 1], if tn+1 ≤ τ,

Bψϕ(tn − τ) +Bψ −Bψ(xn − 1)[ϕ(tn − τ)− 1], if tn ≤ τ < tn+1,

−Bψ(1− θ)x̃n −Bψθx̃n+1 +Bψ, if tn > r.

(35)

The illustration of the NSFD scheme (34) or (35) is carried out for ψ2 =
∆t

1 + (|B|∆t)2
, ϕ(t) = 1+et,

the set of values τ = 5.1, B = 0.31 and A = 0 i.e. a1 = π/2. In accordance with the dynamics of

the delay logistic equations in [6]. Figure 8 shows the NSFD scheme in which the fixed-point x∗ = 1

is asymptotically stable for 0 < B < π/2τ , irrespective of the step sizes used. The profiles of the

discrete solutions confirm that the trapezoidal NSFD scheme (θ = 1/2) is more accurate than the

Euler scheme (θ = 0). On the contrary, Figure 9 displays the poor performance of both classical Euler

and trapezoidal schemes.

5 Conclusion

This paper was motivated by the need to construct (reliable) nonstandard finite difference schemes

for some epidemiological models defined by delay differential equations. Even for simple models such

as the SIR and the SIS - type ones, the presence of delay is a challenge from the numerical point of

view. For this reason, and given also the importance of the linearization process in the qualitative
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and constructive analysis of dynamical systems in general and epidemiological models in particular,

the focus of the paper changed to the linear delay differential equation. Though being the simplest

delay differential equation, designing an exact scheme of this linear model is not an easy task and, in

fact, NSFD schemes have not been developed for it.

Using a suitable time splitting, we have in this paper designed a numerical method that combines

the advantages of exact and NSFD schemes as follows. At the early time evolution −τ ≤ t ≤ τ, where

τ is the value of the delay, we introduce the exact scheme of the linear delay differential equation.

Thereafter, we switch to a theta-NSFD scheme constructed by reinforcing Mickens’ rules on complex

denominator function of the right-hand sides. The later rule is judiciously implemented so that the

delay term or the solution at the backtrack point is properly approximated. The main findings are as

follows:

(i) The combined Exact-NSFD scheme is dynamically consistent with the linear delay differential

equation in many respects.

I It preserves all the properties of the solution at the earlier time evolution.

I It has no spurious fixed-point and it replicates the asymptotic stability property of the

trivial equilibrium of the continuous model. These facts are verified both theoretically

(under some conditions on the coefficients of the delay differential equation) and compu-

tationally when the conditions are not satisfied.

I The profile of the solutions for the combined Exact-NSFD scheme with delay shows oscilla-

tions in accordance with the trajectories of the continuous model, while such phenomenon

is absent in the same scheme without delay. Furthermore, the better performance (con-

vergence of order 2) of the trapezoidal NSFD scheme is observed.

I When B > 0 it is shown that the NSFD scheme preserves positivity of solutions at all

times irrespective of the step size value ∆t, whenever the initial conditions are positive.

(ii) The robustness of the NSFD scheme is shown in which the fixed point is asymptotically stable

irrespective of the large step sizes used, while in the case of classical theta-method, the fixed

point is shown to be unstable.

(iii) The relevance of the exact scheme at the early stage of the process is seen in numerical simula-

tions specifically when the delay is longer. On the other hand, for Euler scheme, the delay has

effect on the stability of the fixed-point with regards to the smaller step sizes used. For Euler

scheme with no delay, the solution profiles converge to the fixed-point for these step sizes while

in Euler scheme with delay, the solution profiles diverge for the same smaller step sizes.

In preparation of our future work on general epidemiological models with delay, our theta-NSFD

scheme has been adapted for the delay logistic equation. It is seen that the profile of the numerical

simulations is in agreement with the dynamics of the underlying continuous model. Other possible

areas of application of the NSFD schemes presented here include neuronal synchronization (see for

instance [20, 21, 22]).
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Figure 2: For A = −0.7, B = −1.3 NSFD schemes with τ = 2, (a) θ = 0 and (b)

θ = 1/2, while in (c) NSFD and (d) Euler schemes without delay.
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Figure 3: For A = −0.7, B = −1.3 and τ = 2: (a) Euler scheme and (b) Trapezoidal

rule.
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Figure 4: For A = −13, B = 7, τ = 10; (a) Combined Exact-NSFD scheme, ∆t = 10,

θ = 0 (b) Euler scheme, ∆t = 0.11 (c) Positivity of solution (Theorem 6).
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Figure 5: The roots of the characteristic polynomial for (26) within unit circles corre-

sponding to values of m = 0, 1, 2, . . . 1000 (different values of ∆t), τ = 2, A = −1.3,

B = −1.7 in (a) θ = 0, (b) θ = 1/2.

Figure 6: The roots of the characteristic polynomial for (26) within unit circles corre-

sponding to values of m = 0, 1, 2, . . . 1000 (different values of ∆t), τ = 0.54, A = 1.3,

B = −1.7 in (c) θ = 0, (d) θ = 1/2.
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Figure 7: The roots of the characteristic polynomial for (26) within unit circles cor-

responding to values of m = 0, 1, 2, . . . 1000 (different values of ∆t), θ = 1, in (a)

τ = 0.54, A = 1.3, B = −1.7 in (b) τ = 2, A = −1.3, B = −1.7.
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Figure 8: NSFD schemes for τ = 5.1, B = 0.31; in (a) θ = 0 (b) θ = 1/2.
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Figure 9: For τ = 5.1 and B = 0.31: (a) the Euler scheme (b) Trapezoidal rule.
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