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ABSTRACT 

Capturing flow discontinuities and calculate energy 

dissipation across the shock wave correctly are challenging 

numerical simulation problem. Several highly accurate 

numerical interpolation schemes are employed to capture 

the shock waves developing in shear flow in shallow waters 

for two convective Froude numbers. The simulation starts 

from a small disturbance to the hyperbolic tangent (TANH) 

based velocity profile. The subsequent linear and nonlinear 

development of the shear instabilities are obtained from the 

numerical simulation using the second-order MINMOD, the 

third-order ULTIMATE-QUICK and the fifth-order WENO 

schemes. The computational error is evaluated using 

progressively smaller grid sizes. The number of nodes over 

a wave length are λ/∆x = λ/∆y = 16, 32, 64, 128, 256, and 

512. The grid refinement determines the accuracy of the 

simulation and the order of convergence for each scheme. It 

also determines the dependence of the wave radiation and 

energy dissipation on the grid size.   

 

INTRODUCTION 

Instability analysis of the shear flow traditionally has 

been carried out using the linear stability analysis (LSA) 

and the normal mode approach (NNA). The initial growth of 

small disturbance is determined as an eigenvalue problem of 

the governing ordinary equations. Much has been studied on 

the linear instabilities in shallow waters using the NMA by 

Alavian & Chu [1], Chu et al. [2], Chen & Jirka [3][4] and 

Ghidaoui & Kolyshkin [5]. The nonlinear finite-amplitude 

development of the instabilities has to be determined from 

the numerical solution of the fully nonlinear equations. In 

this paper, the shear instabilities of transverse shear flow in 

shallow waters with the TANH base velocity profile is 

studied by numerical simulations using the shallow-water 

equations. The simulation reproduces the linear instabilities 

obtained from the NMA. It also provides the data for the 

nonlinear transition and therefore paves the way to a more 

details study of the turbulent flow.     

Two series of simulations have been carried out. One 

series of simulations is conducted ignoring the sub-grid scale 

viscosity. The computations are then repeated to include the 

sub-grid viscosity in order to examine the role of the viscosity 

in the sub-grid scale modelling. Grid refinement studies are 

conducted to evaluate the performance of each scheme and to 

determine the role of sub-grid scale viscosity on linear and 

nonlinear development of the instabilities. 

 

NOMENCLATURE 
 
x [m] Cartesian axis direction  

y [m] Cartesian axis direction  

h [m] Water depth  

qx [m2/s] Flow rate in the x-direction 

qy [m2/s] Flow rate in the y-direction 

u [m] Velocity in the x-direction 

v [m] Velocity in the y-direction 

ζ [1/s] Streamwise Vorticity 

 

 

Special characters 
τij [kg /s2m] Stress tensor  
δw [m] Vorticity thickness  

δθ [m] Momentum thickness 

∆ [m/s] Velocity difference across the shear layer 

c [m/s] Gravity wave speed   

H [m] Specific energy head 

E [m3/s2] Energy density 

P [m4/s3] Energy flux or radiation power 

Ε [m3/s3] Rate of energy dissipation 

 

 

Subscripts 

uu  Upstream node of the upstream 

u  Upstream node 

c  Central node  

d  Downstream node 

dd  Downstream node of the downstream 

1, 2  Side 1 and side 2 in the free streams 

o  Initial condition  
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NUMERICAL METHOD 

The numerical simulation for the shear instabilities is 

based on the finite volume approximation of the shallow-

water equations: 
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where h = flow depth, g = gravity, (u, v) = flow velocity, 

and (qx, qy) = (uh, vh) = flow rate in the x- and y-direction, 

respectively. The base flow for the shear instability analysis 

is the hyperbolic tangent (TANH) velocity profile as shown 

in Figure 1. Simulations are carried out for two convective 

Froude numbers, Frc = 0.1 and 0.8. The convective Froude 

number is: 
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In this expression for the convective Froude number, U1 and 

U2 are the free stream velocities in the longitudinal 

direction, and c1 and c2 are the wave speeds in the free 

streams. The governing equations in gas dynamics are 

similar in form and behaviour as the shallow-water 

equations [7]. The analogous shear instabilities in gas 

dynamics is the convective Mach number [8]. 

 

The numerical simulation begins with the introduction of a 

small perturbation (u', v', h') to the parallel base flow [U(y), 

0, H]:  

 

',',')( hHhvvuyUu +==+=    (5) 

 

The subsequent development of (u', v', h') are calculated in a 

staggered grid using an implementation of the classical 

finite-volume method by Pinilla et al. [6]. The time 

integration of the shallow water equation (SWE) is made 

using the 4th-order Runge-Kutta method. Figure 2 shows 

the finite volumes for the continuity and momentum 

equations on the staggered grid. The values of h, qx and qy 

are defined at the h-node, qx-node and qy-node. The 

nonlinear fluxes on the faces of the finite volumes are: Fuqx
 

= uqx, F
vqx

 = vqx, F
uqy

 = uqy, F
vqy

 = vqy, which are the sources 

of spurious numerical oscillations. Various flux limiting 

schemes have been introduced to control the numerical 

oscillations. Three representative schemes are considered in the 

present numerical simulations for the linear and nonlinear shear 

instabilities. These are (i) the second-order MINMOD scheme, 

(ii) the third-order ULTIMATE-QUICK scheme and (ii) the 

fifth-order WENO scheme.  

 
Figure 1 Schematic of temporal shear layer with periodic 

boundary condition in x-direction and radiating boundary 

condition in y-direction. The north and south radiating 

boundaries are 5λ away from the mixing layer. 

 

 

 
 

Figure 2 The finite volumes on the stagger grid for (a) the 

continuity equation, (b) the x-momentum equation, and (c) the 

y-momentum equation. The interpolations are needed for the 

four nodes shown in (d) 
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Interpolations are required in the staggered grid in order to 

evaluate the nonlinear fluxes at the h-node and ζ-node, and 

the depth h at the qx-node and qy-node as shown in Figure 

2(d).  

 

Flux Limiting Schemes  

Spatial interpolation schemes of various accuracy and 

computational stability have been developed. High-order 

schemes, such as CD and QUICK, are accurate but are 

computationally unstable. To suppress spurious numerical 

oscillations, the fluxes are computed by flux limiting 

schemes. Some flux limiting schemes were introduced for 

Total Variation Diminishing (TVD) of the numerical 

oscillations [11]. Occasional downshifting to the diffusive 

lower-order scheme has been the strategy of many other flux 

limiting numerical schemes to gain computational stability 

[9][10][11][12][13]. The flux limiters suppress the spurious 

oscillations. It improves stability of the computation. It may 

as a consequence produce diffusion error which can be 

greater than the sub-grid scale viscosity employed in large-

eddy simulation (LES) of turbulent flow [14][15].  

Among the flux limiting schemes, the most diffusive is 

MINMOD. On the other hand, the WENO (Weighted 

Essentially Non-Oscillatory) scheme has the highest order 

of accuracy [16][17]. The implementation of the WENO 

scheme in this paper is fifth-order.  

 

Grid Refinement Studies  

      The grid is refined over four stages. The numbers of the 

x-nodes over one wave length of the disturbance are N = 32, 

64, 128 and 256 for the four stages of simulations of the 

flow with convective Froude number of Frc = 0.1. The 

number of x-nodes are N = 64, 128, 256 and 512 for the 

flow with the convective Froude number of Frc = 0.8. The 

higher degree of refinement of grid is selected for the higher 

Froude number in order to more correctly calculate the 

radiation of gravity waves from the shear instabilities.   

 

Sub-grid Scale Viscosity   

For the series of simulations including with the sub-

grid scale model, the stresses are related to the strain rate 

through the sub-grid scale viscosity νsg as follows: 

k
x

k
u

ijsg
i

x

j
u

j
x

i
u

sg
yyyx

xyxx

ij ∂

∂

∂

∂
+

∂

∂
== δρνρν

ττ

ττ
τ

2

1
- )(

  (5) 

The sub-grid scale viscosity model proposed recently by 

Vreman [15] does not generate viscosity by the mean flow 

and therefore does not have the dissipative problem of the 

Smagorinsky model. The model was developed for three-

dimensional (3D) turbulence simulation. The following 

expression of the sub-grid-scale viscosity is obtained from 

contraction of the 3D model for the present 2D simulation in 

open-channel shear flow:   
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in which aij = ∂uj/∂xi is the deformation rate tensor. The value 

of the coefficient Cs = 0.2 originally proposed for 3D 

simulations is adopted for the present simulations of the 2D 

shear flow.  

 

LINEAR INSTABILITY 

The initial linear development of the small disturbance is 

exponential growth. The growth rate is determined by the 

fractional rate of the fluctuating velocity u’ or by the v’ as 

follows:   
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In practice however the growth rate is calculated as delineated 

in Figure 3 in terms of the kinetic energy of the disturbance K
’
 

= ½ (u
’2

+ v
’2

) as follows: 
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This formula is convenient because the value of K
’
 is always 

positive.  

 

 
Figure 3 Variations of (a) the disturbance-kinetic-energy K’ with time, 

and (b) the growth rate α with time, for wave number k = 0.8925 and 

convective Froude number Frc = 0.10. The initial linear development is 

delineated by the red-colour portion of the lines. 
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The numerical simulations have been carried for a range of 

wave length λ with the corresponding wave number varying 

from  

2  to0
2

==
λ

πδωok                     (9)  

The growth rate α were evaluated for two convective 

Froude numbers of Frc = 0.1 and 0.8. Figure 4 shows the 

dimensionless growth rate  

 

yÛ

* α
α =               (10) 

which is the rate normalized by the shearing rate at the 

inflection of the base flow velocity profile. The perturbation 

of the base flow of the TANH velocity profile is unstable 

over the range of wave number k = 0 to 2. The maximum 

rates of the exponential growth are α = 0.18747 and α = 

0.07715 which occurs at the wave numbers k = 0.89250 and 

k = 0.50606 for the convective Froude numbers Frc = 0.1 

and Frc = 0.8, respectively. Michalke [17] analyzed the shear 

instability of the mixing layer for incompressible flow 

(corresponding to a convective Froude number of Frc = 0) 

and found the dimensionless maximum growth rate to be α* 

= 0.1898 occurs at the dimensionless wave number of k = 

0.8892.  

 

 

 
Figure 4 Instability diagram for dimensionless exponential 

growth rate α* over the range of wave number k = 0 to 2 for 

two convective Froude numbers Frc = 0.1 and Frc = 0.8. The 

dashed lines are the instability relations obtained by 

Sandham & Reynolds [19] for shear flow in ideal gas with 

Mach number Ma = 0.1 and 0.8  

 

Order of Convergence  

      The maximum growth rate occurs at k = 0.89 and 0.48 

for Frc = 0.1 and 0.8, respectively. Simulations were 

conducted using progressively smaller grid sizes of ∆x / λ = 

1/512, 1/256, 1/128, 1/46 and 1/32. Figure 5 shows the order of 

convergence as the exponential rate approaches the exact 

solution. 

 

 

Figure 5 Fractional computational error for exponential growth 

rate, (α - α-exact) / αexact, obtained by MINMOD for (a) Frc = 0.1 

and for (b) Frc = 0.8, ULTIMATE-QUICK for (c) Frc = 0.1 and 

for (d) Frc = 0.8 and WENO for (e) Frc = 0.1 and for (f) Frc = 

0.8. The order of convergence for each scheme are determined 

using the progressively smaller grid sizes of ∆x / λ = 1/512, 

1/256, 1/128, 1/46 and 1/32.  

 

NONLINEAR FINITE-AMPLITUDE DEVELOPMENT 

As the disturbance grows exponentially, the small 

disturbance eventually becomes finite in amplitude. Figure 6(a) 

and 7(a) show the nonlinear growth rate of the finite amplitude 

disturbance for Frc = 0.1 and 0.8 respectively. In the non-linear 

stage the shearing rate at the inflection point of the mean profile 
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is time dependent. Figure 6(b) and 7(b) show the 

momentum thickness of the mean velocity profile 

determined by: 
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Another measure of the non-linear shear layer is the 

vorticity thickness: 

 

)(ˆ
)( 21

tU

UU
t

y

−
=ωδ             (12) 

 

These two thicknesses, δw and δθ are related approximately 

by a factor of 4. The point 1 in Figures 6 and 7 is the 

overshot of the growth rate immediately after the linear 

stage. Points 2, 3 and 4 are the zero crossing of the growth 

rate. Point 2 is the first peak of the momentum thickness in 

the non-linear stage of its development.  Point 4 is the 

subsequent peak of its development. 

 

 

Figure 6 The (a) growth rate and (b) the momentum 

thickness in the non-linear development of the mixing layer 

for Frc = 0.1 using WENO reconstruction. Points 1 to 4 

identify the non-linear growth stages.  

 

Figure 7 The (a) growth rate and (b) the momentum thickness 

in the non-linear development of the mixing layer for Frc = 0.8 

using WENO reconstruction. Points 1 to 4 identify the non-

linear growth stages. 

 

The nonlinear development eventually leads to the 

formation of eddies for the lower convective Froude number of 

Frc = 0.1 as shown in Figure 8, and the formation of shocklet at 

the higher convective Froude number Frc = 0.8 as shown in 

Figure 8. The shocklets are characterized by the radiation of 

gravity waves and formation of shock waves (hydraulic jumps) 

within the shocklets. The most significant finding from the fully 

nonlinear simulation is the quasi-nonlinear oscillations of the 

eddies and shocklets as shown in Figures 8 and 9.  

The development of the finite amplitude disturbance for 

the incompressible limit when Frc approaches zero has been 

examined by Stuart [19]. The solution obtained by Stuart 

known as Stuart’s vortex, is a steady-state normal-mode 

approximation. The true solution is quasi steady. Using the 

fifth-order WENO scheme for the spatial interpolation, the 

quasi-steady oscillations are accurately calculated. The 

maximum-slope width δω(t) characterizing the dimensions of 

the eddy is a nearly periodic function of the time as shown in 

Figure 6.  
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Figure 8 The vorticity contours showing the 

development of shear layers into eddies in shallow waters 

for the convective Froude numbers Frc = 0.1 at time of the 

first peak in the non-linear development of momentum 

thickness (at Point 2 in Figure 5) .  

 

GRID REFINEMENT AND CONVERGENCE 

Figure 10 shows the convergence of the vorticity 

thickness δω toward its true solution δω−exact. The 2nd-order 

TVD schemes such as MINMOD follow a lower order of 

convergence in compare with ULTIMATE-QUICK and 

WENO. The most accurate fifth-order WENO has the 

highest order of convergence. The ULTIMATE-QUICK is 

in between of the TVD schemes and the 5th-order WENO. 

The 2nd-order TVD schemes (MINMOD) have the lower 

order of convergence compared with the 5th-order WENO. 

A nearly 5th-order of convergence has been achieved by the 

simulation using the WENO scheme when the grid is 

sufficiently refined.  

For the purpose of estimate the simulation error, the 

vorticity thickness δω obtained in the first peak shown in 

Figure 6 and Figure 7 are used to determine the fraction 

error. 

 
Figure 9 The vorticity contours showing the development 

of shear layers into eddies and shocklets in shallow waters for 

the convective Froude number Frc = 0.8 at time of the first peak 

in the non-linear development of momentum thickness (at Point 

2 in Figure 6). 

 

 

 

The fraction error is (δω-δω−exact)/ δω−exact and plotted in 

Figure 10 versus ∆x/λ for five levels of grid refinement. The 

number of nodes over one wave length in the computation are 

∆x/λ = 512, 256, 128, 64, 32.. 

The grid refinement results for the fifth-order WENO is 

shown in Figure 10(a) and 10(b). In this case the order of 

convergence to the true solution is 4.42 and 4.20 for Frc = 0.1 

and 0.8, respectively. Also included in Figure 9(a) is simulation 

results obtained using a sub-grid viscosity Cs = 0.2. Some what 

unexpected, the fractional error and the order of convergence is 

remarkably similar. The sub-grid viscosity appears to have no 

significant effect. 

Figures 10(c), 10(d), 10(e) and 10(f) show the grid 

refinement results for the third-order ULTIMATE-QUICK and 

the second-order MINMOD. As expected these lower-order 
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schemes have higher fractional error and lower order of 

convergence. 

 

 

Figure 10 Fractional computational error for vorticity 

thickness, (δω - δω -exact) / δω -exact, obtained by WENO for (a) 

Frc = 0.1 and for (b) Frc = 0.8, ULTIMATE-QUICK for (c) 

Frc = 0.1 and for (d) Frc = 0.8 and MINMOD for (e) Frc = 

0.1 and for (f) Frc = 0.8. The order of convergence for each 

scheme are determined using the grid size of ∆x / λ = 1/512, 

1/256, 1/128, 1/46 and 1/32. (at Point 2 in figure 5 and 6)  

 

Formal calculations of the convergence factor Rk and 

the order of convergence Pk are by using the following 

formulae given by Stern et al. [19]. The formula for the 

convergence factor is  
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where δk-1, δk and δk+1 are the simulation results obtained from 

the sequential refinement of the grid. The higher values of the 
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resolution. The formula for the order of convergence and exact 
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where r is the grid refinement ratio and p is scheme order. The 

ratio is r = 2 for the present grid-refinement study. Figure 10 

shows the calculations of the convergence factor and order of 

convergence obtained using these formulae for the simulation 

using the WENO, ULTIMATE-QUICK and MINMOD 

schemes. The convergence is monotonic for all schemes. The 

convergence order approaches a value of 1.61 and 2 for the 

MINMOD in Frc =0.1 and 0.8 respectively. It approaches 

values of 2.73 and 2.95 for ULTIMATE-QUICK, and a 

significantly higher value of 4.42 and 4.2 when the 5th-order 

WENO scheme was employed in the simulation. 

 

ENERGY FLUX, RADIATION AND DISSIPATION 

Highly accurate computational scheme is required to 

correctly calculate the energy dissipation across the shock 

waves.  The calculation of energy dissipation is the balance of 

time rate of energy density and the divergence of energy flux. 

The derivation for the energy dissipation starts from the 

differential form of the energy equation: 
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The integration of the above partial differential equation over 

an area of a control volume in two dimensions (2D) is: 
 

   0=•∇+
∂

∂
∫ ∫ dAPdAE

tA A
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where A is the volume per unit depth of the 2D control 

volume. The exchange of order between integration and 

differentiation leads to the energy dissipation, ε as given in 

the equation below: 

 

   
ε=∫ ∫ •∇+

∂

∂
dAPdAE

t
A A

                    (20) 

 

 

 

Figure 11 The energy-density rate (a), energy-flux 

divergence (b), and dissipation rate (c) as defined in 

Equation 20 from simulation for Frc = 0.1 at t = 141s. 

 
There are terms in the energy equation, Equation 20. The 

first integral is the sum of energy density rate; the second 

integral is the sum of energy-flux divergence. The balance is 

the energy dissipation. The integrals are evaluated for each 

computational cell. Their distributions are shown in Figures 

10 (a) and 10(b) for the convective Froude number of Frc = 

0.1 and Figures 11(a) and 11(b) for Frc = 0.8. The energy 

dissipation rate ε for the flow of low Froude numbers is 

negligible, as it is indicated in Figure 11(c). The energy 

dissipation rate across the shock wave is significant for Frc 

= 0.8 as shown in Figure 12(c). Calculations shown in 

Figures 11 and 12 are carried out using the fifth-order 

WENO scheme with λ/∆x = 128 for Frc = 0.1 and λ/∆x = 256 

for Frc = 0.8. These are the maximum grid size for energy 

dissipation to be calculated correctly. We have conducted 

energy dissipation calculation using coarser grid by other less 

accurate computational method and have found the results to be 

different. The relationship between grid size and the accuracy 

of energy dissipation calculations is complex and will be 

reported in greater details elsewhere. 
 

 

Figure 12 The energy-density rate (a), energy-flux divergence 

(b), and dissipation rate (c) as defined in Equation 20 from 

simulation for Frc = 0.8 at t = 296s. 

 
To calculate the radiation from the shear instability, the energy 

equation is averaged over one wave length to give 
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where < > is the averaging operator defined by: 
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In this equation, Py is energy flux in the y-direction. Figures 

13 and 14 show the average of the energy flux obtained at 

various locations in the lateral direction away from the shear 

instability. The energy flux is the power of radiation. It is 

oscillatory as the nonlinear instability that generate the 

radiation is oscillatory. The radiation power is observed in 

16 stations located laterally each with a distance of 5λ/16 

from the next station. The time-lag between the radiations 

represents the time it would take for the lateral wave to 

reach from one border to next. The time-lag for the gravity 

waves to travel one region is tL=5λ/16c = 0.44s in case of 

Frc = 0.1. Therefore the time-lag from from region 1 to 16 is 

6.6s. The time-lag for the gravity waves to travel one region 

is tL=5λ/16c = 6.21s in case of Frc = 0.8. Therefore the time-

lag from region 1 to 16 is 93.14s. Also the outflow of the 

power from region 16 is parallel to the predecessors proving 

that the radiating boundary is properly applied on this 

boundary. 

 

 

 

Figure 13 The power <Py> radiated from the nonlinear 

instabilities; Frc = 0.1. 

 

 

 

Figure 14 The power <Py> radiated from the nonlinear 

instabilities; Frc = 0.8. 

 

 

SUMMARY  

Numerical computations of the shear instabilities in 

shallow waters were conducted using an accurate trans-

critical solver for two convective Froude numbers. The 

nonlinear instabilities lead to the development of eddies as 

shown in Figure 8 and of shocklets in Figure 9. The 

radiation of waves from the instabilities and the formation 

of shock wave are responsible for the energy dissipation in 

the shear instability. The instabilities, the radiation and 

dissipation of energy in the shallow waters is analogous to the 

processes in gas dynamics [7][8]. The spurious numerical 

oscillations produced by the high-order spatial interpolation are 

managed by numerical schemes developed following the 

concept of minimal intervention [6]. The role of sub-grid 

viscosity and the accuracy of the numerical interpolation 

schemes are investigated for the nonlinear shear instabilities 

through multiple levels of grid refinement. Orderly and 

monotonic convergence to true solution is possible as the grid 

is progressively refined using 32, 64, 128, 256 and 512 nodes 

over one wave length of the instabilities. The most accurate 

interpolation method is WENO among the flux limiting 

schemes examined for the numerical accuracy.  

 

CONCLUSION  

Nonlinear shear instability is the precursor to turbulence. 

It is often not clear how false numerical diffusion may affect 

the turbulence simulations. To capture flow discontinuities, 

false numerical diffusion error can be significant as accuracy of 

the numerical scheme is reduced to first order. The sub-grid 

viscosity is second order [14][15]. Therefore, false numerical 

diffusion can potentially exceed the magnitude of the sub-grid 

scale viscosity [21]. The nonlinear simulations and the errors 

evaluated from the five levels of grid refinement are presented 

in this paper as a guide for the selection of grid in numerical 

simulation. The present study of the shear instability is part of a 

comprehensive investigation on the relative role and the 

interference between the false numerical diffusion error and the 

sub-grid scale viscosity in the modelling of turbulent flow.  
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