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Abstract

Meta-heuristics have already been used extensively for the successful solution of a

wide range of real world problems. A few industrial engineering examples include in-

ventory optimization, production scheduling, and vehicle routing, all areas which have a

significant impact on the economic success of society. Unfortunately, it is not always easy

to predict which meta-heuristic from the multitude of algorithms available, will be best

to address a specific problem. Furthermore, many algorithm development options exist

with regards to operator selection and parameter setting. Within this context, the idea

of working towards a higher level of automation in algorithm design was born. Hyper-

heuristics promote the design of more generally applicable search methodologies and

tend to focus on performing relatively well on a large set of di↵erent types of problems.

This thesis develops a heterogeneous meta-hyper-heuristic algorithm (HMHH) for

single-objective unconstrained continuous optimization problems. The algorithm devel-

opment process focused on investigating the use of meta-heuristics as low level heuristics

in a hyper-heuristic context. This strategy is in stark contrast to the problem-specific low

level heuristics traditionally employed in a hyper-heuristic framework. Alternative low

level meta-heuristics, entity-to-algorithm allocation strategies, and strategies for incor-

porating local search into the HMHH algorithm were evaluated to obtain an algorithm

which performs well against both its constituent low level meta-heuristics and four state-

of-the-art multi-method algorithms.

Finally, the impact of diversity management on the HMHH algorithm was investi-

gated. Hyper-heuristics lend themselves to two types of diversity management, namely
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solution space diversity (SSD) management and heuristic space diversity (HSD) man-

agement. The concept of heuristic space diversity was introduced and a quantitative

metric was defined to measure heuristic space diversity. An empirical evaluation of

various solution space diversity and heuristic space diversity intervention mechanisms

showed that the systematic control of heuristic space diversity has a significant impact

on hyper-heuristic performance.
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Chapter 1

Introduction

Over the last five decades meta-heuristic algorithms have become established as the

solution strategies of choice for a large range of optimization problems. The ability of a

meta-heuristic algorithm to avoid local optima more successfully than, for example, local

search algorithms, as well as its robustness and ease of implementation have contributed

to the large amount of research carried out in recent years. Unfortunately, it is not always

easy, or even possible, to predict which one of the many algorithms already in existence

will be most suitable for solving a specific problem. This unpredictability is not only

limited to di↵erent algorithms on di↵erent problem classes, but there may even be issues

with respect to large variations in algorithm performance over di↵erent instances of the

same problem. Furthermore, a large variety of problem dependent control parameter

values, mapping mechanisms and operators need to be selected during the algorithm

design process.

Within this context, the idea of working towards a higher level of automation in

heuristic design was born. Hyper-heuristics [17] promote the design of more generally

applicable search methodologies and tend to focus on performing relatively well on a large

set of di↵erent types of problems, in contrast to specialized algorithms which focus on

outperforming the state-of-the-art for a single application. Most recent hyper-heuristic

algorithms consist of a high level methodology which control the selection or generation

of a generic search strategy while using a set of low level heuristics as input. This

strategy facilitates the automatic design of several algorithmic aspects, thus the impact

1
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Chapter 1. Introduction 2

of hyper-heuristic research on recent optimization trends is significant.

Unfortunately, the simple low level heuristics often used in hyper-heuristic algorithms

carry a risk of converging to a suboptimal solution. This thesis aims to address this

gap by developing a meta-hyper-heuristic algorithm with meta-heuristics as low level

heuristics, referred to as low level meta-heuristics in this thesis. The resulting meta-

hyper-heuristic algorithm provides an excellent opportunity to investigate various design

aspects associated with this type of algorithm. Alternative algorithm-to-candidate so-

lution allocation strategies, strategies for utilizing local search in meta-hyper-heuristics,

and solution and heuristic space diversity management strategies can be easily investi-

gated. A number of these, and other aspects, are considered in this thesis.

The first objective of this introductory chapter was to provide a rationale for the

development of a meta-hyper-heuristic. The objectives and contributions of this thesis

are further highlighted in Sections 1.1 and 1.2 before a brief outline of the rest of this

thesis is provided in Section 1.3.

1.1 Objectives

To investigate the use of meta-heuristics as low level algorithms in a hyper-heuristic

framework, the following sub-objectives have been defined:

• To develop a meta-hyper-heuristic algorithm capable of addressing the entity-to-

algorithm allocation problem e↵ectively

• To contextualize the developed meta-hyper-heuristic algorithm within existing

hyper-heuristic literature

• To investigate the impact of alternative evolutionary selection strategies on het-

erogeneous meta-hyper-heuristic performance

• To investigate the use of local search in the heterogeneous meta-hyper-heuristic by

considering various entity selection mechanisms
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Chapter 1. Introduction 3

• To investigate the value of diversity management on meta-hyper-heuristic perfor-

mance by evaluating various diversity management strategies. Diversity manage-

ment was considered in both the context of solution space and heuristic space

• To benchmark the developed HMHH algorithms against both its constituent low

level meta-heuristics as well as existing state-of-the-art multi-method algorithms

1.2 Contributions

The main contributions of this thesis are summarized as follows:

• The first investigation of alternative evolutionary selection strategies in a meta-

hyper-heuristic framework

• The first investigation of local search strategies in conjunction with meta-heuristic-

based low level heuristics in a hyper-heuristic framework

• The first investigation of the use of an adaptive local search in conjunction with

meta-heuristic-based low level heuristics in a hyper-heuristic framework

• The first explicit definition of heuristic space diversity (HSD) and the first metric

defined for measuring HSD

• The development of various successful heuristic space diversity management strate-

gies

• Development of a heterogeneous-meta-hyper-heuristic (HMHH) algorithm which

outperforms four state-of-the-art multi-method algorithms

• Generation of new knowledge with regard to the impact of alternative solution-to-

algorithm allocation methods as well as diversity management methods on meta-

hyper-heuristic performance
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Chapter 1. Introduction 4

1.3 Thesis Outline

Chapter 2 provides an overview and analysis of the scientific literature on existing single-

method and multi-method methodologies. Various research fields have already consid-

ered the algorithm selection problem which is critical to successful multi-method algo-

rithms. Memetic computing, hyper-heuristics, adaptive operator selection, ensembles,

and portfolios are also introduced and compared in this chapter.

The HMHH algorithm framework is described in detail in Chapter 3, since this algo-

rithm forms the basis of the rest of the investigations in this thesis.

Chapter 4 describes the initial investigations performed to determine the best HMHH

framework. Various selection strategies are compared, the use of local search for perfor-

mance improvement is investigated, and selection of the set of low level meta-heuristics

is reconsidered.

The importance of diversity management to hyper-heuristic algorithm performance is

studied in Chapter 5. Diversity is considered firstly in terms of solution space diversity.

Secondly, the concept of heuristic space diversity is defined and various strategies for

controlling heuristic space diversity throughout the optimization run is investigated.

The performance gains from having a priori information available with regards to the

performance of constituent low level meta-heuristic algorithms on the benchmark set in

question, is also investigated.

The HMHH algorithm is benchmarked in Chapter 6. Four state-of-the-art multi-

method algorithms is identified for comparison purposes. The population-based algo-

rithm portfolio (PAP) [122], the evolutionary algorithm based on self-adaptive learning

population search techniques (EEA-SLPS) [177], the fitness-based area-under-curve ban-

dit operator selection method (FAUC-Bandit) [55], and the modified population-based

genetic adaptive method for single-objective optimization (AMALGAM-SO) [172] are

analyzed and compared to the HMHH algorithm. The HMHH algorithm is also com-

pared with each constituent low level meta-heuristic used in a single-method optimization

context.

Chapter 7 concludes the thesis with a summary of the major findings and future

research opportunities identified during the completion of this study. Finally, the bench-

mark problem set, tables and graphs of results, the definitions of all symbols and
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acronyms used, as well as publications derived from this thesis, are described in the

six appendices.
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Chapter 2

Single-method and Multi-method

Literature

A large number of real world problems can be described by means of an objective func-

tion, f , a vector of variables, xxx, and a set of constraints [47]. The objective function

typically represents the quantity to be minimized or maximized. The set of variables

determines the value of the objective function and f(xxx) denotes the value of the objective

function f at xxx. The set of constraints restricts the values that can be assigned to xxx.

Numerous methodologies have been developed over the last couple of decades to solve

such optimization problems. This chapter provides a review of existing single-method

optimization strategies in Section 2.1. Section 2.2 describes the state-of-the-art in multi-

method algorithm literature. Finally, the chapter is concluded in Section 2.3.

2.1 An overview of single-method optimization al-

gorithms

Feoktistov [52] di↵erentiated between optimal solution strategies and approximate meth-

ods (refer to Figure 2.1). The suitability of optimal solution strategies is highly depen-

dent on the complexity of the problem. In complexity theory, di↵erent classes of problem

complexity have been identified based on the number of steps required to complete the

algorithm for a given input. In Figure 2.2 the set P denotes all problems which can be

6
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Chapter 2. Single-method and Multi-method Literature 7

Figure 2.1: A classification of popular search methodologies [52].

solved in polynomial time. P is a subset of NP, the set of nondeterministic polynomial

time problems, namely decision problems for which a solution is verifiable in polynomial

time. The set NP-Hard contains problems which are at least as hard as the hardest

problems from NP. Finally, the intersection of NP and NP-Hard is referred to as the

set of NP-complete problems [160].

The practical implication of this discussion is, that apart from only very specific

instances, most real world problems are not solvable within polynomial time and optimal

solution strategies are then of limited use. Approximation methods, on the other hand,
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Chapter 2. Single-method and Multi-method Literature 8

Figure 2.2: An euler diagram describing P, NP, NP-complete and NP-Hard problems [160].

are an attractive alternative. Even though the optimality of the solutions cannot be

guaranteed, larger problems can be solved more e�ciently.

Approximate methods can in turn be categorized into heuristics and meta-heuristics.

In general, heuristic methods simply aim to obtain a “good enough” solution by selecting

decision variables to obtain solutions which continuously progress towards a superior

solution. The inability of heuristic methods to escape local optima have resulted in

the development of meta-heuristics. These “intelligent heuristics” temporarily allow

non-improving feasible moves which have a positive impact on the algorithm’s ability

to explore the search space [126]. A number of the more common meta-heuristics are

indicated in Figure 2.3.

Neighbourhood meta-heuristics refer to those search methodologies where a single so-

lution is transformed over time by making use of predefined neighbourhoods. Population-

based meta-heuristics, on the other hand, are characterized by a population of candidate

solutions which are adapted over time. The candidate solutions in an evolutionary algo-

rithm (EA) compete for survival [19], whereas the agents in a swarm communicate and

cooperate with each other by acting on the environment [47]. The rest of this section

discusses a number of these popular meta-heuristic algorithms in more detail.
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Chapter 2. Single-method and Multi-method Literature 9

Figure 2.3: A number of common metaheuristics.

2.1.1 Tabu search

Tabu search (TS) [58, 59] is a neighbourhood-based optimization algorithm developed

in the late 1980s. TS temporarily forbids moves that would return to a solution recently

visited, preventing the algorithm from continuously cycling through the same solutions.

This prevention is accomplished by means of a tabu list which records the most recent

solutions and prevents the search from continuing with these now non-feasible moves.

This list can act as both a recency-based memory (where the list classifies solutions ac-

cording to the length of time they have spent in the list) and frequency-based memory

(where the number of times a solution occurs has an influence). Additionally, an incum-

bent solution [184] is used to keep track of the best solution found thus far and certain

aspiration criteria can also be defined to override the tabu list if this should become

necessary. Pseudocode of the basic TS algorithm is provided in Algorithm 2.1.
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Chapter 2. Single-method and Multi-method Literature 10

ccc(t) denotes the candidate list of solutions at time t

MaxTabu is the maximum tabu list size

Initialize an nx-dimensional solution xxx(0)

t = 0

xxx⇤(0) = xxx(0)

⌧⌧⌧ = ;
while no stopping condition is satisfied do

ccc(t) = ;
for nnn 2 neighbourhood,NNN do

if nnn 62 ⌧⌧⌧ then
ccc(t) = ccc(t) [ nnn

end

end

Find the best admissible solution, xxx(t), from ccc(t)

if f(xxx(t)) < f(xxx⇤(t)) then
xxx⇤(t) = xxx(t)

⌧⌧⌧ = ⌧⌧⌧ [ xxx(t)

while |⌧⌧⌧ | > MaxTabu do
Remove oldest solution from tabu list

end

end

t = t+ 1
end

Algorithm 2.1: The basic TS algorithm [14].

2.1.2 Simulated annealing

Simulated annealing (SA) is an optimization algorithm based on the cooling process

of liquids and solids. As a substance cools, the molecules tend to align themselves in

a crystalline structure associated with the minimum energy state of the system. This

is analogous to the algorithm converging to the optimal solution of an optimization

problem. As the temperature of the metals decreases, the alignment of the atoms in the

structure continually changes. This alignment is analogous to the fitness of the solution:
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Chapter 2. Single-method and Multi-method Literature 11

an alignment which results in a lower energy state also results in an improved solution.

The acceptance of worsening solutions over the SA run is determined by the decreas-

ing temperature parameter. At the start of the optimization run when the temperature

of the system is relatively high, there is a larger probability of accepting worsening solu-

tions. As the optimization process nears completion, the lower temperature parameter

results in a lower probability of accepting worsening solutions and subsequent increased

exploitation of the good solutions found thus far. More specifically, any new solution is

probabilistically accepted based on the Boltzmann–Gibbs distribution as follows:

Pi1i2(t) ,

8
<

:
1 if f(xxxi2) < f(xxxi1)

e
f(xxx

i2
)�f(xxx

i1
)

a⌥ otherwise,
(2.1)

where Pi1i2(t) is the probability of moving from point xxxi1 to xxxi2 , a is a positive constant

and ⌥ is the temperature of the system [47]. The pseudocode of the SA algorithm is

presented in Algorithm 2.2.

Jain and Meeran [76] described SA as a generic technique requiring excessive com-

putational e↵ort due to its inability to achieve good solutions quickly. However, the

hybridization of SA with other solution strategies, including genetic algorithms, has

greatly improved its competitiveness.

2.1.3 Great deluge

The great deluge (GD) algorithm was first proposed by Duek in 1990 [44]. Assuming a

maximization problem, the algorithm is based on the idea of finding a maximum point on

a surface in the midst of a rainstorm. As the water level rises, the algorithm continues to

move in such a way as not to get its feet wet, in other words, away from the rising water

level. Eventually the water level covers the entire surface, but not before the algorithm

has found one of the highest points or maximums of the surface.

The pseudocode of the GD algorithm is presented in Algorithm 2.3. The main ad-

vantages of GD are considered to be its simplicity and that it has only one parameter

which needs to be tuned.
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Chapter 2. Single-method and Multi-method Literature 12

ccc(t) denotes the candidate list of solutions at time t

Initialize an nx-dimensional solution xxx(0)

Initialize the temperature of the system, ⌥

t = 0

xxx⇤(0) = xxx(0)

while no stopping condition is satisfied do
Calculate the temperature of the system

Select a neighbour n from the neighbourhood N surrounding xxx(t)

Calculate the acceptance probability, Pxxx(t)n(t), of moving to solution n from solution

xxx(t) according to Equation (2.1)

if Pxxx(t)n(t) > r s U(0, 1) then
xxx(t) = n

end

if f(xxx(t)) < f(xxx⇤(t)) then
xxx⇤(t) = xxx(t)

end

t = t+ 1
end

Algorithm 2.2: The SA algorithm.

2.1.4 Genetic algorithms

The genetic algorithm (GA) was popularized by Holland [73] in the 1960s. Based on

the process of genetic evolution, selection and recombination operators are applied to a

population of candidate solutions with the aim of evolving better solutions over time.

The rest of this subsection first describes the basic algorithm before the specific GA

variant which is used in this thesis is discussed.

The basic algorithm

The original canonical GA [57] consisted of a bit string representation, proportional

selection, and a cross-over mechanism as the primary method to produce new individuals.

As can be seen in Algorithm 2.4, the fitness f(xxxi(t)), of all individuals are first calculated
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Assume a minimization problem

Initialize an nx-dimensional initial solution xxx(0)

Select the speed of the rising water, �, where � > 0

Select the initial water level,  

t = 0

xxx⇤(0) = xxx(0)

while no stopping condition is satisfied do
Generate a new candidate solution, ccc(t), which is a stochastic small perturbation

of xxx(t)

if f(ccc(t)) >  then
xxx(t) = ccc(t)

 =  +�
end

if f(xxx(t)) < f(xxx⇤(t)) then
xxx⇤(t) = xxx(t)

end

t = t+ 1
end

Algorithm 2.3: The GD algorithm.

before a reproduction operator such as cross-over is applied to create a new o↵spring

population. The population of the next generation can then be selected from the previous

parent and new o↵spring populations. This process is repeated until one of the stopping

criteria is met.

A large number of variations of the original GA algorithm has since been developed.

Di↵erent representation schemes, selection, cross-over, mutation, and elitism operators

have been developed and tested [151]. For the purposes of this thesis, the GA used in

Olorunda and Engelbrecht [116] was considered to be the most appropriate due to its

previous success as constituent algorithm in a multi-method framework. This algorithm

is discussed in the next section.
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Let t = 0 be the generation counter

Initialize an nx-dimensional population, XXX(0), of ns individuals

while no stopping condition is satisfied do
Evaluate the fitness, f(xxxi(t)), of each individual, xxxi(t)

Perform reproduction to create o↵spring

Select the new population, XXX(t+ 1)

Advance to the new generation, i.e. t = t+ 1

end

Algorithm 2.4: The basic GA algorithm [46].

GA with floating-point representation, tournament selection, blend crossover

and Gaussian mutation

Olorunda and Engelbrecht’s GA used a floating-point representation, tournament se-

lection, blend crossover [51] and Gaussian mutation in their heterogeneous cooperative

algorithm implementation. Olorunda and Engelbrecht thought that the component-wise

nature of the blend crossover and Gaussian mutation was well suited for fine-tuning

candidate solutions.

For each individual, i, in a population two parent vectors are selected from the current

population by means of tournament selection, namely xxxp1(t) and xxxp2(t), where xp
k

j(t)

denotes the jth dimension (or component) of the kth vector of parent individual i of

generation t where i 6= p1 6= p2. Then, for all dimensions, j, if r s U(0, 1)  pc, where

pc denotes the crossover probability,

cij(t) =(1� �j)xp1j(t) + �jxp2j(t), (2.2)

where cij(t) denotes the jth dimensions of the ith o↵spring solution after crossover, �j =

2U(0, 1)� 0.5 and xp1j(t) < xp2j(t). Similarly, for all dimensions, j, if r s U(0, 1)  pm,

where pm denotes the probability of mutation, then the jth dimension of the ith o↵spring

of individual i at time t, c0ij(t), can be calculated as follows:

c0ij(t) =cij(t) + &ij(t)Nij(0, 1), (2.3)

with &ij(t+ 1) = &ij(t+ 1)e⌧1N(0,1)+⌧2N(0,1), ⌧1 =
1p
2
p
n
x

and ⌧2 =
1p
2n

x

, where nx denotes
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the number of dimensions. If the fitness of ccc0i(t) is better than the fitness of the ith

individual of the original population, xxxi(t), this individual is replaced by ccc0i(t) [47].

2.1.5 Evolution strategies

Evolution strategies [129, 130] are based on the concept of evolution of evolution. The

objective is to optimize the evolution process itself by defining a set of strategy param-

eters which influence the evolution process. By adapting the strategy parameters in

parallel with the population, the optimization process is also optimized [47].

The covariance matrix adapting evolutionary strategy algorithm (CMAES) [3] is one

of the most recent successful evolutionary strategy algorithms. The rest of this section

describes CMAES in more detail since it is one of the algorithms that will be used

throughout the rest of this thesis.

The covariance matrix adapting evolutionary strategy algorithm

The CMAES algorithm consists of four main phases, namely solution generation, selec-

tion and recombination, covariance matrix update, and step size update. During the

first generation phase, a population of solutions is generated at each iteration according

to a multivariate normal distribution such that

xxxi(t+ 1) sN(mmm(t), �2
CMA(t))CCC(t) (2.4)

where N(mmm(t), �2
CMA(t)) denotes a normal distribution with mean mmm(t) and standard

deviation �CMA(t). The mean of the CMAES population at time t is denoted by mmm(t),

�CMA denotes the step size of the algorithm at time t, and CCC(t) is the covariance matrix

at time t. After the solutions are evaluated and sorted, selection and recombination

takes place by adjusting the mean of the population as follows:

mmm(t+ 1) =
n
sX

k=1

wkxxxk (2.5)

where wk is the kth recombination weight in the CMAES algorithm.
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The covariance matrix, CCC(t), is then updated as:

CCC(t+ 1) =(1� ccov)CCC(t) +
ccov
µcov

pc
CMA

pTc
CMA

+ ccov

✓
1� 1

µcov

◆

⇥
n
sX

k=1

wk

✓
xk(t+ 1)�mmm(t)

�CMA(t)

◆✓
xk(t+ 1)�mmm(t)

�CMA(t)

◆T

(2.6)

where

µcov �1, (2.7)

µcov =µeff , and (2.8)

ccov ⇡min(µcov, µeff , n
2
x)/n

2
x (2.9)

The symbol ccov denotes the learning rate for the covariance matrix update, µeff de-

notes the variance e↵ective selection mass and µcov denotes the parameter which weighs

between the rank-one update and rank-µ update. The rank-one update uses only the

previous iteration to estimate the covariance matrix where the rank-µ update uses all

previous iterations.

The CMAES algorithm makes use of cumulative step-size adaptation. A cumulative

path is used which is a combination of all the steps an algorithm has made with the

importance of a step decreasing exponentially with time [31]. Two evolution paths are

used in the CMAES algorithm, the anisotropic evolution path, pc
CMA

, associated with

the covariance matrix and the isotropic evolution path, p�, associated with the step size.

pc
CMA

is calculated as follows:

pc
CMA

=(1� cc
CMA

)pc
CMA

+
q
cc

CMA

(2� cc
CMA

)µeff

✓
mmm(t+ 1)�mmm(t)

�CMA(t)

◆
(2.10)

where µeff is given by

µeff =

 
n
sX

k=1

w2
k

!�1

(2.11)

and cc
CMA

is the backward time horizon of the anisotropic evolution path.

Finally, the step size, �CMA(t+ 1), is updated as follows:

�CMA(t+ 1) =�CMA(t) exp

✓
c�
d�

✓
kp�(t+ 1)k
EkN(000, III)k � 1

◆◆
(2.12)
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where d� is the damping parameter in the CMAES algorithm, 1
c
�

is the backward time

horizon of the isotropic evolution path, p�:

p� =(1� c�)p� +
q
c�(2� c�)µeffCCC(t)�0.5

✓
mmm(t+ 1)�mmm(t)

�CMA(t)

◆
. (2.13)

The pseudocode of the CMAES algorithm is provided in Algorithm 2.5.

Set the population size to ns

Initialize all algorithm control parameters, namely, mmm(1), �CMA(1), CCC(1) = III,p� = 0,

pc
CMA

= 0

while while no stopping conditions is satisfied do
Sample ns new solutions using Equation (2.4)

Calculate the fitness of the individuals in the population

Sort the solutions from smallest to largest fitness

Update the mean, mmm(t+ 1), using Equation (2.5)

Update the isotropic evolution path, p�, using Equation (2.13)

Update the anisotropic evolution path, pc
CMA

, using Equation (2.10)

Update the covariance matrix, CCC(t+ 1), using Equation (2.6)

Update step size, �CMA(t + 1), using isotropic path length, by means of Equa-

tion (2.12)

end

Algorithm 2.5: The CMAES algorithm [3].

CMAES significantly outperformed a number of EAs in the 2005 IEEE Congress on

Evolutionary Computation Special Session on Real-parameter Optimization [2]. The

algorithm has a further advantage with regards to its execution time due to a relatively

small population size being required. CMAES can obtain good results with as few as

14 individuals in comparison to, for example, di↵erential evolution where fewer than 50

individuals could lead to significant deterioration in performance [122].

2.1.6 Particle swarm optimization

Particle swarm optimization (PSO) [82] is classified as a stochastic population-based

optimization technique, which was developed from a model of the flocking behaviour
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of birds. Since its development, the algorithm has established itself as a competitive

solution strategy for a wide range of real-world problems.

Kennedy and Eberhart [82] traced the origins of the PSO algorithm back to Reynold’s

“boid” simulations [133] and Heppner and Grenander’s rooster e↵ect [72]. The initial

objectives of these studies and the other collective behaviour studies of the late 80s was

to simulate the graceful, unpredictable choreography of collision-proof birds in a flock

[45]. However, the optimization potential, of what was at that stage only a conceptual

model, soon became apparent. Simplification and parameter derivation resulted in the

first simplistic implementation by Kennedy and Eberhart [82] in 1995.

Since its humble beginnings, PSO has established itself as a simple and computa-

tionally e�cient optimization method in both the fields of artificial intelligence and

mathematical optimization. Applications range from more traditional implementations

such as function optimization [82], training artificial neural networks [50, 165] and task

allocation [142], to more specific applications, such as the design of aircraft wings [170]

and the generation of interactive, improvised music [11], amongst many others. The rest

of this section introduces the basic concepts of PSO before the actual algorithm and

associated algorithm parameters and variations are discussed in more detail.

The basic algorithm

The PSO algorithm represents each candidate solution by the position of a particle

in multi-dimensional hyperspace. Throughout the optimization process velocity and

displacement updates are applied to each particle to move it to a di↵erent position and

thus a di↵erent solution in the search space.

The velocity update is often thought to be the most critical component of the PSO

algorithm since it incorporates the concepts of emergence and social intelligence. Fig-

ure 2.4 illustrates that the magnitude and direction of a particle’s velocity at time t is

considered to be the result of three vectors: the particle velocity vector at time t � 1,

the pbest position, which is a vector representation of the best solution found to date by

the specific particle, and the gbest position, which is a vector representation of the best

solution found to date by all the particles in the swarm. The gbest PSO [82] calculates
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the velocity of particle i in dimension j at time t+ 1 using

vij(t+ 1) =wvij(t) + c1r1j(t)[x̂ij(t)� xij(t)] + c2r2j(t)[x
⇤
j(t)� xij(t)] (2.14)

where vij(t) represents the velocity of particle i in dimension j at time t, c1 and c2 are

the cognitive and social acceleration constants, x̂ij(t) and xij(t) respectively denotes the

personal best (pbest) position and the position of particle i in dimension j at time t. x⇤
j(t)

denotes the global best (gbest) position in dimension j, w refers to the inertia weight,

and r1j(t) and r2j(t) are sampled from a uniform random distribution, U(0, 1).

v(t+1)v(t)

pbest

gbest

j
j

Figure 2.4: Particle velocity as resultant of three components.

The displacement of particle i at time t is simply derived from the calculation of

vij(t+ 1) in Equation (2.14) and is given as

xij(t+ 1) =xij(t) + vij(t+ 1) (2.15)

This simultaneous movement of particles towards their own previous best solutions

(pbest) and the best solution found by the entire swarm (gbest) results in the particles

converging to one good solution in the search space. For the sake of completeness,

pseudocode of the basic PSO algorithm is provided in Algorithm 2.6.
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Initialize an nx-dimensional swarm of ns particles

t = 1

while no stopping condition is satisfied do

for all particles i do

if f(xxxi(t)) < f(x̂̂x̂xi) then
x̂̂x̂xi = xxxi(t)

end

if f(x̂̂x̂xi) < f(xxx⇤) then
xxx⇤ = x̂̂x̂xi

end

end

for all particles i do
Update the particle velocity using Equation (2.14)

Update the particle position using Equation (2.15)

end

t = t+ 1
end

Algorithm 2.6: The basic gbest PSO algorithm [47].

Variations on the gbest PSO algorithm

To address the inherent limitations and requirements of the PSO algorithm, a number of

variations on the gbest PSO algorithm have been developed over the years. However, of

all the PSO variations developed, the degree of social interaction between particles has

probably received the most attention. A number of alternative social network structures

have been developed to explore di↵erent information exchange mechanisms between the

particles within a swarm. Kennedy and Mendes [84] empirically evaluated a number

of these social network structures, including the gbest, lbest, pyramid, star and Von

Neumann structures. The gbest and Von Neumann topologies (refer to Figure 2.5) are

the most important variations for the purposes of this thesis.

It is well known in PSO literature that the gbest PSO algorithm converges fairly

quickly [83], since all particles are partially attracted to the best position found by the

swarm. Depending on the problem, this relatively fast loss of diversity can result in a
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Figure 2.5: The gbest and Von Neumann topologies [47]. The lines between particles indicate

the propagation of information through the swarm.

suboptimal solution within relatively few iterations.

The Von Neumann PSO organizes the particles into a lattice according to the particle

indices. Each particle belongs to a neighbourhood consisting of its nearest neighbours

in the cubic structure. Instead of being partially attracted to gbest, the velocity of

a particle is influenced by the best solution found by the other particles in the same

neighbourhood. Since these neighbourhoods overlap, information about good solutions

is eventually propagated throughout the swarm, but at a much slower rate. In so doing

more diversity and subsequent slower convergence is obtained, leading to significantly

improved chances of finding a good solution.

Of all the PSO variations considered, the guaranteed convergence PSO (GCPSO)

algorithm [166] and the barebones PSO (BBPSO) algorithm was selected for use as

candidate LLMs in this thesis and are discussed throughout the rest of this section.
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The guaranteed convergence PSO algorithm

Unfortunately, the basic PSO algorithm has a potentially dangerous property. The

algorithm is “driven” by the fact that as a particle moves through the decision space, it

is always attracted towards its pbest position and the swarm’s gbest position. If any of

the particles reach a position in the search space where

x̂̂x̂x =xxx(t) = xxx⇤ (2.16)

only the momentum term (wvij(t) in Equation (2.14)) remains to act as a driving force

for the specific particle to continue exploring the rest of the search space. However, if the

condition described in Equation (2.16) persists, it can result in the swarm stagnating on a

solution which is not necessarily a local optimum [166]. The GCPSO algorithm [166] has

been shown to address this problem e↵ectively. This algorithm (Algorithm 2.7) requires

that di↵erent velocity and displacement updates, defined as

v⌧j(t+ 1) =� x⌧j(t) + x⇤
j(t) + wv⌧j(t) + ⇢(t)(1� 2rj(t)) (2.17)

and

x⌧j(t+ 1) =x⇤
j(t) + wv⌧j(t) + ⇢(t)(1� 2rj(t)), (2.18)

are applied to the global best particle, where ⇢(t) is a time-dependent scaling factor,

rj(t) is sampled from a uniform random distribution, U(0, 1), and all other particles are

updated by means of Equations (2.14) and (2.15). This algorithm forces the gbest particle

into a random search around the global best position. The size of the search space is

adjusted based on the number of consecutive successes or failures of the particle, where

success is defined as an improvement in the objective function value. In Algorithm 2.7,

the number of consecutive successes is denoted by ⇣ and the number of consecutive

failures are denoted by ⌘.

The barebones PSO algorithm

Kennedy [81] proposed the BBPSO algorithm by replacing the PSO velocity by random

numbers sampled from a Gaussian distribution as follows:
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Let ⇢(t) be the time-dependent scaling factor at time t

Let ⇣ be the number of consecutive successes experienced by the algorithm

Let ⌘ be the number of consecutive failures experienced by the algorithm

Let ⌧ be the index of the gbest particle

Initialize an nx-dimensional swarm of ns particles

t = 1

⇢(t) = 1

⇣ = 0

⌘ = 0

while no stopping condition is satisfied do

for all particles i do

if f(xxxi(t)) < f(x̂̂x̂xi) then
x̂̂x̂xi = xxxi(t)

end

if f(x̂̂x̂xi) < f(x⇤x⇤x⇤) then
⇣ = ⇣ + 1

⌘ = 0

xxx⇤ = x̂̂x̂xi

else
⌘ = ⌘ + 1

⇣ = 0

end

end

for all particles i|i 6= ⌧ do
Update the particle velocity using Equation (2.14)

Update the particle position using Equation (2.15)

end

Update the gbest particle velocity using Equation (2.17)

Update the gbest particle position using Equation (2.18)

t = t+ 1
end

Algorithm 2.7: The GCPSO algorithm [166].
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vij(t+ 1) = N

✓
x̂ij(t) + x⇤

ij(t)

2
, �BBPSO

◆
(2.19)

with

�BBPSO = |x̂ij(t)� x⇤
ij(t)| (2.20)

xij(t+ 1) = vij(t+ 1) (2.21)

where �BBPSO is the standard deviation of the population from which vij(t+1) is sampled.

It has since been shown that each particle in the PSO algorithm eventually converges

to a point which is the weighted average between its personal and neighbourhood best

solutions [161, 164, 167]. The BBPSO thus e↵ectively exploits this property and was

considered as one of the initial candidate LLMs in this thesis.

2.1.7 Di↵erential evolution

Originally developed from work done on Chebyshev’s polynomial fitting problems, dif-

ferential evolution (DE) found its roots in the genetic annealing algorithm of Storn and

Price [153]. Classified as a parallel direct search method [152], DE achieved third place

on benchmark problems at the first international contest on evolutionary optimization

in 1996. Since then, the number of DE research papers has increased significantly every

year and DE is now well-known in the evolutionary computation community as an alter-

native to traditional EAs. The algorithm is considered to be easy to understand, simple

to implement, reliable, and fast [123]. Application areas are just as diverse, as is the case

for the PSO algorithm, and range from function optimization [153] to the determination

of earthquake hypocenters [136].

The basic algorithm

The success of DE can be mainly attributed to the use of di↵erence vectors which de-

termine the step size applied to the algorithm. Information regarding the di↵erence

between two existing solutions is, in other words, used to guide the algorithm towards

better solutions [153].
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More specifically, for each individual, i, in the population, a base vector, xxxi1(t),

as well as two other vectors, xxxi2(t) and xxxi3(t), are randomly selected from the current

population, where xij(t) denotes the jth dimension of individual i of generation t and

i 6= i1 6= i2 6= i3. The trial vector, TTT i, is then obtained through the application of a

di↵erential mutation operator, as follows:

Tij(t) =xi1j(t) + F (xi2j(t)� xi3j(t)) (2.22)

where F is the scaling factor. Then for all dimensions, j:

cccij(t) =

8
<

:
Tij(t), if r s U(0, 1)  pr or j = ⌫ s U(1, ..., nx),

xij(t) otherwise,
(2.23)

where pr is the probability of reproduction and ccci is the o↵spring solution.

An individual may only be replaced by an individual with a better fitness function

value. In other words, if the fitness of ccci(t) is better than the fitness of the ith individual

of the original population, this individual is replaced by ccci(t) [46]. For the sake of

completeness, pseudocode of the basic DE algorithm is provided in Algorithm 2.8.

The di↵erential mutation operator in Equation (2.22) has the desirable property that

it allows the step sizes of the algorithm to automatically adapt to the objective function

landscape [123]. For example, before the population has converged around a specific

optimum, the randomly sampled individuals could still be far apart in di↵erent areas

of the search space. This allows for larger step sizes during the initial iterations of the

optimization algorithm when greater exploration of the search space and the ability to

escape from local optima is desirable. Later on, when all of the individuals are converging

around a single optimum, smaller step sizes are automatically taken since all individuals

are close to each other in the search space. This strategy allows the algorithm to more

e↵ectively exploit the area around the optimum in search of a better solution.

The number of DE research papers increases each year and as the algorithm is refined,

results continue to improve and additional research opportunities become evident. As a

result, several variants of DE have been defined over the years. This section describes

a number of these variants according to Storn and Price’s DE/x/y/z notation [153],

where x refers to the method used to select the target vector, y refers to the number of

di↵erence vectors used and z denotes the crossover mechanism used.
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Initialize an nx-dimensional population of ns individuals

t = 1

while no stopping condition is satisfied do

for all individuals i do
Randomly select an individual, i1, from the population

Randomly select an individual, i2, from the population

while i1 = i2 do
Randomly select an individual, i2, from the population

end

Randomly select an individual, i3, from the population

while i2 = i3 or i1 = i3 do
Randomly select an individual, i3, from the population

end

Calculate Tij(t) using Equation (2.22)

Calculate cij(t) using Equation (2.23)

end

for all individuals i do

if f(ccci(t))  f(xxxi(t)) then
xxxi(t+ 1) = ccci(t)

end

end

t = t+ 1
end

Algorithm 2.8: The DE/rand/1/bin algorithm [123].

Alternative target vector selection mechanisms

Storn [152] identifies three di↵erent target vector selection mechanisms, i.e. DE/rand/y/z,

DE/best/y/z and DE/rand-to-best/y/z (DE/R2B/y/z). These mechanisms are de-

scribed as follows:

• A randomly selected population member serves as the base vector in DE/rand/y/z.

• The base vector is selected as the population member with the best fitness function,
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i.e. the best individual, in DE/best/y/z. Incorporating the best individual into

the equation enables faster exploitation, with a subsequent decrease in population

diversity. This decrease in population diversity may, unfortunately, lead to fast

convergence to a suboptimal solution.

• DE/R2B/y/z aims to address the limitations of DE/best/y/z in terms of potential

premature convergence. A linearly or exponentially decreasing value (� 2 (0, 1))

is incorporated into the equation used to calculate the target vector. This ensures

that more emphasis is placed on random target vector selection at the start of the

optimization run when population diversity is important to explore a large area

of the search space. Towards the end of the optimization run, the DE/best/y/z

strategy is emphasized when convergence to the best solution is desirable. The

adjusted equation to compute the target vector becomes:

Tij(t) =�x⌧j(t) + (1� �)xi1j(t) + F (xi2j(t)� xi3j(t)), (2.24)

where x⌧j(t) denotes the jth component of the best individual in the population at

time t.

Self-adaptive di↵erential evolution algorithms

Recently a number of self-adaptive DE algorithms have been developed [12, 94, 96, 124,

173, 178, 179, 180, 185]. Three of these algorithms are described throughout the rest

of this section due to their good performance versus the basic DE algorithms discussed

above and their potential for use as candidate LLMs in this thesis.

The di↵erential evolution algorithm with neighbourhood search (NSDE) [178] uses a

self-adaptive scale factor, F , which allows the algorithm to automatically adjust between

sampling values of the scale parameter from either Gaussian or Cauchy distributions. The

Gaussian distribution promotes small step sizes, while the Cauchy distribution promotes

larger step sizes. The scale factor of individual i, Fi, is calculated as:

Fi =

8
<

:
Ni(0.5, 0.5), if Ui(0, 1) < pf ,

# otherwise.
(2.25)
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where Ni(0.5, 0.5) denotes a Gaussian random number with mean 0.5 and standard

deviation 0.5, Ui(0, 1) denotes a uniform random number between 0 and 1, and # denotes

a Cauchy random variable with a scale parameter of 1. The probability, pf , was set to

0.5. The rest of the NSDE algorithm is the same as the basic DE algorithm described

above.

The self-adaptive di↵erential evolution (SaDE) algorithm [124] was the first DE al-

gorithm which incorporated two di↵erent mutation strategies into the same algorithm.

The proposed self-adaptive mutation strategy attempts to solve the dilemma that DE

mutation strategies are often highly dependent on the problem under consideration [179].

The target vector, TTT i(t), is determined as:

TTT i(t) =

8
<

:
Eq.(2.22), if Ui(0, 1) < pT ,

Eq.(2.24) otherwise.
(2.26)

where the probability, pT , is calculated as follows:

pT =
ns1(ns2 + nf2)

ns2(ns1 + nf1) + ns1(ns2 + nf2)
(2.27)

and ns1 denotes the number of o↵spring generated by Equation (2.22) which outper-

formed their associated parent solutions and successfully entered the next generation.

Similarly, ns2 denotes the number of successful o↵spring generated by Equation (2.24).

Finally, nf1 and nf2 denote the number of o↵spring generated by Equations (2.22)

and (2.24) which were discarded before reaching the next generation.

The SaDE algorithm samples Fi from a Gaussian distribution as follows:

Fi = Ni(0.5, 0.3) (2.28)

where Ni(0.5, 0.3) denotes a Gaussian random number with mean 0.5 and standard

deviation 0.3. A probability of reproduction, pri, is generated for each individual i

according to:

pri = Ni(pr
µ

, 0.1) (2.29)

where pr
µ

, the mean of the Normal distribution from which pri is sampled, is calculated
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as follows:

pr
µ

=
1

|pppr
succ

|

|ppp
r

succ

|X

l=1

ql (2.30)

The set pppr
succ

store the pri values associated with all successful o↵spring which outper-

formed their parent solutions, denoted by ql.

The self-adaptive DE algorithm with neighbourhood search (SaNSDE) [179] combines

the best features of NSDE [178] and SaDE [124]. SaNSDE attempts to improve algorithm

performance by means of self-adaptation of two candidate mutation strategies, namely

the strategies used in the DE/rand/y/z algorithm and the DE/R2B/y/z algorithm. A

self-adaptive scale factor, F , and self-adaptive probability of reproduction, pr, is also

utilized. The self-adaptive mutation strategy is used “as-is” from the SaDE algorithm

and is described in Equation (2.26). The self-adaptation mechanism applied to the scale

factor, F , is similar to the NSDE mechanism described in Equation (2.25), apart from

the probability, pf , which is self-adapted in the same way as pT in Equation (2.27).

The only di↵erence from Equation (2.27) is that the number of successful o↵spring is

considered per scaling factor update.

The probability of reproduction, pri, of the SaNSDE algorithm is also self-adapted in

a similar fashion to the SaDE algorithm. The only di↵erence is that the list of successful

pri values is weighted according to the corresponding improvements in fitness value. The

mean of the Gaussian distribution in Equation (2.29) is calculated as follows:

pr
µ

=
|ppp

r

succ

|X

l=1

wlql (2.31)

The set pppr
succ

store the pri values associated with all successful o↵spring which outper-

formed their parent solutions, denoted by ql, as well as their resulting improvement in

fitness value, f�l, where

f�l =f(xxxl)(t)� f(cccl)(t+ 1) (2.32)

The lth weight, wl, is calculated as

wl =
f�lP|fff
�

|
l=1 f�l

(2.33)
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SaNSDE was shown to outperform both SaDE and NSDE [179] and is considered a

highly successful DE algorithm due to the trade-o↵ between small and large step sizes and

control parameters that are self-adapted based on statistical learning experience during

evolution instead of just heuristic updating rules. The pseudocode for the SaNSDE

algorithm is provided in Algorithm 2.9.

2.2 An overview of multi-method optimization algo-

rithms

As can be seen from the previous section, a number of single-method optimization algo-

rithms have already been developed to address numerous real world optimization prob-

lems. Unfortunately, it is not always easy, or even possible, to predict which one of

the many algorithms already in existence will be the most suitable for solving a specific

problem. Furthermore, this uncertainty with regards to which algorithm to use for a

given problem, is not only limited to di↵erent algorithms on di↵erent problem classes,

but there may even be issues with respect to large variations in algorithm performance

over di↵erent instances of the same problem [149].

To address the issue of selecting an appropriate algorithm for a problem to be solved,

Rice [134] formulated the algorithm selection problem in 1976. The problem is formulated

as follows:

For a given problem instance p 2 PPP , with features fff(p), find the selection mapping

SSS(fff(p)) into algorithm space HHH, such that the selected algorithm m 2 HHH maximizes the

performance mapping of y(m(p)) 2 YYY .

According to the No Free Lunch Theorem [176], “... for any algorithm, any elevated

performance over one class of problems is exactly paid for in performance over another

class.” Therefore, no universally best algorithm exists which can outperform all other

algorithms on a broad problem domain. The ideal approach is to use specific problem

characteristics in determining which algorithm is most suited to the application under

consideration.

Within this context, the simultaneous use of more than one algorithm for solving

optimization problems became an attractive alternative. A multi-method algorithm can
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Initialize an nx-dimensional population of ns individuals

t = 1

while no stopping condition is satisfied do

for all individuals i do
Generate a scale factor, Fi, using Equation (2.28)

Generate a probability of reproduction, pri, using Equations (2.29) and (2.31)

Randomly select an individual, i1, from the population

Randomly select an individual, i2, from the population

while i1 = i2 do
Randomly select an individual, i2, from the population

end

Randomly select an individual, i3, from the population

while i2 = i3 or i1 = i3 do
Randomly select an individual, i3, from the population

end

Calculate Tij(t) using Equation (2.26)

Calculate cij(t) using Equation (2.23)

end

for all individuals i do

if f(ccci(t))  f(xxxi(t)) then
xxxi(t+ 1) = ccci(t)

end

end

t = t+ 1

Update the probabilities pT , pf , and pr
µ

.

end

Algorithm 2.9: The SaNSDE algorithm [179].

be described as consisting of one or more entities, where an entity represents a candidate

solution which is adapted over time, a set of available algorithms or operators, referred to

as constituent algorithms, and a high level strategy responsible for allocating the entities

to the most suitable algorithms for optimization. The main idea of a multi-method
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algorithm is that the simultaneous use of more than one search algorithm during the

optimization process allows the algorithms to exploit each other’s strengths while also

compensating for inherent weaknesses.

EAs, in general, focus on evolving a population of candidate solutions or entities

over time in order to converge to a higher quality solution. In most cases, a single al-

gorithm, with its own unique operators, is assigned to all entities and this algorithm

is used in isolation to evolve the population. As soon as multiple algorithms are used

simultaneously to optimize a common population of entities, the allocation of entities

to algorithms needs to be considered. Two main approaches of entity-to-algorithm al-

location can be identified from the literature. Static entity-algorithm allocation assigns

entities to algorithms at the start of the optimization run and this allocation remains

static throughout the rest of the run. Dynamic entity-algorithm allocation continuously

updates the allocation of entities to algorithms throughout the optimization run.

Over the years, multi-method algorithms have started appearing in various di↵erent

domains. Examples include memetic computation [30], algorithm portfolios [62], algo-

rithm ensembles [42], hyper-heuristics [20], and adaptive operator selection methods [40].

The rest of this chapter discusses each of these fields in more detail.

2.2.1 Memetic computation

Meta-heuristics are well known for their robustness and ability to avoid local optima [60].

However, room for improvement exists with regard to a meta-heuristic’s ability to suc-

cessfully exploit good solutions [88]. The hybridization of a meta-heuristic algorithm with

a refinement method can be very useful to balance the trade-o↵ between exploration and

exploitation. The advantages of a meta-heuristic algorithm, namely generality, robust-

ness, and global search e�ciency, can be combined e↵ectively with the ability of a local

search algorithm to explore application-specific problem structures and converge rapidly

towards a local minimum [112].

Memetic algorithms (MAs), the algorithmic pairing of a population-based search

method with one or more refinement methods [30], can be considered the first multi-

method techniques applied in the field of computational intelligence [71]. The ability of

global optimization algorithms to quickly identify promising areas of the search space
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is combined with local search algorithms which are able to refine good solutions more

e�ciently. The wider area of memetic computing is concerned with algorithms composed

of heterogeneous operators (memes) for solving optimization problems [26]. Within the

context of EAs, Chen et al. [30] proposed a classification of simple hybrids and adaptive

hybrids. Ong et al. [117] further investigated the mechanisms of coordination among

algorithmic components in MC approaches and proposed the following classification of

adaptive coordinating mechanisms:

• Hyper-heuristics [17], which Ong et al. [117] defined as a heuristic scheme where a

set of prearranged rules determines the activation of each component.

• Meta-Lamarckian learning [86, 90, 111] which allows an adaptive algorithm choice

from a set of available local search algorithms at di↵erent decision points.

• Self-adaptive and co-evolutionary MAs [88, 147, 148, 182], where the rules coor-

dinating the memes are evolved in parallel with the candidate solutions of the

optimization algorithm.

• Fitness diversity adaptive algorithms [24, 25, 110, 156, 159], where the population

diversity is estimated through the diversity of the fitness values and this estimate

is used to balance the exploration-exploitation trade-o↵ of the search.

A number of key issues that need to be considered during MA design are defined

by [88] and [30]. Firstly, the number of individuals which should undergo refinement

should be determined. The first MAs recommended that all individuals in the population

should be refined at each iteration of the MA [104]. Due to various constraints such

as computational budget and the need to maintain a suitable level of diversity in the

population, this strategy is not always desirable [71].

Various other MA design issues such as the intensity of refinement [154], type of local

search algorithm employed, integration of local search with existing evolutionary oper-

ators [89], and Lamarckian versus Baldwinian learning [175], could also be considered.

These strategies, however, fall outside of the scope of this thesis and are not explicitly

investigated.
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2.2.2 Ensemble and portfolio algorithms

The idea of combining di↵erent algorithms in an ensemble originated from the field of

neural networks. Hansen et al. [68] introduced an ensemble neural network consisting

of various neural network models which are averaged. The idea quickly migrated to

the evolutionary computation field where di↵erent operators were combined to improve

algorithm performance and robustness. One of the first of such examples is Yao et al’s

improved fast EP [181] which mixed both Cauchy and Gaussian mutation operators. In

the DE domain, the intelligent selection of mutation operators and control parameters

during optimization is considered in [96], [186], and [163]. The self-adaptive DE algo-

rithm of Qin and Suganthan [124] which makes use of di↵erent DE learning strategies

which are weighted based on previous algorithm success, is another example. Various

heterogeneous PSO algorithms have also been developed [48, 49, 107, 108, 150]. For the

purposes of this thesis, however, the ensembles and portfolios consisting of operators from

di↵erent algorithms such as PSO, DE, GA, etc. in a multi-method framework, are of

significantly more interest. The rest of this section discusses various such heterogeneous

portfolio and ensemble algorithms.

Vrugt et al.’s highly successful population-based genetic adaptive method for single

objective optimization (AMALGAM-SO) [172] was developed after the success of the

multi-objective AMALGAM algorithm. This algorithm is one of the few examples of an

algorithm which continually updates the allocation of algorithms to entities during the

optimization run. AMALGAM-SO employs a self-adaptive learning strategy to deter-

mine the percentage of candidate solutions in a common population to be allocated to

each of three EAs. A restart strategy is used to update the percentages based on algo-

rithm performance. Refer to Section 6.1.3 for more details. This technique performed

well when compared to a number of single method EAs on the 2005 IEEE Congress of

Evolutionary Computation benchmark problem set [155]. Closer inspection of the algo-

rithm uncovers a large bias towards CMAES. Between 80% and 90% of the entities in the

initial population is allocated to CMAES and during the optimization run a minimum of

25% of entities are allocated to CMAES at all times. Since it is well-known that CMAES

is the best choice among the available algorithms for solving the CEC2005 problems, the

algorithm is in e↵ect being unfairly assisted. The question of how well the algorithm
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will perform without this assistance, remains to be answered.

Another algorithm which inspired the development of the heterogeneous-meta-hyper-

heuristic (HMHH) algorithm is the heterogenous cooperative algorithm of Olorunda and

Engelbrecht [116]. Traditionally, cooperative algorithms are multi-population techniques

where problem variables are distributed over a number of subpopulations to be optimized

separately. A solution is constructed by combining the best solution obtained by each

subpopulation. The heterogeneous cooperative algorithm makes use of di↵erent EAs to

update each of the subpopulations, thereby combining the strengths and weaknesses of

various optimization strategies within the same algorithm. Promising results in terms

of robustness and consistent performance were obtained when compared to other single-

method EAs.

Peng et al. [122] developed the population-based algorithm portfolio (PAP). This

algorithm is based on the principle of multiple subpopulations each assigned to one

algorithm from a portfolio of available algorithms. At pre-specified time intervals, entities

are migrated between subpopulations to ensure e↵ective information sharing between

the di↵erent optimization algorithms. A pairwise metric was also proposed which can

be used to determine the risk associated with an algorithm failing to solve the problem

in question. It should be noted, however, that PAP makes use of a static entity-to-

algorithm allocation strategy. Thus, the algorithm is stuck with the initial allocation

throughout the rest of the optimization run. This implies that when a di↵erent entity-

to-algorithm allocation is required at a di↵erent stage of the optimization run, no update

to the entity-to-algorithm allocation can be made. The influence this has on algorithm

performance, remains to be determined.

Tang et al. [156] recently developed an extended version of PAP, namely PAP based

on an estimated performance matrix (EPM-PAP) which contains a novel constituent

algorithm selection module. EPM-PAP was shown to outperform a number of single

EAs. It should be noted that the motivation of PAP is to select constituent algorithms

so as to achieve good overall performance on a set of problem instances in contrast to,

for example, AMALGAM-SO which attempts to obtain the best possible solution on a

specific problem instance.

The EA based on self-adaptive learning population search techniques (EEA-SLPS) [177]
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was inspired by PAP. Similar to PAP [122], EEA-SLPS consists of entities divided into

subpopulations. These subpopulations are adapted in parallel by an assigned constituent

algorithm, where one constituent algorithm is used per subpopulation. Each entity only

has access to other entities within the same subpopulation in order to prevent the same

genetic material from being adapted repeatedly. However, an information exchange

mechanism is used to ensure that each constituent algorithm benefits from the learning

of the other algorithms. A strong focus of Xue et al ’s work was the investigation of al-

ternative information exchange mechanisms and their impact on portfolio performance.

Eighteen mechanisms were evaluated and the best strategy was identified as replacing

the worst individual of each subpopulation by the current best individual of the entire

ensemble. This replacement was found to work best at each iteration. This algorithm

also makes use of a static entity-to-algorithm allocation.

Recently, Yuen et al. claimed superior performance of their multiple EA (Multi-

EA) [183] when compared to PAP and AMALGAM-SO. The algorithm makes use of

a linear regression model and a bootstrapping mechanism to predict at each iteration

which algorithm would perform the best at a common future point. Their improved

performance claim has, however, been questioned [66]. The referenced study pointed out

the lack of information exchange mechanism of the Multi-EA which prevented the con-

stituent algorithms from learning from each other. A comparison between Multi-EA and

EEA-SLPS further highlighted the poor performance of Multi-EA. Three unchallenged

algorithms thus remain, namely EEA-SLPS, PAP, and AMALGAM-SO.

2.2.3 Adaptive operator selection strategies

Adaptive operator selection (AOS) strategies autonomously select between di↵erent op-

erators such as, for example, various mutation and crossover operators, in an online

manner based on the recent performance of the strategies within an optimization pro-

cess [91]. AOS techniques consist of two main components, namely a credit assignment

mechanism and an operator selection mechanism. As can be seen in Figure 2.6 an oper-

ator is applied in the context of an EA. The impact of the applied operator with regard

to the e↵ect on the objective function value is then passed to the credit assignment

mechanism. This mechanism determines the award that should be assigned to the oper-
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ator and updates the credit registry which stores the current credit associated with each

operator. The operator selection method then uses the credit registry as input to select

an operator, which is then used by the EA to update the relevant candidate solutions.

Figure 2.6: A generic adaptive operator selection strategy [97].

Various credit assignment mechanisms have been developed over the last couple of

years. The reward amount for each operator has already been determined by considering

for each operator:

• The best solution of the current population generated by the operator under con-

sideration [40]

• The best solution of the parent population [63]

• The best solution of the ancestors of the population [92, 162]

• The median solution of the population [77]

• The average of the recent fitness improvements [174]
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• The maximal fitness improvement achieved recently [54], which emphasizes the

reward of rare, large improvements in fitness

• Both diversity and fitness improvement [97], which aims to reduce the chances of

getting stuck in a local optimum

• A rank-based credit assignment scheme such as the area-under-curve and sum-of-

ranks schemes of Fialho et al. [56] and the fitness-rate-rank-based scheme of Li et

al. [91]

A number of operator selection mechanisms have also been developed, namely:

• Probability matching [61], where the credit assignment mechanism is used as input

to a roulette-wheel-like process

• Adaptive pursuit [158], which incorporates a winner takes all strategy into the

roulette-wheel process to increase the chances of selecting the best operator

• Various bandit-based methods [53, 91], inspired from the multi-armed bandit game

theory problem [8]

Further analysis of the literature indicates that the bandit-based methods are the

most successful operator selection strategies. With regard to credit assignment, the rank-

based strategies provide the most robust solutions. The fitness-based area-under-curve

bandit (FAUC-Bandit) algorithm [54] is thus identified as one of the most promising

AOS algorithms for further investigation.

2.2.4 Hyper-heuristics

Burke et al. [18] defined a hyper-heuristic as “a search method or learning mechanism

for selecting or generating heuristics to solve computational search problems”. Hyper-

heuristics promote the design of more generally applicable search methodologies and tend

to focus on performing relatively well on a large set of di↵erent problems, in contrast

to specialized algorithms which focus on outperforming the state-of-the-art for a single

application. The basic idea is thus not only to obtain an appropriate solution for a
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specific problem, but rather to focus on automating the development of the method used

to obtain an appropriate solution. This increased generality of hyper-heuristic algorithms

is a valuable attribute considering the specialist resources required for the development

of advanced artificial intelligence-based algorithms as well as the problem-dependent

nature of most meta-heuristic algorithm implementations.

A framework used in early hyper-heuristic research [18] to describe the elements of a

hyper-heuristic algorithm is provided in Figure 2.7. The hyper-heuristic acts as a high

level methodology which receives performance information through a domain barrier.

This performance information drives the selection or generation of a set of domain specific

low level heuristics. The purpose of the domain barrier between the low level heuristics

and the hyper-heuristic is to allow for improved generality. Since the hyper-heuristic’s

functioning is only dependent on the domain independent fitness information obtained

from the solutions generated by the low level heuristics, it is theoretically possible to

re-use the hyper-heuristic as-is in another domain.

Burke et al. [18] provided a unified classification of recent hyper-heuristic research

(Figure 2.8). Hyper-heuristics were classified according to the nature of the heuristic

search space as well as the source of feedback during learning. With respect to the

nature of the heuristic search space, two popular approaches, namely heuristic selection

and heuristic generation, was identified. Heuristic selection focuses on combining pre-

existing heuristics in one higher-level search strategy, whereas heuristic generation is

concerned with generating completely new heuristics consisting of basic components or

building blocks of existing heuristics. On a more detailed level, construction heuristics

attempt to construct a single good candidate solution through the intelligent application

of di↵erent low level heuristics. Perturbation heuristics use one low level heuristic to

construct a complete solution, but repetitively apply low level heuristics in a local search

approach to obtain better and better candidate solutions.

Many hyper-heuristics use information regarding the performance of previously se-

lected low level heuristics to “learn” good combinations of low level heuristics to be

applied during the optimization process. Burke et al.’s classification di↵erentiates be-

tween no-learning, online learning, where the algorithm learns to adaptively solve a

single instance of the optimization problem, and o✏ine learning, where a training set of
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Figure 2.7: Framework of hyper-heuristic algorithms [18].
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Figure 2.8: Classification of hyper-heuristic algorithms [18].
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problems is used to develop a method that may generalize to unseen problem instances.

A comprehensive review of hyper-heuristic research conducted over the last two

decades can be found in [17]. This thesis, however, specifically focuses on investigat-

ing the use of meta-heuristic algorithms in a hyper-heuristic framework. The high level

methodology should select between a set of available perturbative meta-heuristics in

contrast to generating new algorithms. The rest of this section thus focuses on only

reviewing heuristic selection methodologies based on perturbative low level heuristics. A

distinction is made between single-point search-based hyper-heuristics and multi-point

search-based (population-based) hyper-heuristics, as well as between heuristic selection

methods and move acceptance methods.

Various common heuristic selection methods have been employed in single-point-

based hyper-heuristics:

• The simple random strategy [35] selects a low level heuristic randomly at each step.

• The random gradient strategy [35] applies a randomly selected heuristic repeatedly

until no further improvement is obtained.

• The random permutation strategy [35] generates a random ordering of heuristics

which are applied in the provided sequence at each step.

• The random permutation gradient strategy [35] only updates the random ordering

of heuristics when no further improvement is obtained.

• The greedy strategy [35] applies all heuristics exhaustively before the heuristic

generating the most improved solution is selected.

• The choice function strategy [35, 36, 37, 43, 95, 128] is a score-based learning

approach. Each of the low level heuristics are ranked according to individual

performance, performance compared to the preceding heuristic, and the elapsed

time since it was last used.

• The reinforcement learning strategy [105] attempts to learn which heuristic is the

best at a given decision point. If a heuristic improves a solution it is rewarded and

a worsening move results in punishment of the heuristic by reducing its score.
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• The reinforcement learning with TS strategy [20, 21] incorporates a dynamic tabu

list of low level heuristics into the reinforcement learning heuristic selection strat-

egy.

• The TSRoulWheel strategy [22] is a roulette-wheel selection-based mechanism

which uses a tabu list.

• The peckish strategy [28, 33, 34] first reduces the number of heuristics before the

greedy heuristic selection strategy is applied.

• The markov chain-based strategy [99] maintains a set of weighted edges repre-

senting probabilities of transitioning from one heuristic to another. After each

selection the weights are updated based on the performance of the heuristics in a

reinforcement learning scheme.

Similarly, a number of move acceptance strategies which determines if a solution

generated by the algorithm selected by the heuristic selection method should be accepted

into the population. These move acceptance strategies include:

• The all moves strategy [35] accepts all moves regardless of their influence on solu-

tion performance.

• The only improvements strategy [35] accepts only improving moves.

• The monte carlo-based strategy [4, 137] accepts all improving moves while non-

improving moves are accepted with a certain probability. Linear and exponential

probability functions as well as a formulation based on computation time and a

counter of consecutive non-improvement iterations have been utilized.

• The great deluge strategy [44, 79] accepts any heuristic which is not significantly

worse than a predefined level at each iteration. This level changes at a linear rate

every step from an initial value to a target objective value.

• The record-to-record travel strategy [44, 80] accepts any move which is not much

worse than a current solution with a fixed limit.
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• The simulated annealing strategy [1, 6] always accepts improving moves while non-

improving moves are accepted according to the Metropolis criteria [85].

• The late acceptance strategy [15] compares the move to the objective function L

iterations earlier, where L is a user defined control parameter.

• The steepest descent late acceptance strategy [41] compares only improving moves

to the objective function L iterations earlier.

• The adaptive iteration limited list-based threshold acceptance strategy [101] uses

an adaptive threshold to determine whether a worsening solution should be ac-

cepted. This threshold is relaxed every time no better solutions are discovered

after a fixed number of predefined iterations.

A number of population-based hyper-heuristics have also been developed based on

di↵erent optimization algorithms. These include hyper-heuristics based on:

• GAs [93], DEs [9] and other EAs [32]

• Genetic programming such as Nasser et al’s. [140] dynamic multi-armed bandit-

extreme value-based selection strategy with a gene expression programming frame-

work for automatic generation of acceptance strategies. The algorithm performed

well when compared to a large number of state-of-the-art hyper-heuristics on ex-

amination timetable problems, dynamic vehicle routing problems and the hyper-

heuristic competition test suite (CHeSC). The gene expression programming frame-

work has also been successfully used to evolve both the heuristic selection and

acceptance strategy [139].

• Artificial immune systems [70, 69, 146, 144, 145]

• Ant colony optimization [29, 131]

• Cooperative search methods [38]

• Agent-based approaches [100, 119]
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A comprehensive review of the specific application areas and results obtained by

the various combinations of selection and acceptance strategies that have been used in

hyper-heuristic algorithms can be obtained in [17].

From the brief review given in this section, two observations are made: Firstly, signif-

icantly fewer population-based hyper-heuristic implementations exist when compared to

the single-point search-based hyper-heuristics. Secondly, even though meta-heuristic al-

gorithms have been used many times as a higher-level search strategy in a hyper-heuristic

framework, far fewer implementations focus on the use of meta-heuristics as low level

search strategies in a hyper-heuristic framework.

A single clear winning combination of heuristic selection and move acceptance strat-

egy is di�cult to identify and the selection of these appropriate hyper-heuristic strategies

are very problem specific. It thus makes sense to evaluate a number of options with re-

gards to these hyper-heuristic strategies once a new domain is explored. Simulated

annealing [1, 6], late acceptance [15], and variants of threshold acceptance [101] are,

however, the most promising acceptance strategies. Finally, the acceptance strategy

seems to have a bigger influence in performance than the selection strategy.

2.2.5 Summary of findings from the multi-method literature

review

To conclude this chapter, the di↵erences and similarities between the various multi-

method areas identified are discussed in this section. Some of the early ideas leading to

hyper-heuristics came from the scheduling domain where a number of domain-specific

scheduling rules were selected and sequenced based on a high-level strategy. A large

portion of hyper-heuristic research is, in fact, still focused on generating and selecting a

combination of low level domain-specific heuristics for solving practical problems such as

bin-packing [70, 93, 135], examination timetabling [23, 78, 125], and production schedul-

ing [114, 115, 168]. Research into AOS strategies typically focuses on the selection of

alternative algorithm operators such as mutation strategies in a DE algorithm [53, 54, 63].

Algorithm ensembles [62] and portfolios [42] are concerned with dividing a function eval-

uation budget e↵ectively between various meta-heuristics which make up the ensemble

or portfolio. Finally, the first memetic algorithms attempted to improve the exploitation
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ability of meta-heuristic algorithms [104], but today multiple memetic algorithm com-

ponents or memes can be selected for use in a memetic algorithm [30]. All the areas

discussed in this thesis have, however, a set of low level operators, memes, heuristics, or

algorithms whose use is governed by a high level strategy which performs some sort of

learning over time to decide which low level component should be used at what time.

Unfortunately, an analysis of current best practice quickly makes it clear that research

within these di↵erent multi-method areas is often performed in isolation with little in-

teraction between the di↵erent research areas.

Another factor for consideration is that algorithms are not always compared on the

same benchmark problem set and the selection of constituent algorithms and algorithm

control parameters such as population size can also have a significant impact on the

fairness with which algorithms are compared. It thus makes sense to be able to com-

pare multi-method algorithms in a meaningful way, the same constituent algorithms

and control parameters should be used for each investigated multi-method framework.

Unfortunately, this is not common practice in literature making it exceedingly di�cult

to gauge the success of di↵erent multi-method algorithms from di↵erent research areas.

The value that can be obtained from a comparison of di↵erent multi-method algorithms

under strictly similar conditions, should thus not be underestimated.

Based on the available literature, four “unchallenged” algorithms were identified from

the various multi-method research areas. These algorithms are PAP [122], the FAUC-

Bandit method [54], EEA-SLPS [177], and AMALGAM-SO [172].

2.3 Chapter summary

This chapter acted as both an introduction to optimization and commonly used single-

method optimization methods, as well as providing a literature review of multi-method

literature. The first part of the chapter described the basics of, as well as notable

variations of, a number of single-method optimization algorithms used throughout this

thesis, namely PSO, DE, GA, ES, and TS. The multi-method literature looked at all

fields addressing the algorithm selection problem, namely ensemble algorithms, portfolio

algorithms, hyper-heuristics and adaptive operator selection. A number of algorithms
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di↵erentiated themselves as state-of-the-art algorithms in each field, namely the FAUC-

Bandit method, PAP, EEA-SLPS, and AMALGAM-SO.
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Chapter 3

The Heterogeneous

Meta-hyper-heuristic

The use of meta-heuristics as low level heuristics is a novel concept in hyper-heuristic

research. A framework thus needs to be defined which should firstly enable the e↵ective

simultaneous use of meta-heuristics in a hyper-heuristic context. Secondly, it should

be of use throughout the rest of the thesis as basis for the investigation of various

algorithmic aspects in a meta-hyper-heuristic context. The framework is described in

detail throughout the rest of this chapter.

3.1 Algorithm description

The proposed framework consist of a number of algorithmic elements. As indicated

in Figure 3.1, these elements consists of a common population of entities, where each

entity represents a candidate solution which is adapted over time, a set of low level

meta-heuristic (LLM) algorithms, and an acceptance strategy.

At the start of the optimization run, each entity is randomly allocated to a LLM

from the set of available LLMs. The allocated LLM is then used to adapt the entity

for the following k iterations. This entity-to-LLM allocation is then updated on a dy-

namic basis throughout the optimization run at each subsequent k iterations while the

47
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Figure 3.1: The heterogeneous meta-hyper-heuristic.

common parent population is continuously updated with better solutions. Throughout

this process, the performance of the various LLMs is stored as defined by Q�m(t), the

total improvement in fitness function value of all entities assigned to the mth LLM from

iteration t� k to iteration t. More specifically,

Q�m(t) =
|III

m

(t)|X

i=1

(f(xxxi(t� k))� f(xxxi(t))) 8i 2 IIIm(t) (3.1)

where f(xxxi(t)) denotes the objective function value of entity i at time t and IIIm(t) is

the set of entities allocated to the mth LLM at time t. Q�m(t) is used throughout the

optimization process as input to the HMHH selection process responsible for allocating

entities to LLMs. Various entity-to-LLM allocation strategies can be used in the context

of the HMHH algorithm. A number of these strategies are investigated in the next

chapter.

The main idea of the HMHH algorithm is that an intelligent algorithm can be evolved

which selects the appropriate LLM at each kth iteration to be applied to each entity within
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the context of the common parent population, to ensure that the population of entities

converge to a high quality solution. Each entity can then use unique meta-heuristics that

are helpful for dealing with the specific search space characteristics it is encountering at

that specific stage of the optimization process. The HMHH algorithm thus functions as

a single method with di↵erent search operators. As an example, if entity i at time t is

allocated to a GA, entity i “sees” all other entities as individuals in a GA population

and utilizes these other “individuals” in the crossover and mutation operators used to

generate entity i at time t + 1. The fact that di↵erent operators can be applied to

each entity also implies that addition information must be stored per entity throughout

the optimization process. An examples of this type of information is the best previous

position found by the entity since the start of the optimization process. Various entity-

specific algorithm control parameters such as for example DE scaling factors are stored

while an entity is allocated to the LLM in question (DE) and reset as soon as the entity

is allocated to another LLM.

Furthermore, unlike with for example PAP, all entities have access to the genetic

material of all other entities, as if part of a common population of entities. Finally, with

reference to Burke et al.’s classification [18], the heterogeneous meta-hyper-heuristic

algorithm can be considered a heuristic selection methodology and an online learning

perturbation hyper-heuristic. The HMHH pseudocode is provided in Algorithm 3.1.

The initial implementation of the meta-hyper-heuristic algorithm made use of seven

LLMs, selected for their reputation as successful single-method optimization algorithms:

• AGAwith a floating-point representation, tournament selection, blend crossover [51,

116], and self-adaptive Gaussian mutation [65]

• The guaranteed convergence PSO (GCPSO) [166]

• The barebones PSO algorithm (BBPSO) [84]

• A DE algorithm variation (DE/best/bin) [153]

• A second DE algorithm variation (DE/rand/bin) [153]

• A third DE algorithm variation (DE/rand-to-best/bin) [153]
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Initialize the parent population XXX

Ai(t) denotes the algorithm applied to entity i at iteration t

k denotes the number of iterations between entity-to-algorithm allocation

t = 0

for All entities i 2XXX(0) do
Randomly select an initial algorithm Ai(0) from the set of LLMs to apply to entity

i
end

while no stopping condition is satisfied do

for All entities i 2XXX(t) do
Apply constituent algorithm Ai(t) to entity i for k iterations

end

t = t+ k

Calculate Q�m(t), the total improvement in fitness function value of all entities

assigned to algorithm m from iteration t� k to iteration t using Equation (3.1).

for All entities i 2XXX(t) do
Use Q�m(t) as input to select LLM Ai(t) according to the specified selec-

tion mechanism. (The alternative selection mechanisms are considered in Sec-

tion 4.1).

end

end

Algorithm 3.1: The heterogeneous meta-hyper-heuristic.

• The covariance matrix adapting ES algorithm (CMAES) [3]

A slight modification had to be made to the CMAES algorithm to ensure that it

functions e↵ectively in the HMHH framework: When the population has reached certain

conditions CMAES terminates even though the other LLMs are still available for selec-

tion. The complete list of CMAES stopping conditions is described in Section 6.1.3. One

example of a stopping condition is when the condition number of the covariance matrix

exceeds 1014. In such a case, the entities previously assigned to CMAES are redistributed

among the other LLMs as defined by the selection strategy of the algorithm.
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3.2 Summary

The purpose of this chapter was to present the HMHH algorithm framework which

is used throughout the rest of this thesis to investigate various algorithmic aspects crit-

ical to meta-hyper-heuristic performance. The next chapter elaborates on the initial

investigations conducted into alternative HMHH design configurations.
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Chapter 4

Initial Analysis of the

Meta-hyper-heuristic Framework

Various design alternatives exist with regard to the implementation of the HMHH frame-

work. The aim of this chapter is to investigate the various design alternatives such as the

determination of the selection strategy and the selection of LLMs. Section 4.1 describes

the investigation conducted into the use of alternative evolutionary selection operators

as entity-to-algorithm selection strategies in the HMHH framework. The impact of the

set of LLMs is investigated in section 4.2. Section 4.3 considers the use of local search

in the HMHH framework. Various local search design issues, such as the selection of

the entity to which the local search operators is to be applied, and the application of

the local search to heuristic versus solution space, is considered. Finally, the chapter is

concluded in Section 4.4.

4.1 Entity-to-algorithm selection strategies

When simultaneously using more than one algorithm to solve optimization problems,

two questions arise:“How should the entities be allocated to LLMs for optimization?”

and “When should the entity-to-LLM allocation be updated?” The answer to the first

question may lie in the traditional EA literature. Selection, one of the main EA op-

erators, determines how entities should be allocated to LLMs to allow good solutions

52
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to propagate to subsequent generations. Attempting to utilize the traditional selection

operators used in EAs to allocate entities to LLMs in multi-method optimization strate-

gies, is a promising research area which is explored throughout the rest of this section.

Section 4.1.1 provides a brief overview of a number of evolutionary selection strategies

before Section 4.1.2 describes the empirical comparison between the selection strategies.

4.1.1 Evolutionary selection strategies

A number of traditional evolutionary selection strategies have been selected for investi-

gation in this section based on their successful application in single-method EAs. These

strategies are described below:

• Random selection

The random selection strategy (RAND) randomly assigns entities to LLMs every

kth iteration. The probability of selecting an LLM to be applied to an entity is thus

equal to 1
n
a

, where na is the number of LLMs available for selection. No memory of

previous good performance is retained and no learning is attempted. This strategy

has a very low selective pressure.

• Roulette-wheel selection

Roulette-wheel selection (ROUL) [74] is a proportional selection strategy which

biases the selection towards LLMs which performed well during the previous k

iterations. This selection strategy has the highest selection pressure of all the

investigated strategies, which could lead to the hyper-heuristic getting stuck in a

local optimum. The probability of selecting the mth LLM, pm, is given as

pm =
Q�m(t)Pn
a

i=1 Q�i(t)
, (4.1)

where Q�m(t) is defined as the total improvement in fitness function value of all

entities assigned to the mth LLM from iteration t� k to iteration t. All algorithms

in this thesis considers only the last k iterations, where k was tuned by means of

F-race [10]. This decision was based on the findings of Bai et al. [5] that hyper-

heuristics with short-term memory produce better results than both algorithms

with no memory and infinite memory.
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• Tournament selection

Tournament selection (TOUR) [13], with a tournament size, nt, of three and a

population size, ns of 100, has a slightly higher selective pressure than random se-

lection. For each entity in the population, nt LLMs are randomly selected from the

set of available LLMs. These LLMs are then compared according to their perfor-

mance over the past k iterations based on Q�m(t). The entity under consideration

is then assigned to the LLM which showed the best improvement over the last k

iterations.

• Rank-based selection

Rank-based selection (RANK) [7] works on the basis that all LLMs are ranked

according to their performance during the previous k iterations, where the best

performing LLM has the lowest rank and the worst performing LLM has the largest

rank. This information is then used to determine the probability of selection. If

linear ranking is used, the probability of selecting the mth LLM, pm, is given as

pm =
�̂+ (rm(t)/(na � 1))(�̂� �̃)

na

(4.2)

where rm(t) is the rank of LLM m at iteration t, 1  �̂ � 2, and �̃ = 2 � �̂.

Rank-based selection is thought to have a lower selection pressure when compared

to Roulette-wheel selection since the number of entities which can be allocated to

a single LLM is limited, preventing fast convergence to an initial good performing

LLM.

• Boltzman selection

Boltzman selection (BOLT) [98] is directly derived from simulated annealing [85].

The selection probability of the mth LLM is given as

pm =
1

1 + e�Q
�m

(t)/T
Bolt

(t)
(4.3)

where TBolt(t) is defined as the temperature parameter which decreases linearly over

time. The idea is that all LLMs are provided an almost equal opportunity to be

selected at the start of the optimization run. However, as the run progresses, more
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emphasis is placed on the selection of better performing LLMs. This strategy also

has a relatively low selection pressure similar to the tournament selection strategy.

• TS-based selection

The TS-based heuristic selection strategy (TSHH) makes use of the heuristic se-

lection mechanism developed by Burke et al. for timetabling problems [20]. Here

LLMs compete with each other based on the principles of reinforcement learning

and a tabu list is maintained for each entity to ensure that poor performing LLMs

are not repeatedly applied to the same entity. The selection strategy ranks the

LLMs based on their performance with regard to a specific entity. The rank of the

mth LLM with respect to entity i, rim, is increased by one unit for every improving

move and decreased by one unit for every non-improving or equal move. A high

rank indicates good performance and a low rank indicates poor performance. The

highest ranking non-tabu LLM is always selected for use and the LLM that has

spent the longest time in the tabu list is made non-tabu as soon as the maximum

size of the tabu list is exceeded. TSHH has a relatively high selection pressure,

similar to the rank-based strategy.

4.1.2 Comparative analysis of alternative selection strategies

The various strategies were inserted in the framework described in Chapter 3 and were

evaluated on the first 17 problems of the 2005 IEEE Congress of Evolutionary Com-

putation benchmark problem set [155]. This benchmark problem set allows algorithm

performance evaluation on both uni-modal and multi-modal functions and includes var-

ious expanded and hybridized problems, some with noisy fitness functions.

The algorithm control parameters values listed in Table 4.1 were found to work well

for the algorithms under study in previous research by the author of this thesis [64]. The

number of iterations between re-allocation, k, was, however, tuned by means of F-Race.

F-race is a racing algorithm which makes use of a statistical approach to select the best

control parameter configuration out of a set of candidate configurations under stochastic

evaluations [10]. The notation a �! b is used to indicate that the associated parameter

is decreased linearly from a to b over 95% of the maximum number of iterations, Imax.
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Table 4.1: HMHH algorithm parameters.

Parameter Value used

Number of entities in common population (ns) 100

Number of iterations between re-allocation (k) 5

Maximum number of iterations (Imax) nxns

PSO parameters

Acceleration constant (c1) 2.0 �! 0.7

Acceleration constant (c2) 0.7 �! 2.0

Inertia weight (w) 0.9 �! 0.4

DE parameters

Probability of reproduction (pr) 0.75 �! 0.25

Scaling factor (F ) 0.75 �! 0.125

GA parameters

Probability of crossover (pc) 0.6 �! 0.4

Probability of mutation (pmut) 0.1

Blend crossover parameter (↵) 0.5

GA tournament size (Nt) 3

CMAES parameters As specified in [3].

Tournament selection parameters

Algorithm selection tournament size (nt) 3

Rank-based selection parameters

Number of o↵spring of best entity (�̂) 3

Boltzman selection parameters

Temperature parameter (T ) 1⇥ 105 �! 0

Rank-based Tabu selection parameters

Size of tabu list 3

The results for each strategy on each of the 17 CEC 2005 problems in dimensions 10,

30, and 50, were recorded over 30 independent simulation runs. If the global optimum

was reached within the specified accuracy (10�6 for problems 1 to 5 and 10�2 for the rest
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of the problems), the run was stopped and the number of function evaluations required,

#FEs, to reach the global optimum, was recorded. Where the global optimum could not

be found within the maximum number of iterations, Imax, the di↵erence, FFV , between

the final solution at Imax and the global optimum, was recorded. This same experimental

setup is used throughout the rest of the thesis to ensure that algorithms are evaluated

under the same conditions. The results of the selection strategy comparison is presented

in Tables B.1 to B.3, where µ and � denote the mean and standard deviation associated

with the corresponding performance measure and #FEs denotes the number of function

evaluations which were needed to reach the global optimum within a specified accuracy.

Mann-Whitney U tests were used to evaluate the various strategies according to the

number of iterations required to obtain the final fitness function value, as well as the

quality of the actual fitness function value. The results in Table 4.2 were obtained by

comparing each dimension-problem combination of the strategy under evaluation, to all

of the dimension-problem combinations of the other strategies. For every comparison, a

Mann-Whitney U test at 95% significance was performed (using the two sets of 30 data

samples of the two strategies under comparison) and if the first strategy statistically

significantly outperformed the second strategy, a win was recorded. If no statistical

di↵erence could be observed a draw was recorded. If the second strategy outperformed

the first strategy, a loss was recorded for the first strategy. The total number of wins,

draws and losses were then recorded for all combinations of the strategy under evaluation.

To illustrate, (2-35-14) in row 1 column 3 of Table 4.2, indicates that random selection

outperformed boltzman selection twice over the benchmark problem set, while 35 draws

and 14 losses were recorded.

To further analyze the exploration-exploitation behaviour of the various selection

strategies, one of the benchmark problems was randomly selected and the population

diversity of each of the six selection strategies was plotted over time in Figure 4.1. In

this thesis, population diversity or solution space diversity (SSD) is defined as

SSD =
1

ns

n
sX

i=1

vuut
n
xX

j=1

(xij(t)� xj(t))2 (4.4)

where ns is the number of entities in the common parent population and nx is the number

of dimensions, xij(t) is the position of the jth dimension of the ith entity at time t, and
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Table 4.2: Hypotheses analysis of alternative selection strategies.

RAND ROUL BOLT TOUR RANK TSHH TOTAL

RAND NA 26-16-9 2-35-14 11-22-18 2-31-18 12-23-16 53-127-75

ROUL 9-16-26 NA 7-15-29 5-20-26 5 - 16-30 2 -22-27 28-89-138

BOLT 14-35-2 29-15-7 NA 14-20-17 3-45-3 15-21-15 75-136-44

TOUR 18-22-11 26-20-5 17-20-14 NA 16-23-12 11-27-13 88-112-55

RANK 18-31-2 30-16-5 3-45-3 12-23-16 NA 16-19-16 79-134-42

TSHH 16-23-12 27-22-2 15-21-15 13-27-11 16-19-16 NA 87-112-56

xj(t) is the mean of the jth dimension of all particles in the swarm at time t [171].

From the results it is clear that both the random selection and roulette-wheel selec-

tion strategies performed very poorly. This confirms our hypothesis that simply using a

number of di↵erent algorithms interchangeably throughout the optimization run, is insuf-

ficient to obtain good multi-method algorithm performance and that a more intelligent

selection strategy promotes better performance. The poor performance of the roulette-

wheel selection strategy can be attributed to the high selective pressure and associated

quick convergence of the fitness-based algorithms as can be seen in Figure 4.1.

The better performing strategies were those with less selective pressure which al-

lowed the LLMs more time to explore and converge slowly to better performing strate-

gies. Rank-based selection performed the best of all selected strategies over the entire

problem set, with Boltzman selection second and tournament selection third. A closer

inspection of the results in Tables B.1 to B.3 showed that the good performance of

tournament selection could be traced to its performance on uni-modal problems, while

the TS-based selection strategy was the best performing strategy when solving more

multi-modal problems. It is suspected that the advantages of a multi-method algorithm

becomes more evident as the complexity of the problem increases and since the TSHH

algorithm showed the best performance on the more di�cult multi-modal problems, it

was selected for further investigation.
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Figure 4.1: Solution space diversity of di↵erent selection strategies on the 11th CEC 2005

problem in 10 dimensions.

4.2 Investigating the selection of low level

meta-heuristics in the meta-hyper-heuristic

framework

At this stage of the thesis, after the main structure of the proposed HMHH was defined

with regard to the selection strategy, it became necessary to return to the selection of

the set of available LLMs. It was suspected that the properties of the set of LLMs has

a significant influence on algorithm performance.

One of the main ideas of using multiple algorithms in the same optimization run is

that the algorithms should complement each other. An example of this complementarity

would be when the set of LLMs compensates for the strength and weaknesses of each
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individual LLM. The aim of this section is to redefine a set of complementary LLMs and

compare this new set to the previously used set to identify any performance gains.

There are various methods to define the extent to which a set of algorithms com-

plement each other. Hadka and Reed [67] based the selection of mutation strategies

available to their algorithm on the distribution of o↵spring associated with various op-

erators. Montazeri et al. [103] ensured that their set of low level heuristics contains

both exploiter heuristics, designed for intensification, and explorer heuristics, aimed at

diversification. Peng et al. [122] proposed a pairwise metric which can be used to de-

termine the risk associated with an algorithm failing to solve the problem in question.

Engelbrecht [49] selected complementary swarm behaviours in a heterogeneous PSO by

analyzing the exploration-exploitation finger prints of the di↵erent PSO updates.

Two aspects were considered in the selection of the new proposed set of LLMs. Firstly,

the single-method performance of a LLM on the benchmark set used in this thesis was

considered. Secondly, the diversity profiles of the LLMs were considered and the selection

was made to ensure a diverse set of LLMs based on their diversity profiles. The proposed

improved set of LLMs consists of the following algorithms:

• AGAwith a floating-point representation, tournament selection, blend crossover [51]

[116], and self-adaptive Gaussian mutation [65]

• The guaranteed convergence PSO algorithm (GCPSO) [166]

• The self-adaptive DE algorithm with neighborhood search (SaNSDE) [179]

• The covariance matrix adapting ES algorithm (CMAES) [3]

As illustrated in Figure 4.2 for the 11th 2005 IEEE Congress of Evolutionary Com-

putation benchmark problem set in 50 dimensions [155], the population diversity of the

GCPSO algorithm decreases at a much slower rate than the population diversity of, for

example, the CMAES and GA algorithms. The idea is that, during di↵erent stages of the

optimization process, di↵erent exploration and exploitation rates are required. By mak-

ing sure that algorithms that address the exploration-exploitation trade-o↵ di↵erently

are available, the chances of countering an improper population diversity management

strategy by one algorithm from the set, is greater. For example, if three out of the four
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LLMs are in exploration mode at the start of the optimization process, only a percentage

of the function evaluations are wasted on the single algorithm which is busy exploiting

a local minimum.

Figure 4.2: Diversity profiles of di↵erent LLMs on the 11th CEC 2005 problem in 50 dimen-

sions.

The results used for the comparison between the two sets of LLMs can be found in

Tables B.3 and B.6. The results in Table B.3 were obtained by a TSHH algorithm utiliz-

ing a set of LLMs consisting of the GA, GCPSO, BBPSO, DE/rand/bin, DE/best/bin,

DE/rand-to-best/bin, and CMAES. The results in Table B.6 were obtained by a TSHH

algorithm utilizing the diverse set of LLMs described above. The frequency of use of

each of the LLMs in the old and new set is indicated in Figures 4.3 and 4.4. It is encour-

aging to note that in both figures the worse performing algorithms, such as the BBPSO

algorithm in Figure 4.3 and the GA and GCPSO algorithm in Figure 4.4, has a lower

frequency of selection than the better performing algorithms such as CMAES.

The number of Mann-Whitney wins, draws and losses were calculated as 19 wins, 20
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Figure 4.3: Frequency of use of each of the LLMs in the TSHH algorithm of Section 4.1 on

the 11th CEC 2005 problem in 50 dimensions. Frequency of use is determined by the number

of entities allocated to the LLM under consideration per iteration.

Figure 4.4: Frequency of use of each of the LLMs in the TSHH algorithm with a new set of

diverse LLMs on the 11th CEC 2005 problem in 50 dimensions. Frequency of use is determined

by the number of entities allocated to the LLM under consideration per iteration.

draws, and 12 losses obtained by the new diverse set of LLMs when compared to the

previous set of LLMs. These results indicate that a statistically significant performance

benefit can be obtained by selecting LLMs that complement each other with regard to

their diversity profiles. This improved set of LLMs are therefore used throughout the

rest of the thesis when investigating additional algorithmic aspects.
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4.3 Investigating the use of local search in the meta-

hyper-heuristic framework

As mentioned in Chapter 2, one of the earliest examples of the hybridization of optimiza-

tion algorithms can be found in the field of memetic computation. Similar to the use

of local search (LS) strategies to improve meta-heuristic performance [104], this section

investigates the use of local search strategies for improving hyper-heuristic performance.

An overview of relevant existing work is provided in Section 4.3.1. Then the TSHH

algorithm from Section 4.1 is used as a basis for investigating the selection of entities for

refinement by the local search algorithm in Section 4.3.2.

4.3.1 An overview of local search and hyper-heuristics

A number of di↵erent strategies have been used to exploit the benefits of local

search algorithms to improve hyper-heuristic algorithm performance. Firstly, local search

strategies have been used as high-level hyper-heuristic strategies [117, 120]. These hyper-

heuristics consist of a local search algorithm which manipulates a number of low level

algorithms. A perturbative hyper-heuristic using the “Only improvements” acceptance

strategy [35] is an example of this type of local search application. The aim of perturba-

tive hyper-heuristics is to improve a candidate solution through a process of automati-

cally selecting and applying one of a set of available heuristics to an existing candidate

solution. A detailed review of a large number of perturbative hyper-heuristics is provided

in [17].

Secondly, local search algorithms can also be incorporated into the set of available

low level heuristics [121]. This option can have a significant e↵ect on the diversity of

the set of LLMs available for selection, especially where meta-heuristics and local search

algorithms are utilized in combination as low level heuristics.

Finally, local search can be applied directly to the solution space. A good example of

this is Qu and Burke’s graph-based hyper-heuristic framework [125] where a local search

algorithm is applied directly to the solution space in conjunction with a hyper-heuristic

strategy which is applied to the heuristic space.
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4.3.2 Investigating entity selection in a local search-based hyper-

heuristic

Four selection mechanisms for selecting entities to which a local search algorithm is to

be applied are investigated in this section:

• LS1HH - local search is applied to only the best entity of each iteration at each

iteration.

• LS2HH - local search is applied to a single randomly selected entity at each itera-

tion.

• LS3HH - roulette-wheel selection is applied to the entire population to select an

entity at each iteration.

• LS4HH - the TS-based selection mechanism is used to select one or more entities

at each iteration for further exploitation.

Application of the local search algorithm to the best performing entity is thought to

be productive since the assumption is that this entity has a greater probability of being

positioned in the basin of attraction of a global optimum. On the other hand, LS1HH also

has increased risk of being stuck in a local minimum due to its high selective pressure.

Because LS3HH is based on roulette-wheel selection it has a lower selective pressure than

LS1HH, but a higher selective pressure than LS2HH.

It should be noted that the number of entities to which local search should be ap-

plied was defined a priori for the first three algorithms. At each iteration a selection

mechanism independent of the hyper-heuristic is applied to the solution space to select

the entities to be exploited. LS4HH makes the local search algorithm available for se-

lection and application to the algorithm entities by defining the local search as one of

the low level heuristics. The high level hyper-heuristic strategy is thus responsible for

selecting the number of entities per iteration, as well as the specific entities of the pop-

ulation to which the local search algorithm should be applied. Schematic depictions of

the algorithm structures is provided in Figures 4.5 and 4.6.
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Figure 4.5: A schematic depiction of the structure of LS1HH, LS2HH, and LS3HH.

Throughout the rest of the thesis, a Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Quasi-Newton method with a cubic line search procedure, as implemented in Matlabs

optimization toolbox, was used as local search algorithm. The BFGS algorithm was

selected since it outperformed simpler local search algorithms. The same experimental

setup of the previous section was used to evaluate the four algorithm variations and the

results are recorded in Tables B.4 and B.5. The Mann-Whitney U test wins-draws-losses

are provided in Table 4.3.
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Figure 4.6: A schematic depiction of LS4HH.

It is clear from the results that application of the local search algorithm directly to

the search space independently of the hyper-heuristic is a better strategy than defining

the algorithm as a low level heuristic. Due to the line search which uses 20 function

evaluations per application and is included in a single iteration of the local search al-
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Table 4.3: Hypotheses analysis of alternative local search selection strategies.

LS1HH LS2HH LS3HH LS4HH TOTAL

LS1HH NA 1-49-1 2-48-1 33-18-0 36-115-2

LS2HH 1-49-1 NA 2-48-1 33-18-0 36-115-2

LS3HH 1-48-2 1-48-2 NA 34-17-0 36-113-4

LS4HH 0-18-33 0-18-33 0-17-34 NA 0-53-100

gorithm, the algorithm is computationally very expensive and consumes a large number

of function evaluations per iteration. Whereas LS1HH to LS3HH limits the number of

entities which can be exploited by means of local search to one, no such restrictions

are placed on LS4HH. It is thus suspected that a larger computational budget is used

earlier during the optimization run in the LS4HH algorithm when compared to the other

three algorithms. LS1HH, LSHH2, and LSHH3 performed equally well with almost no

statistically significant di↵erence between their performance.

4.4 Summary

This chapter described the initial investigations into the meta-hyper-heuristic framework.

Firstly, various traditional selection methods borrowed from EAs were investigated, of

which the best performance was obtained by the TS-based strategy. Secondly, the impact

of alternative LLMs was investigated and finally, the use of local search strategies to

improve the performance of a meta-hyper-heuristic algorithm was considered. Various

issues such as the application of local search directly to the search space versus the

heuristic space and the mechanisms used to select entities for further exploitation were

investigated. Experimental results indicated that application of the local search directly

to the solution space to a single randomly selected individual per iteration is the best

local search strategy.
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Chapter 5

Diversity Management in the

Meta-hyper-heuristic Framework

Although diversity management is not a new concept and is actually relatively common in

single-method literature, its use in the multi-method algorithm world is relatively limited.

The aim of this chapter is to investigate whether actively controlling diversity influences

algorithm performance in a hyper-heuristic framework. Section 5.1 provides a brief

overview of existing diversity management research. Hyper-heuristics lend themselves to

two types of diversity management, namely solution space diversity (SSD) management,

which is addressed in Section 5.2, and heuristic space diversity (HSD) management,

which is addressed in Sections 5.3 and 5.4. Finally, the main findings of this chapter are

summarized in Section 5.5.

5.1 An overview of existing diversity management

strategies

Diversity management is an important concept that has received increasing attention

recently. Traditionally, the ability of an optimization algorithm to balance exploration

and exploitation has been shown to have a significant impact on its performance [39]. If

the algorithm converges too quickly, it is more likely to become stuck in a local optimum.

If the algorithm focuses too much on exploring new areas of the search space near the

68
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end of the optimization run, time is wasted on exploring the search space which could

have been used to further refine promising solutions.

Various examples of algorithms which attempt to either further exploit the solution

space around good performing solutions [125], or improve the overall exploration abil-

ity of the hyper-heuristic by applying diversity management mechanisms directly to the

solution space can be found in the hyper-heuristic literature. The AMALGAM-SO al-

gorithm [172] makes use of a species selection mechanism to maintain solution space

diversity. Sabar et al. [138] and Veerapen et al. [169] took both solution space diver-

sity and solution quality into account when allocating entities to algorithms. Segredo et

al. [143] converted a single objective problem into a multi-objective optimization problem

through the addition of a second diversity-based objective. A hyper-mutation operator

is triggered in the evolutionary-based hyper-heuristic of Salcedo-Sanz et al. [141] when

the solution space diversity drops to zero.

Ren et al. [132] identified the issue of low level heuristic parameters that could in-

fluence performance. They addressed this issue through the development of a hyper-

heuristic with low level parameter optimization consisting of a low level heuristic man-

agement module and a low level parameter management model. The additional param-

eter optimization variables did, however, have a significant influence on the size of the

search space. This issue was addressed by means of a heuristic space reduction mech-

anism. The low level heuristics were subdivided into explorers and exploiters and the

algorithm continually alternated between the two types of heuristics in an attempt to

manage the exploration-exploitation trade-o↵.

Solution space diversity management is also an important consideration in a field

closely related to hyper-heuristics, namely memetic computing [30]. A detailed review

of diversity management in memetic computing and other fields is provided in [39].

Notable examples of using solution space diversity to control the exploration-exploitation

trade-o↵ of MAs are the fitness-diversity adaptive local search algorithms of Caponio et

al. [24]. Fitness diversity-adaptive algorithms are based on the idea of using population

diversity to guide the exploration versus exploitation balance of the algorithm. Multiple

refinement methods are usually involved, each with a di↵erent impact on solution space

diversity. A fitness-diversity measure is calculated at each iteration and a self-adaptive
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criterion determines which refinement method is applied. Caponio et al’s algorithm made

use of a Hooke-Jeeves [75] and Nelder-Mead simplex algorithm [106], but a large number

of other fitness-diversity-based algorithms have also been proposed utilizing di↵erent

types of diversity measures and di↵erent algorithms to increase or decrease population

diversity [25, 87, 159].

There are, however, a number of issues that have been identified with regard to

the use of fitness-diversity adaptive algorithms. A comparative study of di↵erent al-

gorithms [109] has shown that algorithm performance is significantly impacted by the

choice of diversity measure used and that the best diversity measure is dependent on

both the problem features and characteristics of the algorithm framework. Furthermore,

a fitness-based diversity measure is normally used instead of calculating the diversity of

the actual solutions in order to reduce the computational complexity of the algorithms.

Depending on the nature of the fitness landscape this could lead to an incorrect indica-

tion of population diversity. For example, consider the case where there are two similar

sized local minimums a significant distance apart in the fitness landscape. A fitness-

based diversity measure would indicate that all solutions congregating near both these

minimums are close to each other in the search space even though two solutions from

di↵erent minimums are clearly far apart.

Based on the importance of e↵ective management of solution space diversity in tra-

ditional optimization algorithms, it is not farfetched to think that the diversity of the

heuristic space and how it is managed throughout the optimization run, could have an

important impact on hyper-heuristic performance.

Recently, researchers have started to dynamically update the set of low level heuristics

during the optimization run. Sim et al. [146] made use of a self-organizing network of

low level heuristics to ensure that di↵erent heuristics were available to cover di↵erent

areas of the search space. Random heuristics were added at fixed time intervals and an

a�nity measure related to the di↵erence in performance between the di↵erent low level

heuristics was used to determine when an under-performing heuristic should be removed.

The evolutionary selection hyper-heuristic of Mısır et al. [102] makes use of an adap-

tive dynamic heuristic set strategy, a move acceptance strategy, and a re-initialisation

mechanism to manage the exploration-exploitation trade-o↵. A number of decision mech-
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anisms for activating or de-activating these sub-mechanisms were also employed. The

algorithm won the first international domain heuristic search challenge where problems

from six di↵erent domains were considered [16].

Cara�ni et al. [26] investigated the advantages of employing diverse local search

components during the development of the Parallel Memetic Structure (PMS). When

compared to its individual components, the di↵erence in performance was not that obvi-

ous for low dimensional problems (30 dimensions), but PMS outperformed its component

algorithms for problems of 1000 dimensions. PMS has also been successfully used in a

highly successful computational prototype for automatic design of optimization algo-

rithms: the Separability Prototype for Automatic Memes [27].

From the above discussion it is clear that a number of researchers have already con-

sidered techniques to improve the exploration-exploitation trade-o↵ in a hyper-heuristics

context. The selection of low level heuristics with regards to diversity management and

the e↵ective management of the set of low level heuristics over time have also been stud-

ied. However, to the best of the author’s knowledge, this chapter documents the first

attempt to define and measure the concept of heuristic space diversity and to manage

the diversity of entity-to-LLM allocation to improve hyper-heuristic performance.

5.2 Investigating alternative solution space diversity

management strategies

The first part of this chapter focuses on the e↵ect of solution space diversity on meta-

hyper-heuristic performance. Here, the e↵ective balance of exploration and exploitation

by applying di↵erent refinement methods depending on the population diversity, is ex-

plored. The strategies in this section is inspired by a simple concept. At the start of

an optimization run a higher population diversity allows for greater exploration of the

search space. Towards the end of the optimization run a lower population diversity

encourages the algorithm to further exploit good solutions. This behaviour can be en-

couraged through the definition of a linearly decreasing upper bound, UBdiv(t), and a

lower bound, LBdiv(t), which can be used to guide the solution space diversity to decrease
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over time as shown in Figure 5.1. The bounds can be defined as follows:

UBdiv(1) =SSD(1) + �SSD(1) (5.1)

UBdiv(Imax) =�SSD(1) (5.2)

LBdiv(1) =SSD(1)� �SSD(1) (5.3)

LBdiv(Imax) =0 (5.4)

where � is a positive constant between 0 and 1.

Figure 5.1: Upper and lower SSD bounds.

Throughout the rest of this section, di↵erent variations on the idea of managing the

solution space diversity to fall within linearly decreasing bounds throughout the opti-

mization run, is investigated. The first investigation focuses on exploitative SSD control

strategies, in other words, strategies that aim to reduce the solution space diversity.

Three algorithm variations were investigated:

• TSHH - This algorithm is the standard HMHH algorithm implemented as de-

scribed in Section 4.2. No e↵ort is made to manipulate the SSD in this algorithm,

thus it will act as a baseline for comparing the other two SSD control strategies.
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Table 5.1: Hypotheses analysis of alternative solution space diversity reduction control mech-

anisms.

TSHH LSHH ALSHH TOTAL

TSHH NA 32� 17� 2 4� 46� 1 36� 63� 3

LSHH 2� 17� 32 NA 0� 19� 32 2� 36� 64

ALSHH 1� 46� 4 32� 19� 0 NA 33� 65� 4

• LSHH - This algorithm, LS2HH from Section 4.3.2, makes use of a local search

algorithm applied consistently throughout the optimization run. The local search is

applied to a single randomly selected entity from the population at each iteration.

• ALSHH - This algorithm can be considered an adaptive local search algorithm.

Every time SSD(t) exceeds the upper diversity bound, UBdiv(t), the local search

algorithm is applied to a single randomly selected entity from the set of candidate

solutions.

The results of the comparison between the first three SSD control strategies are

presented in Tables B.6 and B.7. The Mann-Whitney U wins, draws and losses are

provided in Table 5.1.

The results show that the LSHH algorithm does not perform well with the new set

of LLMs selected in Section 4.2. Furthermore, the di↵erence in performance between

TSHH and ALSHH is relatively insignificant. TSHH is the preferred algorithm between

the two due to the reduced computational complexity in comparison to ALSHH which

incorporates a local search operator.

The second part of the investigation into alternative SSD control strategies focused

on the impact that a diversity enhancing mechanism aimed at increasing SSD(t) can

have on hyper-heuristic performance. For this investigation Vrugt et al.’s [172] species

selection mechanism was used to increase the solution space diversity of the population.

Assuming a minimization problem, the species selection mechanism takes as input

the union of the candidate o↵spring population ccc(t + 1) and the previous population

XXX(t) sorted in order of decreasing fitness. This combined population is denoted by RRR(t).

As shown in Algorithm 5.1, the best solution of RRR(t) is initially copied into XXX(t + 1).
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Then, in an iterative procedure, the next individual r in RRR(t) is compared to the species

currently present in XXX(t + 1). If the Euclidean distance of this individual to all points

in XXX(t + 1) is larger than a user-defined distance, ✏, then r is added to XXX(t + 1). This

process is repeated ns times until the resulting population is of size ns. The distance, ✏,

is increased from 10�10� to 10�1�, where � = xmax � xmin, as described in [172].

Let XXX(t+ 1) be the population of entities at time t+ 1

Let RRR(t) be the union of population ccc(t + 1) and XXX(t) sorted in order of decreasing

fitness

Let D(p, r) be the Euclidian distance between entity p and r

Update the distance ✏

Set XXX(t+ 1) = ;
while |XXX(t+ 1)| < ns do

Get best unprocessed member rrr of RRR(t)

for ppp 2XXX(t+ 1) do

D(ppp, rrr) =
qPn

x

j=1(xpj � xrj)2

end

if no ppp exists for which D(ppp, rrr)  ✏ then
XXX(t+ 1) =XXX(t+ 1) [ rrr

end

end

Algorithm 5.1: The species selection mechanism of [172].

Three algorithm variations making use of the species selection mechanism were in-

vestigated:

• TSHH - This algorithm is again the standard HMHH algorithm implemented as

baseline algorithm.

• DIVHH - This algorithm employs the species selection approach at each n itera-

tions to increase solution space diversity.

• ADIVHH - This algorithm employs the species selection approach adaptively

whenever the lower diversity bound is breached.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Diversity Management in the Meta-hyper-heuristic Framework 75

Table 5.2: Hypotheses analysis of alternative solution space diversity increasing mechanisms.

TSHH DIVHH ADIVHH TOTAL

TSHH NA 32� 17� 2 4� 46� 1 36� 63� 3

DIVHH 2� 17� 32 NA 0� 19� 32 2� 36� 64

ADIVHH 1� 46� 4 32� 19� 0 NA 33� 65� 4

The results of the comparison between TSHH, DIVHH, and ADIVHH is presented

in Tables B.6 and B.8. The Mann-Whitney U wins, draws and losses are provided in

Table 5.2.

The results indicate that, similar to the previous investigation, no significant perfor-

mance improvement was obtained by the addition of the speciation selection mechanism.

It should be noted that Section 4.2 selected the set of LLMs to ensure di↵erent diversity

profiles. The HMHH without any SSD control mechanisms is thus already success-

ful in managing its exploration-exploitation profile through the appropriate selection of

LLMs with the required diversity profiles at di↵erent stages throughout the optimiza-

tion run. Attempting to influence SSD through additional mechanisms does not seem to

be valuable in this case. In line with the movement towards higher abstraction, which

hyper-heuristics promote, it would be interesting to see whether HSD has any influence

on algorithm performance. If this is found to be the case, then manipulation of HSD

could be a way of influencing multi-method algorithm performance, similar to how SSD

management is a means of influencing single-method performance.

5.3 Heuristic space diversity defined

The concept of heuristic space diversity is best illustrated by means of an example.

In Figure 5.2 the entities in the population to the left were divided relatively equally

between all of the available LLMs during entity-to-algorithm allocation. This population

can be described as having a high HSD. On the other hand, most of the entities in the

population on the right were allocated to the GA with only one entity each allocated to

PSO and ES. This population can be described as having a low HSD.
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Figure 5.2: An example of a population with a high HSD and a population with a low HSD.

This thesis proposes that heuristic space diversity at time t, Dh(t), be defined as

follows:

Dh(t) =UBD
h

(t)

✓
1�

Pn
a

m=1 | |�nm(t)|
1.5ns

◆
(5.5)

with

| =
ns

na

, (5.6)

where na is the number of algorithms available for selection by the hyper-heuristics, ns

is the number of entities in the population, nm(t) is the number of entities allocated to

algorithm m at time t, and UBD
h

(t) is the upper bound of the HSD measure. For the

purposes of this thesis, UBD
h

(t) was set to 100 so that Dh(t) 2 [0, 100].

The idea of the measure is to calculate a target number of entities, |, per algorithm.

The absolute deviation between this target and the actual allocation of entities to al-

gorithms is then used to determine the HSD associated with the entity-to-algorithm

allocation. Maximum diversity would be achieved when all entities are assigned equally

between algorithms and this translates into a Dh(t) of 100.
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5.4 Investigating alternative heuristic space diver-

sity management strategies

Five strategies for controlling HSD throughout the optimization process, inspired by

Ratnaweera et al.’s PSO parameter control strategies [127], are investigated in this

chapter. The aim of the investigation is to evaluate the potential influence of the various

strategies on HMHH performance. If it can be shown that e↵ective HSD management

can lead to a better performing algorithm, it opens the way for further research into

HSD management which in turn will lead to greater performance gains. The rest of this

section describes the investigated HSD control strategies in more detail.

• The baseline HMHH algorithm - This algorithm is the standard HMHH algo-

rithm implemented as described in Section 4.2. No e↵ort is made to manipulate

the HSD in this algorithm.

• Linearly decreasing HSD hyper-heuristic (LDHH) - This algorithm is char-

acterized by a linearly decreasing HSD. At the start of the optimization run all four

LLMs are available for selection. During the optimization run, the worst perform-

ing LLM is removed from the set of available algorithms at predefined constant

time intervals. Removing the worst performing algorithm allows more function

evaluations for the better performing algorithms, leading to better algorithm per-

formance. As an example, if the maximum allowable function evaluations are 100

000, the worst performing LLM at that time will be removed respectively at 25 000,

50 000 and 75 000 function evaluations. The idea is to force the hyper-heuristic

to explore the heuristic space at the start of the optimization run and exploit the

best performing LLM towards the end of the optimization run.

• Exponentially decreasing HSD hyper-heuristic (EDHH) - This algorithm

is characterized by an exponentially decreasing HSD. All LLMs are available for

allocation to entities at the start of the optimization run and LLMs are removed

according to their performance at predetermined time intervals. This time, how-

ever, the LLMs are removed at exponentially increasing time intervals at 10 400,
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23 800, 42 700 and 75 000 function evaluations. The result is a faster changeover

from exploration to exploitation of the heuristic space.

• Linearly increasing HSD hyper-heuristic (LIHH) - This algorithm forces

the hyper-heuristic to move from exploitation to exploration. At the start of the

optimization run only one LLM is made available to the hyper-heuristic. As the

optimization process progresses, additional LLMs are made available at predeter-

mined linear constant time intervals. The idea is to obtain maximum performance

gains from the first LLM. As the performance gains decrease, the rest of the LLMs

become available to diversify the heuristic space and improve the overall algorithm

performance. Two versions of the LIHH algorithm were investigated. LIHH1 as-

sumes a priori knowledge of the LLM performance on the benchmark problem set

being solved. The LLMs are ranked from best performing to worst performing.

Only the best performing algorithm is made available to the hyper-heuristic at the

start, with additional algorithms being made available according to their ranking.

This has the e↵ect of exploiting the best performing LLM at the start, before other

algorithms are considered. LIHH2 requires no a priori knowledge. LLMs are se-

quenced randomly and made available to the hyper-heuristic one by one at linear

time intervals without any consideration of previous algorithm performance.

• Exponentially increasing HSD hyper-heuristic (EIHH) - This algorithm

is similar to the LIHH algorithm, the only di↵erence being that exponential time

intervals are used to add algorithms to the set of available LLMs. Exponential time

intervals increase the rate of change of HSD, leading to a faster changeover from

exploitation to exploration. Similar to the LIHH algorithm, two versions, namely

EIHH1 (with a priori knowledge) and EIHH2 (without a priori knowledge), were

investigated.

Since the number of algorithms, na, is no longer constant, the size of the tabu list had

to be modified. When four algorithms were available for use by the hyper-heuristic the

maximum tabu list size was set to two algorithms, to always allow at least two algorithms

to be available for use. As soon as the number of available algorithms was reduced to

three, the maximum tabu list size was set to one. When two or less algorithms were
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in use, no tabu list was used. To ensure that a fair comparison was made between the

di↵erent strategies, the baseline HMHH algorithm was re-implemented with a maximum

tabu size of two. Apart from these changes in tabu list sizes, the same experimental

conditions used throughout the thesis were again applied.

The results of the heuristic space diversity comparison are recorded in Tables B.9

to B.11. The statistical comparison between strategies is recorded in Table 5.3. Each

strategy was compared to each other strategy and the same Mann-Whitney U wins -

draws - losses format of the previous section was used. To illustrate, (5-31-15) in row

1 column 2, indicates that the HMHH strategy outperformed LDHH 5 times over the

benchmark problem set. Thirty one draws and fifteen losses were recorded.

Table 5.3: Hypotheses analysis of alternative heuristic space diversity control mechanisms.

HMHH LDHH EDHH LIHH2 EIHH2 TOTAL

HMHH NA 5-31-15 8-29-14 4-31-16 3-26-22 20-117-67

LDHH 15-31-5 NA 8-38-5 9-28-14 5-27-19 37-124-43

EDHH 14-29-8 5-38-8 NA 9-24-18 7-22-22 35-113-56

LIHH 16-31-4 14-28-9 18-24-9 NA 1-42-8 49-125-30

EIHH 22-26-3 19-27-5 2-22-7 8-42-1 NA 71-117-16

From the results it is clear that attempting to manage HSD does lead to statistically

significantly di↵erent hyper-heuristic performance when compared to strategies where

no HSD manipulation is used. Table 5.3 shows that the strategies where the HSD was

controlled performed statistically similar or better than the baseline HMHH algorithm

for 184 cases out of 204 tested. In contrast, only 20 cases of worse performance could

be identified out of the 204 cases which were tested. LDHH was the best performing

algorithm for the first five uni-modal problems. However, comparing the increasing HSD

strategies (LIHH2 and EIHH2) to the decreasing HSD strategies (LSHH and EDHH)

over the entire benchmark problem set resulted in 53 wins, 101 draws, and 30 losses.

These results are mainly due to the good performance of the increasing strategies on the

more complex multi-modal problems and indicate that the increasing HSD strategies

performed better for the selected benchmark problem set. When the rate of change in
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diversity is considered, the di↵erence in performance is more subtle. For the decreasing

strategies, the linearly decreasing HSD algorithm outperformed the exponentially de-

creasing algorithm. For the increasing strategies the best performing algorithm was the

exponentially increasing EIHH2.

Better insight into these results can be obtained by studying HSD over the total

number of iterations of the algorithm. Figure 5.3 plots the HSD of the median run of

each of the HSD control strategies for problems 13 to 16 from the CEC 2005 problem

set in 50 dimensions. Only the graphs of these four problems are provided here due to

space constraints. The graphs of the other problems are very similar and are given in

Appendix C.

As expected, the EDHH converged the quickest to a lower HSD where the allocation

of entities-to-algorithms have stabilized. LDHH converged the second quickest, followed

by HMHH. Similar to entities converging in a solution space, it is also evident that the

slower converging LDHH was much more capable of adjusting and recovering towards

a higher HSD when this adjustment was required. The alternative would be converg-

ing too quickly to a suboptimal entity-to-algorithm allocation which could adversely

a↵ect solution quality if insu�cient diversity remained in the set of available constituent

algorithms.

The success of the increasing HSDs can be largely attributed to the hyper-heuristic

being able to exploit the performance benefits of a single algorithm before expanding the

set of LLMs. The resulting increased HSD allowed the hyper-heuristic to incorporate new

types of operators to continue the optimization process from where the first algorithm

may have already stagnated. With regards to the rate of change of HSD, EIHH2 explored

the heuristic space sooner than LIHH2 and maintained a higher HSD for longer when

compared to LIHH2, leading to better exploration of the heuristic space and better

overall solution quality.

The next experiment focused on investigating the impact of the availability of a priori

knowledge. The two increasing strategies which make use of a priori knowledge, namely

LIHH1 and EIHH1, were compared to the increasing strategies which do not make use

of any a priori knowledge, namely LIHH2 and EIHH2. The results of this comparison

are provided in Tables B.12 and 5.4. From the results it is clear that the availability of a
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Table 5.4: Hypothesis analysis of the benefit of a priori information.

LIHH2 EIHH2 TOTAL

LIHH1 30� 16� 5 33� 12� 6 63� 28� 11

EIHH1 30� 19� 2 31� 16� 4 62� 35� 6

priori knowledge of LLM performance on the benchmark problem set under consideration

did have significant advantages. A dramatic performance improvement was obtained

for most problems by LIHH1 and EIHH1 when compared to LIHH2 and EIHH2. The

exception is problems nine and 12, where the no a priori strategies performed better.

Unfortunately, this knowledge is not always readily available or can be time consuming

to obtain.

5.5 Summary

This chapter investigated the performance benefits of diversity management in a hyper-

heuristic framework. Constant and adaptive solution space diversity management strate-

gies were proposed which utilized either a local search for reducing SSD or a species

selection mechanism for increasing SSD. The results, however, indicated that influencing

SSD had a relatively insignificant impact on hyper-heuristic performance.

The results from the investigation into HSD management were, however, significantly

more promising. Six HSD control strategies were proposed and compared. The results

indicated that a significant performance improvement can be obtained by controlling the

HSD of the HMHH algorithm. The exponentially increasing HSD strategy was shown

to outperform the decreasing, linearly increasing, and uncontrolled HSD strategies. An

analysis into the performance benefits of a priori knowledge was also performed.
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Chapter 6

Benchmarking the Heterogeneous

Meta-hyper-heuristic

An important step in the development of a new optimization algorithm, is benchmarking

the new algorithm against existing similar algorithms. Such a comparative analysis is

extremely valuable in determining the contribution made by the newly developed algo-

rithm and determining its strengths and weaknesses relative to existing state-of-the-art

algorithms of the same class. Section 6.1 describes the relevant benchmark multi-method

algorithms selected for comparison purposes. The comparative analysis is described in

Section 6.2 and the chapter is concluded in Section 6.3.

6.1 Investigating meta-hyper-heuristic performance

versus other popular multi-method algorithms

Four multi-method algorithms, namely the population-based algorithm portfolio (PAP)

of Peng et al. [122], the fitness-based area-under-curve bandit operator selection method

(FAUC-Bandit) [55], the modified population-based genetic adaptive method for single

objective optimization (AMALGAM-SO) [172], and the evolutionary algorithm based

on self-adaptive learning population search techniques (EEA-SLPS) [177] were selected

for evaluation in this chapter. As of the writing of this thesis, these algorithms were

identified to be the most recent and most successful algorithms in the portfolio algorithm,

83
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ensembles, and adaptive operator selection literature. Each of the identified algorithms

were implemented with the same set of low level meta-heuristics (LLMs) used throughout

the thesis to ensure that the algorithms are compared against a similar baseline. The

rest of this section describes the selected algorithms in more detail.

6.1.1 Population-based algorithm portfolio

Peng et al. [122] developed the population-based algorithm portfolio (PAP). Their work

focuses on reducing the risk of poor algorithm performance by dividing the number of

allowable function evaluations between a portfolio of available algorithms. As described

in Algorithm 6.1, entities are divided into subpopulations which are adapted in parallel

by an assigned constituent algorithm or LLM, where one LLM is used per subpopulation.

Each entity has access to only the other entities within the same subpopulation in order

to prevent the same genetic material from being adapted repeatedly. At pre-specified

migration time intervals, , nq entities are migrated between subpopulations to ensure

e↵ective information sharing between the di↵erent optimization algorithms.

This information sharing mechanism is described in more detail in Figure 6.1, which

describes the migration procedure applied to subpopulation PPP 1, where nq is three and

the number of subpopulations is four. An interim subpopulation PPP 0
1 is first created as

a copy of PPP 1. The best entity from each of the subpopulations PPP 2 to PPP 4 is then added

to PPP 0
1. These entities are indicated in blue. The worst three (nq) entities, indicated in

red, are then deleted from PPP 0
1. Finally, PPP 0

1 replaces PPP 1 before the migration procedure

is applied to subpopulation PPP 2, and then PPP 3 and PPP 4.

It should be noted that PAPmakes use of a static algorithm selection mechanism. The

allocation of entities to LLMs are only performed once at the start of the optimization

process and the allocation remains the same throughout the optimization process. This

implies that the algorithm is stuck with its initial choices regardless of how the search

space and the suitability of the algorithms change over time. The HSD of PAP thus also

remains constant throughout the optimization run.
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Initialize np subpopulations, PPP 1,PPP 2, ...,PPP n
p

while no stopping condition is satisfied do
Evaluate all the entities in PPP 1,PPP 2, ...,PPP n

p

for all algorithms m do
Adapt PPPm using algorithm m

end

if migration interval, after  iterations, is reached then
Activate migration procedure as follows:

for all subpopulations m do
For PPPm, select nq best individuals from the other np � 1 subpopulations

denoted as set ⇤⇤⇤m

Set PPP 0
m to PPPm [⇤⇤⇤m

Discard the nq worst individuals in PPP 0
m

end

for all populations m do
Set PPPm to PPP 0

m

end

end

end

Algorithm 6.1: The PAP algorithm [122].

6.1.2 The evolutionary algorithm based on self-adaptive learn-

ing population search techniques

Similar to PAP [122], the EEA-SLPS algorithm [177] consists of entities divided into

subpopulations. These subpopulations are adapted in parallel by an assigned LLM,

where one LLM is used per subpopulation. Each entity has access to only the other

entities within the same subpopulation in order to prevent the same genetic material

from being adapted repeatedly. However, an information exchange mechanism is used

to ensure that each LLM benefits from the learning of the other algorithms. A strong

focus of Xue et al’s [177] work was the investigation of alternative information exchange

mechanisms and their impact on portfolio performance. Eighteen mechanisms were

evaluated and the best strategy was identified as replacing the worst individual of each
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subpopulation by the current best individual of the entire ensemble. This replacement

was found to work best at each iteration as indicated in Algorithm 6.2.

Let xxx⇤(t) be the best solution in the entire portfolio at time t.

Initialize np subpopulations, PPP 1,PPP 2, ...,PPP n
p

while no stopping condition is satisfied do
Evaluate all the entities in PPP 1,PPP 2, ...,PPP n

p

for all algorithms m do
Adapt PPPm using algorithm m

end

Activate migration procedure as follows:

for all subpopulations m do

if xxx⇤(t) 2 PPPm then
Replace the worst solution in PPPm by xxx⇤(t)

end

end

end

Algorithm 6.2: The EEA-SLPS algorithm [177].

6.1.3 The population-based genetic adaptive method for single

objective optimization

The single objective version of the highly successful AMALGAM-SO is the third al-

gorithm that was investigated. Similar to the HMHH algorithm, AMALGAM-SO also

uses a common population of entities that are adapted over time. At the start of the

optimization run, entities are assigned to LLMs. The entities are then adapted by their

allocated LLMs until the population reaches “convergence”. “Convergence” is obtained

by meeting any one of a complex set of stopping conditions and can require a significant

number of iterations. When this state is reached, the population size is first doubled,

then the number of entities allocated to each LLMs is reconsidered. Each LLM’s perfor-

mance since the previous update is used to determine the number of entities assigned to
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it according to the following equation:

nm(t) =bns
Q�m(t)Pn
a

m=1 Q�m(t)
c, (6.1)

where nm(t) is the number of entities allocated to the mth LLM at time t and Q�m(t) is

the total improvement in fitness function value of all entities assigned to the mth LLM

from the previous update of nm(t) to iteration t. This process of “convergence” and

update of entities continues until the maximum number of iterations imax is reached.

For the sake of completeness, the algorithm pseudocode is provided in Algorithm 6.3.

Two sets of stopping conditions are used to determine whether the population has

converged. The first set is used when the population is dominated by CMAES, in other

words n1(t) > n2(t) + n3(t) + n4(t), where n1(t) denotes the number of entities assigned

to CMAES and n2(t), n3(t), and n4(t) are the entities assigned to the other LLMs. As

described in [172], the first set of stopping conditions are as follows:

• Stop if the range of the best objective function values of the last 10 + b30n
x

n
s

c
generations is zero, where nx denotes the number of dimensions and ns is the

population size, or the ratio of the range of the current function values to the

maximum current function value is below 10�5.

• Stop if the standard deviation of the normal distribution is smaller than 10�9�(0)

in all coordinates, where �(t) denotes the step size of the CMAES algorithm at

time t, and the CMAES evolution path described in Equation (2.10) is smaller

than 10�9�(0) in all components.

• Stop if adding a 0.1���(t) in a principal axis direction of the covariance matrix, CCC(t),

does not change wwwx(t), the centre of mass of xxx(t).

• Stop if adding 0.2���(t) in each coordinate does not change wwwx(t).

• Stop if the condition number of the covariance matrix, CCC(t), exceeds 1014.

The second set of stopping conditions is used when the population is not dominated

by CMAES, in other words n1(t)  n2(t) + n3(t) + n4(t):
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Let tmax be the maximum number of iterations remaining in the optimization run

Let nm(t) be the number of entities allocated to the mth LLM at time t

Let RRR(t) be the combined parent and child populations at time t

t = 0

Randomly initialize nm(1), 8m
while no stopping condition is satisfied do

CONVERGED = FALSE

Initialize the parent population XXX(t) of size nx by means of a latin hypercube

sampling strategy (Algorithm 6.4)

while algorithm has not converged (CONVERGED = FALSE) do
Create o↵spring population ccc(t+ 1) by applying A to XXX(t)

Combine parent and o↵spring populations, XXX(t) and ccc(t+1), and sort in order

of decreasing fitness to obtain RRR(t+ 1)

Select XXX(t+ 1) from RRR(t+ 1) using the species selection mechanism from Sec-

tion 5.2

if any of the stopping criteria have been met then
CONVERGED = TRUE

else
t = t+ 1

end

if CONVERGED = TRUE then
Update nm(t), 8m according to Equation (6.1)

Increase population size ns to 2ns

Reset t = 0 and recompute tmax

end

end

end

Algorithm 6.3: The AMALGAM-SO algorithm [172].

• Stop if the standard deviation of the best individual, xxx⇤(t), is smaller than 10�9�(0)

in all coordinates.

• Stop if the ratio of the range of the best function values found so far to the maxi-
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mum function value of xxx⇤(t) is below 10�5.

• Stop if the acceptance rate of new solutions in xxx⇤(t) is lower than the acceptance

rate, �. In this study, � was set to 7.5⇥ 10�2ns.

• Stop if the range of the best objective function values of the last 50 + b100n
x

n
s

c
generations is zero.

It is important to note that the purpose of this chapter is to investigate the mech-

anisms used to allocate entities to LLMs. When an algorithm such as AMALGAM-SO

is considered, a large number of di↵erent algorithmic aspects lead to the success of

the algorithm. However, if an objective evaluation of the entity-to-algorithm allocation

mechanisms of di↵erent algorithms is to be performed, it is necessary to isolate the

entity-to-algorithm allocation mechanism. It was thus decided to implement a modified

AMALGAM-SO without any performance enhancing aspects not directly related to the

entity-allocation mechanism. Algorithmic aspects removed include the species selection

mechanism which operates directly on the solution space independently from the heuris-

tic space and the latin hypercube sampling strategy used to initialize a diverse set of

initial solutions (Algorithm 6.4).

Create large initial sample, SSS(0), in normalized search space

Set XXX(0) to SSS(0){1}
while |XXX(0)| < ns do

for all s 2 SSS(0) do

for all x 2XXX(0) do

D(x, s) =
pPn

x

i=1(xi � si)2

end

end

Find member r of SSS(0) with maximum distance to members of XXX(0)

XXX(0) [ r

end

Algorithm 6.4: Latin hypercube sampling strategy [172].
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A number of aspects need to be addressed with regards to this modified algorithm’s

performance. Firstly, note that the AMALGAM-SO implementation in [172] is signifi-

cantly biased towards CMAES. CMAES is well known to be one of the best performing

algorithms on the CEC 2005 benchmark problem set [3]. CMAES is provided an unfair

advantage by ensuring that between 80% and 90% of the entities in the initial popula-

tion is allocated to CMAES. During the optimization run it is also always ensured that a

minimum of 25% of entities is allocated to CMAES at all times. The minimum number

of entities allocated to the other algorithms are set to only 5% of the population size.

In the modified AMALGAM-SO this inherent bias was removed by dividing the entities

equally between all four the available LLMs at the start of the optimization run and

setting the minimum number of entities per algorithm equal for all algorithms.

6.1.4 Fitness-based area-under-curve multi-armed bandit

The fourth algorithm considered is an online operator selection strategy from the adap-

tive operator selection field [40]. The FAUC-Bandit algorithm [54] consists of a credit

assignment mechanism and a LLM selection mechanism as indicated in Figure 6.2. The

credit assignment mechanism evaluates the performance of each of the available LLMs

based on previous successes and assigns a credit to each LLM. The LLM selection mech-

anism then utilizes these LLM credits in a dynamic bandit-based LLM selection mecha-

nism to select which LLM should be applied to the entity under consideration.

More specifically, the fitness-based area-under-curve credit assignment mechanisms

consider a list of entities ranked according to the greatest improvement obtained, over

a given time window W . A receiving operator curve (ROC) is plotted for each LLM by

scanning the ordered list of entities. Starting from the origin of the curve and the highest

ranking entity, a vertical segment is plotted for every entity that has been generated by

the LLM under consideration. If an entity has not been generated by the specific LLM,

a horizontal segment is drawn. Ties are resolved by means of diagonal segments. A

decay factor, D, is used to bias the selection towards the higher ranked entities. If %i

is the rank position of entity i, the length of the ith segment is defined as D%
i(W � %i)

with D 2 [0, 1]. Finally, a ROC such as the example in Figure 6.3 is obtained for each

algorithm. The area under the ROC of the mth LLM at time t, namely qm(t) is then
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Figure 6.2: The fitness-based area-under-curve bandit algorithm [54].
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used as the credit associated with the LLM under consideration.

Figure 6.3: ROC curve of ranked entities (x-axis) versus number of entities generated by the

LLM under consideration (y-axis) [54].

The LLM selection mechanism is based on a maximization operator:

qm(t) + C

s
2 log

P
k ⌫k(t)

⌫m(t)
, (6.2)

where C is a user-defined constant balancing exploration and exploitation and ⌫m(t)

refers to the number of times the mth LLM has been used up until time t. The LLM

with the largest maximization operator is applied to the entity under consideration.

For the sake of completeness, high level pseudocode of the algorithm is provided in

Algorithm 6.5.

One of the main criticisms of the FAUC-Bandit approach is that the algorithm is

extremely slow due to the frequent updating of a computationally complex entity-to-

algorithm allocation procedure.
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Initialize the parent population XXX

Randomly select an initial LLM Ai(1) from the set of LLMs to apply to the first entity.

while no stopping condition is satisfied do
Adapt entity i using LLM Ai(t)

Calculate Q�A
i

(t)(t), the total improvement in fitness function value of entity i after

application of algorithm Ai(t) and add entity-to-LLM allocation information to

archive AAA of size W

Sort all entries in AAA according to greatest improvement obtained

for all LLMs m do
Calculate the area under the ROC curve, qm(t).

Calculate the maximization value of algorithm m as defined in Equation (6.2).

end

Allocate entity i+ 1 to the algorithm mi+1 which maximizes Equation (6.2).

i = i+ 1
end

Algorithm 6.5: The FAUC-Bandit algorithm [122].

6.2 Comparative analysis of selected multi-method

algorithms

The same experimental setup used throughout the thesis was again employed to analyse

the performance of the four multi-method algorithms versus the best performing HMHH

algorithm from Chapter 5, EIHH1, and the baseline HMHH algorithm. The compari-

son focused on two aspects. Firstly, the performance of each multi-method algorithm

against its four LLMs were evaluated. The idea was to evaluate the performance bene-

fits obtained by each multi-method algorithm when compared against the single-method

results of its best performing LLM. Secondly, the relative performance of each of the

multi-method algorithms were evaluated.

The control parameters of the six multi-method algorithms used are specified in

Table 6.1. Modified AMALGAM-SO, EEA-SLPS, and PAP’s parameters were opti-

mized for the CEC 2005 problems by the original authors, thus these parameters were

used as-is. For the same reason the LLM control parameters specified in the original
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papers ([3],[179]) were used. In the original work, the FAUC-Bandit algorithm’s pa-

rameters were, however, optimized for the BBOB-2010 noiseless benchmarking problem

suite. F-race [10] was thus used to tune the FAUC-Bandit algorithm’s control param-

eters specifically for the 2005 IEEE CEC benchmark problem set. Similar to the anal-

ysis of Fialho et al. [55], the following parameter values were evaluated: scaling factor

C 2 {0.1, 0.5, 1, 5, 10}, decay factor D 2 {0.5, 1}, and window size W 2 {50, 100, 500},
resulting in the evaluation of 30 configurations. The final values for C, W , and D ob-

tained by F-race are also provided in Table 6.1. A similar strategy was used to tune

the number of iterations between re-allocation, k, of the HMHH algorithms. Values of

k 2 {1, 2, 5, 10, 20, 50, 100, 500, 1000} were evaluated.

The results of the first experiment, focusing on the benchmark algorithms versus

their LLMs, are presented in Tables B.13 to Tables B.17. The Mann-Whitney U test

results obtained when each algorithm was compared to each one of its LLMs are recorded

in Table 6.2. The results indicate that EIHH1 was the best performing multi-method

algorithm when evaluated against its LLMs, with 129 wins, 47 draws, and 28 losses.

PAP and EEA-SLPS also performed well with 128 wins, 27 draws, and 49 losses, and

110 wins, 38 draws, and 56 losses, respectively. The fourth best performing algorithm was

the baseline HMHH algorithm which outperformed all other algorithms 106 times out

of 204 cases. The modified AMALGAM-SO and the FAUC-Bandit algorithm struggled

to outperform the set of selected LLMs and only outperformed the GA and the GCPSO

algorithm a significant number of times.

It should be noted that the first four benchmark algorithms outperformed three

of their four LLMs, but struggled to outperform CMAES. This poor performance can,

however, be expected since a portion of the function evaluation budget of a multi-method

algorithm needs to be allocated to solve the algorithm selection problem. A larger number

of function evaluations, when compared to a single-method algorithm, is required to solve

the harder optimization problem of determining which entities to allocate to which LLMs

in addition to solving the actual optimization problem. The ine�ciency of the multi-

method algorithms is then understandable since computational resources are required to

first “learn” which LLM is the best algorithm for the problem at hand. This is in contrast

to CMAES which uses the entire function evaluation budget on optimization of the actual
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Table 6.1: Algorithm parameters.

Parameter Value used

Common algorithm parameters

Population size (ns) 100

Maximum number of iterations (Imax) 100nx

HMHH and EIHH1

Number of iterations between re-allocation (k) 5

Size of HMHH tabu list 3

Size of EIHH1 tabu list 2 if na = 4; 1 if na = 3 and

0 if na <= 2

PAP and EEA-SLPS

Number of entities assigned to CMAES 14

Number of entities assigned to GCPSO 18

Number of entities assigned to GA 18

Number of entities assigned to SaNSDE 50

PAP Migration interval (1) Imax/20

EEA-SLPS Migration interval (2) 1

Number of entities involved in PAP migration (nq1) 3

Number of entities involved in EEA-SLPS migration (nq2) 1

Modified AMALGAM-SO

Refer to Section 6.1.3

FAUC-Bandit

Size of time window (W ) 50

Decay factor (D) 0.5

Exploration-exploitation constant (C) 1

problem. It is encouraging, however, to note that EIHH1 performed significantly better

against CMAES than any of the other evaluated algorithms.

Furthermore, a closer inspection of the results showed that the good performance of

CMAES could be mostly attributed to the first five uni-modal problems. EIHH1 did
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Table 6.2: Hypotheses analysis of HMHH, EIHH1, modified AMALGAM-SO, PAP, EEA-

SLPS, and FAUC-Bandit versus their LLMs.

CMAES SaNSDE GCPSO GA TOTAL

HMHH 2-6-43 23-10-8 40-6-5 41-7-3 106-29-69

EIHH1 2-34-15 35-8-8 48-2-1 44-3-4 129-47-28

PAP 4-7-40 28-18-5 47-1-3 49-1-1 128-27-49

EEA-SLPS 4-8-39 18-20-13 46-2-3 42-8-1 110-38-56

AMALGAM-SO 5-2-44 10-11-30 25-13-13 33-12-6 73-38-93

FAUC-Bandit 2-5-44 1-8-42 19-9-23 24-11-16 46-33-125

show improved performance in comparison with CMAES as problem complexity with

regards to multimodalism increased. An inspection of the entity-to-algorithm allocation

also indicates that both the EIHH1 and HMHH algorithms were able to, in most cases,

identify either CMAES or SaNSDE as the best performing algorithms and bias the

search towards them as the optimization run progressed. Figures 6.4 and 6.5 provides

examples of this behaviour. Note that SaNSDE significantly outperformed CMAES on

this problem. This highlights the main advantage of the HMHH algorithm: identification

of the best LLM and an inherent bias towards it resulting in good performance without

a priori knowledge of the best LLM for the problem to be solved.

The various benchmark algorithms were also compared against each other. Table 6.3

uses Mann-Whitney U tests to compare each benchmark algorithm to each of the other

benchmark algorithms. The results indicate that the EIHH1 algorithm is in fact the best

performing algorithm out of the six benchmark algorithms evaluated. EIHH1 performed

statistically better than the other five benchmark algorithms in 129 out of the 255 tests

conducted. The second best performing algorithm was PAP with 140 wins, 60 draws, and

45 losses. PAP was followed, in worsening order, by HMHH, EEA-SLPS, the modified

AMALGAM-SO, and FAUC-Bandit.

The HSD of the benchmark algorithms for problem 17 from the CEC 2005 problem

set in 10, 30 and, 50 dimensions is plotted in Figure 6.6. Only the graphs of this problem

are provided due to space constraints. The graphs of the other problems are similar and
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Figure 6.4: Frequency of use of each of the LLMs in the EIHH1 algorithm on the 12th CEC

2005 problem in 50 dimensions. Frequency of use is determined by the number of entities

allocated to the LLM under consideration per iteration.

are provided in Appendix C.

As can be seen in Figure 6.6, PAP and EEA-SLPS both maintained a constant

heuristic space diversity throughout the optimization run. Although an information

exchange mechanism is used and entities are in e↵ect re-allocated to di↵erent algorithms

throughout the optimization run, the number of entities allocated to each algorithm

remained the same. The advantage of maintaining a high heuristic space diversity for a

longer period of time is greater exploration of the heuristic space. The algorithms are,

however, never allowed to converge to a point where all entities are allocated to a single

LLM which could a↵ect the results obtained.

The modified AMALGAM-SO only updates the entity-to-algorithm allocation once

the algorithm has met the stopping conditions defined in Section 6.1.3. HSD thus remains

constant over time until the population “converges” and then the HSD drops rapidly
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Figure 6.5: Frequency of use of each of the LLMs in the HMHH algorithm on the 12th CEC

2005 problem in 50 dimensions. Frequency of use is determined by the number of entities

allocated to the LLM under consideration per iteration.

when algorithms are re-allocated to entities. This rapid decrease in HSD can be seen at

around iterations 1100, 1150, 1750, and 2000 for problem CEC1710. It should also be

noted that, because the modified AMALGAM-SOmakes use of a growing population size,

more iterations are allowed to ensure comparison with the other algorithms over the same

number of function evaluations. This explains the later termination of AMALGAM-SO

that can be seen in the graph of problem CEC1710 and some of the other problem graphs

in Appendix C.

Even though the modified AMALGAM-SO started o↵ with a significantly high heuris-

tic space diversity, no knowledge exchange mechanism exists between the re-allocation

of entities to algorithms. This implies that the separate entity-to-algorithm allocation

groups did not benefit from the learning of the other entity-to-algorithm allocation

groups. This lack of knowledge sharing is suspected to be a definite contributor to
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the poor results obtained.

FAUC-Bandit does not take any information into account between iterations with

regards to the heuristic space diversity of the population, resulting in a sporadic HSD over

time with no clear strategy with regards to exploration and exploitation of the heuristic

space. As discussed in the previous chapter, no intervention is made with regards to HSD

in the HMHH algorithm. EIHH1 makes use of an exponentially increasing HSD which

along with the a priori knowledge of single-method LLM ranking on the benchmark

problem set, shows great promise.

6.3 Summary

In this chapter, six popular multi-method algorithms, namely PAP, FAUC-Bandit, a

modified AMALGAM-SO, EEA-SLPS, EIHH1, and HMHH have been investigated. The

same set of LLMs were used for each algorithm and a comparison was performed between

the multi-method benchmark algorithms and each individual LLM. The multi-method

algorithms were also compared against each other. EIHH1 was shown to outperform the

other five multi-method algorithms and also performed well relative to its LLMs.
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Chapter 7

Conclusion

This thesis touched on a number of issues of interest in using meta-heuristics as low

level algorithms in a hyper-heuristic context ranging from an evaluation of alternative

low level meta-heuristic (LLM) selection methods to the use of diversity management to

obtain improved performance. This chapter summarizes the main findings of this study

before identifying and discussing opportunities for future research.

7.1 Summary

The purpose of this thesis was to investigate the use of meta-heuristics as low level

algorithms in a hyper-heuristic context. An analysis of various state-of-the-art single-

method optimization algorithms as well as the latest multi-method algorithm literature,

led to the development of the heterogeneous meta-hyper-heuristic framework.

The development of an appropriate selection mechanism to perform the candidate

solution-to-LLM allocation was considered to be one of the most important choices in the

development of the meta-hyper-heuristic algorithm. Subsequently, six solution-to-LLM

strategies inspired from the evolutionary algorithm (EA) and hyper-heuristic literature,

were developed: the random selection strategy, the roulette-wheel selection strategy, the

tournament selection strategy, the rank-based selection strategy, the Boltzman selection

strategy, and the tabu search-based selection strategy. An empirical comparison of the

six selection strategies resulted in the tabu search-based strategy being identified as the

103
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most suitable.

After a suitable selection strategy was developed, the use of local search strategies to

improve the performance of the meta-hyper-heuristic algorithm was investigated. Four

strategies were developed: LS1HH, where local search is applied to the best solution

at each iteration, LS2HH, where local search is applied to a random solution at each

iteration, LS3HH, where roulette-wheel selection is used to select a solution to undergo

local search, and LS4HH, where local search is added to the set of LLMs. LS1HH,

LS2HH, and LS3HH performed statistically significantly better than LS4HH. At this

stage of the algorithm development process, the set of LLMs was redefined since the

influence of this set on hyper-heuristic performance was shown to be significant.

After the basic HMHH algorithm configuration was established, the performance

benefits of diversity management in a hyper-heuristic framework was investigated. Con-

stant and adaptive solution space diversity management strategies were proposed which

utilized either a local search for reducing solution space diversity (SSD) or a species

selection mechanisms for increasing solution space diversity. The results, however, indi-

cated that additional solution space diversity intervention mechanisms had a relatively

insignificant impact on hyper-heuristic performance.

Hyper-heuristics, however, lend themselves to another type of diversity control, namely

the management of heuristic space diversity (HSD). The concept of heuristic space diver-

sity was explored and a HSD metric was proposed. Six HSD control strategies were then

proposed and compared. These strategies include the linearly decreasing HSD strategy

(LDHH), the exponentially decreasing HSD strategy (EDHH), the linearly increasing

HSD strategy with a priori knowledge, the exponentially increasing HSD strategy with

a priori knowledge, the linearly increasing HSD strategy with no a priori knowledge,

and the exponentially increasing HSD strategy with no a priori knowledge. The results

of the comparison indicated that a significant performance improvement could be ob-

tained by controlling the HSD of the HMHH algorithm. The exponentially increasing

HSD strategy was shown to outperform the decreasing, linearly increasing, and uncon-

trolled HSD strategies. This performance improvement was even more significant with

the availability of a priori knowledge of LLM performance on the benchmark problem

set in question.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 7. Conclusion 105

Finally, in a benchmarking exercise, the best performing HSD strategy, EIHH1, statis-

tically significantly outperformed six state-of-the-art multi-method algorithms, namely

the population-based algorithm portfolio (PAP) of Peng et al. [122], the fitness-based

area-under-curve bandit operator selection method (FAUC-Bandit) [55], the modified

population-based genetic adaptive method for single objective optimization (AMALGAM-

SO) [172], and the evolutionary algorithm based on self-adaptive learning population

search techniques (EEA-SLPS) [177]. The comparison was performed with each al-

gorithm using the same set of LLMs to ensure a fair comparison and also included

evaluations of each multi-method algorithm against its constituent LLMs.

Overall, it was shown that the use of meta-heuristics in a hyper-heuristic can lead to

the development of an e↵ective multi-method algorithm. A number of opportunities for

improvement and future research does, however, exist and is listed in the next section.

7.2 Future research opportunities

The opportunities for future research are discussed in detail throughout the rest of this

section.

Alternative LLMs:

The performance of a hyper-heuristic algorithm is dependent on the performance of its

constituent algorithms. In this thesis, four LLMs were used in the final HMHH, namely

a CMAES, SaNSDE, GCPSO, and a GA with floating-point representation, tournament

selection, blend crossover and self-adaptive Gaussian mutation. As technology advances

and the body of optimization research grows, more and more algorithms will be devel-

oped which will probably outperform the LLMs used in this thesis. A future update of

the HMHH algorithm with new state-of-the-art meta-heuristics could lead to significant

performance improvements.

Alternative benchmark problem sets:

In this thesis problems of 10 to 50 dimensions were considered. No conclusions can thus

be drawn with regard to algorithm performance on problems of dimensions higher than

50. However, real world problems often have thousands of decision variables and recently

various benchmark problem sets focusing on large scale global optimization have been
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released. Investigating the performance of the HMHH algorithm on a more diverse set

of larger benchmark problems including problems with 1000 dimensions, is an important

future research area.

More in-depth analysis of the HMHH algorithm:

The HMHH algorithm significantly outperformed four state-of-the-art multi-method al-

gorithms. A more in-depth investigation into the reasons behind this performance im-

provement could make for interesting future research.

Acceptance strategy:

The deterministic acceptance strategies “accept all moves” for the PSO and CMAES

algorithms, and “improvement only” for the GA and DE algorithms were used in this

thesis to accept the moves in solution space generated by the selected LLMs. A number of

additional acceptance strategies were reviewed in Section 2.2.4. Simulated annealing [1,

6], late acceptance [15], and variants of threshold acceptance [101] acceptance strategies

could also lead to improved performance.

Entity-to-algorithm allocation strategies based on prediction of future per-

formance:

Most of the entity-to-algorithm allocation strategies investigated in this thesis were based

on past LLM performance. However, further investigation of a prediction mechanism

aimed at estimating future LLM performance and using this as input to the entity-to-

algorithm allocation strategy could be a promising future research direction. Examples

of this approach can be found in [157] and [183].

Variations on the heuristic space diversity metric:

The heuristic space diversity metric proposed in this thesis is directly based on the entity-

to-algorithm allocation of the algorithm. Future work could focus on incorporating the

behaviours or performance of the various LLMs into this metric. Using the complemen-

tarity definition of Peng et al. [122] and Tang et al. [157] as HSD metric could also be

explored.

Adaptive heuristic space diversity management strategy:

All of the HSD strategies developed in this thesis made use of predetermined time in-

tervals at which changes were made to the set of available LLMs. Instead of adjusting

HSD at these predetermined time intervals, an adaptive strategy could also be employed
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where HSD is modified based on specific characteristics of the solution, objective, and

heuristic space.

More in-depth investigation of the nature of the heuristic space:

E↵orts to analyze the heuristic space by means of landscape analysis have been con-

ducted [113, 114, 118]. However, after 15 years of hyper-heuristic research, very little is

still known about the nature of the heuristic space. Significant opportunities for future

research still exists to understand the heuristic space and utilize the knowledge towards

improved hyper-heuristic performance.

More in-depth investigation of the various HMHH algorithms’ ability to

address specific problem characteristics:

Further useful insights can be obtained by considering specific problem characteristics

and the e↵ect these characteristics have on algorithm performance. This can be achieved

by grouping the benchmark problems according to predefined characteristics and then

conducting experiments to test hypotheses about the e↵ectiveness of di↵erent algorithms

in dealing with specific problem characteristics.

Extension of the HMHH algorithm to constrained, multi-objective, and

dynamic environments:

Many real world problems are characterized by constraints, a set of conflicting objective

functions, and environments that change over time. Significant future research opportu-

nities lie in extending the HMHH algorithm to function in these contexts.

Application of the HMHH algorithm to real-world problems:

The scope of this thesis was limited to continuous optimization problems and perturba-

tive hyper-heuristics. However, due to the generality of hyper-heuristics the LLMs in, for

example, the EIHH framework, can be replaced by domain specific heuristics embedded

in either a constructive or perturbative hyper-heuristic. The EIHH hyper-heuristic selec-

tion strategy could then prove useful in other domains such as timetabling, scheduling,

bin packing, vehicle routing and many other real world applications. An investigation

into this hypothesis could be an excellent future research opportunity.
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Appendix A

Benchmark Problem Set

All algorithms presented in this thesis were evaluated on the first 17 problems of the

2005 IEEE Congress of Evolutionary Computation benchmark problem set [155]. This

problem benchmark set is summarized in this appendix.

A.1 F1: Shifted Sphere Function

F1(xxx) =
n
xX

i=1

z2i + fbias1 (A.1)

where

zzz =xxx� ooo, (A.2)

x 2[�100, 100]nx and (A.3)

fbias1 =� 450 (A.4)

A.2 F2: Shifted Schwefel’s Problem 1.2

F2(xxx) =
n
xX

i=1

(
iX

j=1

zj)
2 + fbias2 (A.5)
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where

zzz =xxx� ooo, (A.6)

x 2[�100, 100]nx and (A.7)

fbias2 =� 450 (A.8)

A.3 F3: Shifted Rotated High Conditioned Elliptic

Function

F3(xxx) =
n
xX

i=1

(106)
i�1

n

x

�1 z2i + fbias3 (A.9)

where

zzz =(xxx� ooo)MMM, (A.10)

x 2[�100, 100]nx , (A.11)

fbias3 =� 450 (A.12)

and MMM is an orthogonal matrix.

A.4 F4: Shifted Schwefel’s Problem 1.2 With Noise

in Fitness

F4(xxx) =
n
xX

i=1

(
iX

j=1

zj)
2 ⇥ (1 + 0.4|N(0, 1)|) + fbias4 (A.13)

where

zzz =xxx� ooo, (A.14)

x 2[�100, 100]nx and (A.15)

fbias4 =� 450 (A.16)
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A.5 F5: Schwefel’s Problem 2.6 with Global Opti-

mum on Bounds

f(xxx) =max{|x1 + 2x2 � 7|, |2x1 + x2 � 5|}, where (A.17)

xxx⇤ =[1, 3] (A.18)

Extension to nx dimensions gives:

F5(xxx) =max{|AAAixxx�BBBi|}+ fbias5 (A.19)

where

x 2[�100, 100]nx , (A.20)

fbias4 =� 310, (A.21)

AAA is a nx ⇥ nx matrix consisting of integer random numbers in the range [�500, 500],

det(AAA) = 000, BBBi = AAAio, ooo is a nx ⇥ 1 vector, and oi are random numbers in the range

[�100, 100].

A.6 F6: Shifted Rosenbrock’s Function

F6(xxx) =
n
x

�1X

i=1

(100(z2i � zi+1)
2 + (zi � 1)2) + fbias6 (A.22)

where

zzz =xxx� ooo+ 1, (A.23)

x 2[�100, 100]nx and (A.24)

fbias6 =390 (A.25)

A.7 F7: Shifted Rotated Griewank’s Function With-

out Bounds

F7(xxx) =
n
xX

i=1

z2i
4000

�
n
xY

i=1

cos(
zip
i
) + 1 + fbias7 (A.26)
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where

zzz =(xxx� ooo)MMM, (A.27)

MMM =MMM 0(1 + 0.3|N(0, 1)|), (A.28)

xxx(0) 2[0, 600]nx , (A.29)

fbias7 =� 180 (A.30)

and MMM 0 is a linear transformation matrix of condition number 3.

A.8 F8: Shifted Rotated Ackley’s Function with Global

Optimum on Bounds

F8(xxx) =� 20exp(�0.2

r
1

nx

n
xX

i=1

z2i )� exp(
1

nx

n
xX

i=1

cos(2⇡zi)) + 20 + e+ fbias8 (A.31)

where

zzz =(xxx� ooo)MMM, (A.32)

x 2[�32, 32]nx , (A.33)

fbias8 =� 140 (A.34)

and MMM is a linear transformation matrix of condition number 100.

A.9 F9: Shifted Rastrigin’s Function

F9(xxx) =
n
xX

i=1

(z2i � 10 cos(2⇡zi) + 10) + fbias9 (A.35)

where

zzz =xxx� ooo, (A.36)

x 2[�5, 5]nx and (A.37)

fbias9 =� 330 (A.38)
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A.10 F10: Shifted Rotated Rastrigin’s Function

F10(xxx) =
n
xX

i=1

(z2i � 10 cos(2⇡zi) + 10) + fbias10 (A.39)

where

zzz =(xxx� ooo)MMM, (A.40)

x 2[�5, 5]nx , (A.41)

fbias10 =� 330 (A.42)

and MMM is a linear transformation matrix of condition number 2.

A.11 F11: Shifted Rotated Weierstrass Function

F11(xxx) =
n
xX

i=1

(
k
maxX

k=0

[ak cos(2⇡bk(zi + 0.5))])� nx

k
maxX

k=0

[ak cos(2⇡bk0.5)] + fbias11 (A.43)

where

zzz =(xxx� ooo)⇥MMM, (A.44)

x 2[�0.5, 0.5]nx , (A.45)

a =0.5, (A.46)

b =3, (A.47)

kmax =20, (A.48)

fbias11 =90 (A.49)

and MMM is a linear transformation matrix with condition number of 5.

A.12 F12: Schwefel’s Problem 2.13

F12(xxx) =
n
xX

i=1

(AAAi �BBBi(xxx))
2 + fbias12 (A.50)
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where

AAAi =
n
xX

j=1

(aij sin↵j + bij cos↵j), (A.51)

BBBi(x) =
n
xX

j=1

(aij sin xj + bij cos xj) 8i 2 {1, . . . , nx}, (A.52)

x 2[�⇡, ⇡]nx , (A.53)

fbias12 =� 460, (A.54)

AAA, BBB are two nx ⇥ nx matrices, aij and bij are integer random numbers in the range

[�100, 100], and ↵↵↵ are random numbers in the range [�⇡, ⇡].

A.13 F13: Shifted Expanded Griewank’s Plus Rosen-

brock’s Function (F8F2)

F13(xxx) =F8(F2(z1, z2)) + F8(F2(z2, z3)) + . . .+

F8(F2(zn
x

�1, zn
x

)) + F8(F2(zn
x

, z1)) + fbias13 (A.55)

where

zzz =xxx� ooo+ 1, (A.56)

F8(xxx) =
n
xX

i=1

x2
i

4000
�

n
xY

i=1

cos(
xip
i
) + 1, (A.57)

F2(xxx) =
n
x

�1X

i=1

(100(x2
i � xi+1)

2 + (xi � 1)2), (A.58)

x 2[�5, 5]nx and (A.59)

fbias13 =� 130. (A.60)
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A.14 F14: Shifted Rotated Expanded Scha↵er’s F6

Function

F14(xxx) =F (z1, z2) + F (z2, z3) + . . .+ F (zn
x

�1, zn
x

) + F (zn
x

, z1) + fbias14 (A.61)

where

F (x, y) =0.5 +
(sin2(

p
x2 + y2)� 0.5)

(1 + 0.001(x2 + y2))2
, (A.62)

zzz =(xxx� ooo)⇥MMM, (A.63)

x 2[�100, 100]nx , (A.64)

fbias14 =� 300. (A.65)

and MMM is a linear transformation matrix with condition number of 3.

A.15 F15: Hybrid Composition Function

F15(xxx) =
nX

i=1

{wi ⇥ [f 0
i((xxx� oooi)�i ⇥MMM i) + biasi]}+ fbias15 (A.66)

where

w1i =exp(�
Pn

x

k=1(xk � oik)2

2nx�2
i

), (A.67)

(A.68)

w2i =

8
<

:
w1i if w1i = max(w1w1w1),

w1i(1�max(w1w1w1)10) if w1i = max(w1w1w1),

wi =
w2iPn
i=1w2i

, (A.69)

x 2[�5, 5]nx , (A.70)

fbias15 =120. (A.71)
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f1�2(xxx): Rastrigin’s function

fi(xxx) =
n
xX

i=1

(x2
i � 10 cos(2⇡xi) + 10) (A.72)

f3�4(xxx): Weierstrass function

fi(xxx) =
n
xX

i=1

(
k
maxX

k=0

[ak cos(2⇡bk(xi + 0.5))])� nx

k
maxX

k=0

[ak cos(2⇡bk0.5)], (A.73)

a =0.5, (A.74)

b =3, (A.75)

kmax =20 (A.76)

f5�6(xxx): Griewank’s function

fi(xxx) =
n
xX

i=1

x2
i

4000
�

n
xY

i=1

cos(
xip
i
) + 1 (A.77)

f7�8(xxx): Ackley’s function

fi(xxx) =� 20exp(�0.2

vuut 1

nx

n
xX

i=1

x2
i )� exp(

1

nx

n
xX

i=1

cos(2⇡xi)) + 20 + e (A.78)

f9�10(xxx): Sphere function

fi(xxx) =
n
xX

i=1

x2
i , (A.79)

�i =1 8i 2 {1, . . . nx}, (A.80)

��� =[1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32, 5/100, 5/100] (A.81)

and MMM i are all identity matrices.

A.16 F16: Rotated Version of Hybrid Composition

Function F15

F16(xxx) =
nX

i=1

{wi ⇥ [f 0
i((xxx� oooi)�i ⇥MMM i) + biasi]}+ fbias16 (A.82)
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where MMM i are linear transformation matrices with condition number 2 and all other

settings are the same as for F15.

A.17 F17: F16 with Noise in Fitness

F17(xxx) =G(xxx)(1 + 0.2|N(0, 1)|) + fbias17 (A.83)

where

G(xxx) =F16 � fbias16 (A.84)

and all other settings are the same as for F16.
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Appendix B

Results

Throughout this thesis each algorithm was evaluated over 30 independent simulation

runs on each of the 17 CEC 2005 problems in dimensions 10, 30, and 50. These results

are presented in this appendix. The symbols µ and � denote the mean and standard

deviation associated with the corresponding performance measure and #FEs denotes

the number of function evaluations which were needed to reach the global optimum

within a specified accuracy.
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Table B.1: Results of alternative selection strategy evaluation: RAND and BOLT.
Prob RAND BOLT

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 12133 3.9421 1.00E � 06 0 11773 4.5329

1(30) 1.00E � 06 0 55670 21.97 1.00E � 06 0 55860 24.497

1(50) 1.00E � 06 0 1.2551E + 05 45.509 1.00E � 06 0 1.3172E + 05 81.211

2(10) 1.00E � 06 0 22677 11.796 1.00E � 06 0 19180 11.433

2(30) 1.00E � 06 0 2.0905E + 05 93.899 1.00E � 06 0 1.6691E + 05 77.496

2(50) 1.00E � 06 0 500000 0 0.000001 0 4.8073E + 05 161.4

3(10) 2.39E + 04 22789 100000 0 3407.6 4247.8 100000 0

3(30) 3.3659E + 05 1.5152E + 05 300000 0 44624 27185 3.00E + 05 0

3(50) 7.3423E + 05 2.4609E + 05 5.00E + 05 0 1.2362E + 05 40507 5.00E + 05 0

4(10) 1.00E � 06 0 24847 19.278 1.00E � 06 0 20337 9.1406

4(30) 0.012333 0.013565 300000 0 0.000001 0 2.5561E + 05 295.81

4(50) 205.86 155.45 5.00E + 05 0 15.676 14.74 5.00E + 05 0

5(10) 1.00E � 06 0 14767 13.732 1.00E � 06 0 15087 8.2284

5(30) 1926.7 950.27 3.00E + 05 0 603.57 526.04 3.00E + 05 0

5(50) 5501 1277.5 5.00E + 05 0 3508.93508.93508.9 737.17 5.00E + 05 0

6(10) 0.00033333 0.0018257 52233 147.87 0.00033333 0.0018257 39973 132.6

6(30) 1.259 2.8495 2.5992E + 05 447.59 0.26567 1.0097 2.2974E + 05 455.88

6(50) 4.7007 5.3583 4.7203E + 05 462.25 7.3677 17.985 4.6228E + 05 648.4

7(10) 126712671267 4.6252E � 13 100000 0 126712671267 4.6252E � 13 100000 0

7(30) 4696.34696.34696.3 2.7751E � 12 300000 0 4696.34696.34696.3 2.7751E � 12 300000 0

7(50) 6195.36195.36195.3 0 500000 0 6195.36195.36195.3 0 500000 0

8(10) 20.06820.06820.068 0.10825 1.00E + 05 0 20.078 0.11394 1.00E + 05 0

8(30) 20.305 0.28615 3.00E + 05 0 20.422 0.34431 3.00E + 05 0

8(50) 20.801 0.40599 5.00E + 05 0 20.883 0.25636 5.00E + 05 0

9(10) 0.39967 0.75825 70580 249.18 0.465 0.88821 73627 241.73

9(30) 2.575 1.0648 300000 0 2.2353 1.1727 300000 0

9(50) 10.725 3.6969 5.00E + 05 0 10.203 2.8382 500000 0

10(10) 13.908 5.3673 1.00E + 05 0 12.878 8.5088 1.00E + 05 0

10(30) 60.173 30.423 3.00E + 05 0 48.433 23.21 3.00E + 05 0

10(50) 83.543 45.391 5.00E + 05 0 77.082 45.766 5.00E + 05 0

11(10) 4.2416 2.2042 1.00E + 05 0 4.1225 2.1277 1.00E + 05 0

11(30) 24.517 5.9022 3.00E + 05 0 25.686 6.2736 3.00E + 05 0

11(50) 52.244 8.1035 5.00E + 05 0 50.327 12.524 5.00E + 05 0

12(10) 164.05 488.11 62747 330.19 126.6 383.64 61440 372.87

12(30) 1940.7 2299.6 3.00E + 05 0 1744.71744.71744.7 2693.7 3.00E + 05 0

12(50) 11767 9228.3 5.00E + 05 0 114381143811438 13494 5.00E + 05 0

13(10) 0.42667 0.19838 1.00E + 05 0 0.344330.344330.34433 0.17853 1.00E + 05 1.278

13(30) 1.3217 0.61569 3.00E + 05 0 1.494 0.50914 3.00E + 05 0

13(50) 3.0537 0.99364 5.00E + 05 0 3.15933.15933.1593 1.2158 5.00E + 05 0

14(10) 3.4243 0.3228 1.00E + 05 0 3.2127 0.47059 1.00E + 05 0

14(30) 12.829 0.549 3.00E + 05 0 12.752 0.40445 3.00E + 05 0

14(50) 22.361 0.61917 5.00E + 05 0 22.4 0.44187 5.00E + 05 0

15(10) 138.33 171.46 77770 311.9 283.31 176.43 93610 205.6

15(30) 323.43 100.71 300000 0 292292292 129.29 3.00E + 05 0

15(50) 291.43 109.94 5.00E + 05 0 287.01 90.412 5.00E + 05 0

16(10) 127.16 21.95 1.00E + 05 0 123.19 22.532 1.00E + 05 0

16(30) 172.72172.72172.72 139.15 3.00E + 05 0 208.16 166.01 3.00E + 05 0

16(50) 161.43 137.75 5.00E + 05 0 141.81141.81141.81 125.8 5.00E + 05 0

17(10) 129.9 20.159 1.00E + 05 0 121.53 15.194 1.00E + 05 0

17(30) 191.11 171.16 3.00E + 05 0 185.49 160.91 3.00E + 05 0

17(50) 153.99 140.37 5.00E + 05 0 101.45101.45101.45 94.849 5.00E + 05 0
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Table B.2: Results of alternative selection strategy evaluation: TOUR and ROUL.
Prob TOUR ROUL

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 12000 17.838 0.000001 0 1.10E + 041.10E + 041.10E + 04 23.715

1(30) 1.00E � 06 0 325303253032530 48.32 0.000001 0 3.97E + 04 167.4

1(50) 1.00E � 06 0 492574925749257 41.384 0.000001 0 7.70E + 04 713.61

2(10) 1.00E � 06 0 19573 28.412 0.0066675 0.034674 2.23E + 04 267.41

2(30) 1.00E � 06 0 1.0964E + 05 106.07 89.105 164.55 2.4301E + 05 711.26

2(50) 1.00E � 06 0 2.7483E + 05 174.2 1371.1 2146.1 4.8821E + 05 160.33

3(10) 1.00E � 06 0 51427 108.23 73381 2.3949E + 05 32753 342.48

3(30) 1674.3 4081.6 2.9991E + 05 4.9295 2.0525E + 06 1.6702E + 06 3.00E + 05 0

3(50) 1.0102E + 05 72787 500000 0 2.7677E + 06 2.9294E + 06 5.00E + 05 0

4(10) 1.00E � 06 0 19903 22.3 1.9597 10.696 2.01E + 04 225.05

4(30) 1.00E � 06 0 1.6536E + 05 126.26 9335.9 7293.7 3.00E + 05 0

4(50) 0.041334 0.14731 500000 0 26659 9608.3 5.00E + 05 0

5(10) 1.00E � 06 0 118771187711877 18.765 0.023001 0.12598 2.56E + 04 329.5

5(30) 385.52385.52385.52 485.25 300000 0 3477.9 1590.8 3.00E + 05 0

5(50) 4390.9 1152.2 500000 0 9849.4 3088.7 5.00E + 05 0

6(10) 0.00066667 0.0025371 34543 133.38 6.1673 14.902 6.76E + 04 387.6

6(30) 0.66367 1.5085 2.026E + 05 589.31 15.669 26.575 2.8612E + 05 482.69

6(50) 1.5083 2.0368 4.2338E + 054.2338E + 054.2338E + 05 876.75 251.16 1172 4.8926E + 05 588.25

7(10) 126712671267 4.6252E � 13 1.00E + 05 0 126712671267 0.050742 1.00E + 05 0

7(30) 4696.34696.34696.3 2.7751E � 12 3.00E + 05 0 4696.34696.34696.3 2.7751E � 12 3.00E + 05 0

7(50) 6195.36195.36195.3 0 5.00E + 05 0 6195.4 0.58424 5.00E + 05 0

8(10) 20.07 0.10685 1.00E + 05 0 20.193 0.13031 1.00E + 05 0

8(30) 20.15620.15620.156 0.11174 3.00E + 05 0 20.712 0.22643 3.00E + 05 0

8(50) 20.78 0.39956 5.00E + 05 0 20.963 0.16961 5.00E + 05 0

9(10) 0.13667 0.33647 483074830748307 267.34 0.926 1.4707 51203 407.26

9(30) 5.022 2.2953 3.00E + 05 0 12.587 18.626 1.9681E + 05 818.69

9(50) 25.985 11.035 5.00E + 05 0 42.706 34.941 500000 0

10(10) 18.477 8.1232 100000 0 13.877 9.0904 100000 0

10(30) 1847.5 9614.7 2.9487E + 05 157.95 94.226 21.929 300000 0

10(50) 110.1 49.509 5.00E + 05 0 203.8 59.842 500000 0

11(10) 6.4184 1.5567 100000 0 6.5747 1.4775 1.00E + 05 0

11(30) 28.466 5.2396 3.00E + 05 0 31.55 5.3227 3.00E + 05 0

11(50) 50.889 7.2092 5.00E + 05 0 57.48 4.4024 5.00E + 05 0

12(10) 152.05 397.6 511435114351143 343.45 759.03 962.31 87037 297.33

12(30) 6340.1 7897.4 2.8579E + 05 329.64 12948 9977.6 3.00E + 05 0

12(50) 51571 36242 4.9726E + 05 149.89 81345 50154 5.00E + 05 0

13(10) 0.353 0.13522 1.00E + 05 0 0.52533 0.22598 100000 0

13(30) 1.7873 0.56335 3.00E + 05 0 2.877 1.093 3.00E + 05 0

13(50) 5.36 2.4864 5.00E + 05 0 7.5513 3.2891 5.00E + 05 0

14(10) 3.463 0.33085 1.00E + 05 0 3.516 0.3841 100000 0

14(30) 13.03 0.44696 3.00E + 05 0 12.975 0.44704 3.00E + 05 0

14(50) 22.488 0.62213 5.00E + 05 0 22.532 0.43019 5.00E + 05 0

15(10) 251.39 430.91 7.51E + 047.51E + 047.51E + 04 326.97 295.59 175.46 9.49E + 04 192.62

15(30) 350.37 111.02 3.00E + 05 0 318.92 127.35 2.8797E + 05 457.96

15(50) 282.18282.18282.18 92.661 4.9338E + 05 362.77 333.87 85.557 5.00E + 05 0

16(10) 141.8 24.462 1.00E + 05 0 131.44 36.34 1.00E + 05 0

16(30) 212.27 137.94 3.00E + 05 0 254.86 162.86 3.00E + 05 0

16(50) 183.93 117.44 5.00E + 05 0 209 113.18 5.00E + 05 0

17(10) 141.53 24.311 1.00E + 05 0 129.54 22.625 100000 0

17(30) 207.26 168.39 3.00E + 05 0 241.11 166.85 3.00E + 05 0

17(50) 134.75 109.44 5.00E + 05 0 193.69 100.78 5.00E + 05 0
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Table B.3: Results of alternative selection strategy evaluation: RANK and TSHH.
Prob RANK TSHH

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 11573 5.2976 1.00E � 06 0 13110 7.8008

1(30) 1.00E � 06 0 54647 24.761 1.00E � 06 0 37740 10.071

1(50) 1.00E � 06 0 1.2791E + 05 74.657 1.00E � 06 0 59243 11.869

2(10) 0.000001 0 1.84E + 04 8.3422 0.000001 0 1.54E + 041.54E + 041.54E + 04 7.6417

2(30) 0.000001 0 1.6229E + 05 85.968 0.000001 0 6.94E + 046.94E + 046.94E + 04 83.232

2(50) 0.000001 0 4.6883E + 05 235.01 0.000001 0 1.283E + 051.283E + 051.283E + 05 133.57

3(10) 5786.5 8405.3 1.00E + 05 0 0.000001 0 2.24E + 042.24E + 042.24E + 04 25.929

3(30) 1.5473E + 05 87108 3.00E + 05 0 0.0000010.0000010.000001 0 1.5136E + 05 167.12

3(50) 4.0364E + 05 2.0383E + 05 5.00E + 05 0 0.0000010.0000010.000001 0 3.2973E + 05 218.71

4(10) 0.000001 0 2.01E + 04 11.184 0.000001 0 1.75E + 041.75E + 041.75E + 04 9.4127

4(30) 0.000001 0 2.4797E + 05 307.44 0.000001 0 9.47E + 049.47E + 049.47E + 04 131.24

4(50) 22.01 22.715 5.00E + 05 0 0.0000010.0000010.000001 0 1.9176E + 05 230.62

5(10) 0.000001 0 1.55E + 04 8.5164 0.000001 0 1.68E + 04 14.891

5(30) 416.17 485.42 3.00E + 05 0 548.65 592.86 3.00E + 05 0

5(50) 3861.9 898.84 5.00E + 05 0 5295.5 1444.8 5.00E + 05 0

6(10) 0.13367 0.72646 4.29E + 04 191.56 0.001 0.0030513 3.23E + 043.23E + 043.23E + 04 112.88

6(30) 0 0 2.1922E + 05 393.09 0.398 1.2144 1.8793E + 051.8793E + 051.8793E + 05 490.91

6(50) 6.9587 17.669 4.5162E + 05 589.5 1.9007 2.3675 4.2378E + 05 859.41

7(10) 126712671267 4.6252E � 13 1.00E + 05 0 126712671267 4.6252E � 13 1.00E + 05 0

7(30) 4696.34696.34696.3 2.7751E � 12 3.00E + 05 0 4696.34696.34696.3 2.7751E � 12 3.00E + 05 0

7(50) 6195.36195.36195.3 0 5.00E + 05 0 6195.36195.36195.3 0 5.00E + 05 0

8(10) 20.069 0.12506 1.00E + 05 0 20.079 0.13181 1.00E + 05 0

8(30) 20.513 0.34172 3.00E + 05 0 20.177 0.12282 3.00E + 05 0

8(50) 20.756 0.37242 5.00E + 05 0 20.57220.57220.572 0.34532 5.00E + 05 0

9(10) 0.13833 0.33579 63760 254.55 0.13533 0.337 63990 233.63

9(30) 2.3093 1.3892 2.9512E + 05 189.69 10.609 4.0744 2.9889E + 05 60.615

9(50) 9.4679.4679.467 3.0466 500000 0 35.658 10.958 500000 0

10(10) 10.79310.79310.793 5.1619 1.00E + 05 0 17.944 9.5247 1.00E + 05 0

10(30) 44.33144.33144.331 19.002 3.00E + 05 0 73.34 23.689 3.00E + 05 0

10(50) 68.69268.69268.692 28.398 5.00E + 05 0 146.95 51.373 5.00E + 05 0

11(10) 3.69133.69133.6913 2.2 9.51E + 04 187.51 4.8408 1.7899 1.00E + 05 0

11(30) 26.457 6.0631 3.00E + 05 0 24.49124.49124.491 5.142 3.00E + 05 0

11(50) 55.252 6.2803 5.00E + 05 0 49.5649.5649.56 8.5591 5.00E + 05 0

12(10) 443.11 687.88 6.87E + 04 354.7 257.98 543.17 6.50E + 04 390.76

12(30) 1896.8 2739.8 2.9808E + 05 104.98 5283 4418.4 3.00E + 05 0

12(50) 11925 9612.8 5.00E + 05 0 53453 39068 5.00E + 05 0

13(10) 0.404 0.19342 1.00E + 05 0 0.5 0.16688 1.00E + 05 0

13(30) 1.2691.2691.269 0.49143 3.00E + 05 0 3.1493 1.1606 3.00E + 05 0

13(50) 3.221 1.33 5.00E + 05 0 7.5257 3.7335 5.00E + 05 0

14(10) 3.0883.0883.088 0.44933 1.00E + 05 0 3.5283 0.3483 1.00E + 05 0

14(30) 12.70412.70412.704 0.54604 3.00E + 05 0 13.133 0.49901 3.00E + 05 0

14(50) 22.34822.34822.348 0.56163 5.00E + 05 0 22.639 0.6383 5.00E + 05 0

15(10) 237.62 202.61 88553 219.44 280.45 192.27 96013 158.17

15(30) 344.53 124.61 300000 0 323.78 104.54 300000 0

15(50) 317.73 99.69 5.00E + 05 0 294.62 104.51 5.00E + 05 0

16(10) 114.94114.94114.94 12.749 1.00E + 05 0 121 18.555 1.00E + 05 0

16(30) 214.04 182.23 3.00E + 05 0 246.63 162.46 3.00E + 05 0

16(50) 154.39 131.47 5.00E + 05 0 154.46 108.91 5.00E + 05 0

17(10) 117.08117.08117.08 12.767 1.00E + 05 0 130.06 21.297 1.00E + 05 0

17(30) 183.12 176.64 3.00E + 05 0 151.95151.95151.95 120.65 3.00E + 05 0

17(50) 163.56 148.27 5.00E + 05 0 162.41 139.74 5.00E + 05 0
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Table B.4: Results of alternative local search selection strategy evaluation on the 2005 IEEE

CEC benchmark problem set: LS1HH and LS2HH.
Prob LS1HH LS2HH

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 131311313113131 499.95 1.00E � 06 0 13205 590.59

1(30) 1.00E � 06 0 692126921269212 4269.7 1.00E � 06 0 69832 4304.7

1(50) 1.00E � 06 0 1.7709E + 05 20587 1.00E � 06 0 1.7458E + 05 18988

2(10) 1.00E � 06 0 15325 1118.4 1.00E � 06 0 15773 1145.2

2(30) 1.00E � 06 0 1.1457E + 051.1457E + 051.1457E + 05 16881 1.00E � 06 0 1.1821E + 05 19876

2(50) 1.00E � 06 0 3.8645E + 05 1.0245E + 05 1.00E � 06 0 3.9112E + 05 1.0488E + 05

3(10) 1.00E � 06 0 24546 3222.3 1.00E � 06 0 243832438324383 3428.6

3(30) 810.08 3062 2.9586E + 052.9586E + 052.9586E + 05 18327 811.5 2115.4 2.9699E + 05 15519

3(50) 1.6086E + 05 78665 5.00E + 05 0 1.2457E + 051.2457E + 051.2457E + 05 93799 5.00E + 05 0

4(10) 1.00E � 06 0 177011770117701 1235.6 1.00E � 06 0 17808 1383.5

4(30) 1.00E � 06 0 2.1283E + 05 44233 1.00E � 06 0 2.0331E + 052.0331E + 052.0331E + 05 34332

4(50) 20.47 43.422 4.9967E + 05 1908.1 8.10878.10878.1087 17.909 5.00E + 05 523.99

5(10) 1.00E � 06 0 189741897418974 1325.3 1.00E � 06 0 19088 1034.1

5(30) 307.76 256.03 3.00E + 05 0 299.83 353.17 3.00E + 05 0

5(50) 343734373437 808.59 5.00E + 05 0 3738.4 769.24 5.00E + 05 0

6(10) 0.00033333 0.0018257 40633 10451 0.133 0.72658 404524045240452 15190

6(30) 2.343 2.8194 2.8505E + 052.8505E + 052.8505E + 05 34959 3.7687 12.187 2.9229E + 05 15650

6(50) 33.91833.91833.918 39.14 4.9919E + 05 5017.1 40.04 47.379 5.00E + 05 0

7(10) 0.1070.1070.107 0.086389 1.00E + 05 0 0.131 0.11161 1.00E + 05 0

7(30) 0.0063333 0.0085029 1.7798E + 05 1.1646E + 05 0.01 0.013131 2.0306E + 05 1.1305E + 05

7(50) 0.0023333 0.0067891 2.3673E + 05 1.3455E + 05 0.004 0.0093218 2.6732E + 05 1.5592E + 05

8(10) 20.03620.03620.036 0.079719 1.00E + 05 0 20.087 0.13664 1.00E + 05 0

8(30) 20.17820.17820.178 0.12962 3.00E + 05 0 20.232 0.12098 3.00E + 05 0

8(50) 20.898 0.3121 5.00E + 05 0 20.858 0.34138 5.00E + 05 0

9(10) 0.20133 0.39601 56521 28626 0.137 0.42669 469274692746927 25418

9(30) 3.07433.07433.0743 1.5724 2.9871E + 05 5481.7 3.2047 1.4938 3.00E + 05 0

9(50) 17.70817.70817.708 4.5149 5.00E + 05 0 20.042 6.5921 5.00E + 05 0

10(10) 18.665 9.2106 1.00E + 05 0 18.475 7.8114 1.00E + 05 0

10(30) 63.803 25.807 3.00E + 05 0 61.737 24.805 3.00E + 05 0

10(50) 294.99 61.918 5.00E + 05 0 313.54 39.575 5.00E + 05 0

11(10) 5.488 1.6099 1.00E + 05 0 5.4845.4845.484 1.4235 1.00E + 05 0

11(30) 26.027 6.2231 3.00E + 05 0 25.34925.34925.349 5.9663 3.00E + 05 0

11(50) 42.707 10.078 5.00E + 05 0 41.92841.92841.928 10.158 5.00E + 05 0

12(10) 585.49 771.15 64927 38884 416.18 645.96 67772 37142

12(30) 3076.73076.73076.7 2840.5 3.00E + 05 0 4955.8 5179.1 3.00E + 05 0

12(50) 170441704417044 12000 5.00E + 05 0 21114 15077 5.00E + 05 0

13(10) 0.440330.440330.44033 0.12944 1.00E + 05 0 0.47067 0.15993 1.00E + 05 0

13(30) 5.556 4.9635 3.00E + 05 0 3.33033.33033.3303 3.0567 3.00E + 05 0

13(50) 10.07910.07910.079 8.7701 5.00E + 05 0 11.19 8.9088 5.00E + 05 0

14(10) 3.56073.56073.5607 0.36167 1.00E + 05 0 3.623 0.32138 1.00E + 05 0

14(30) 13.125 0.34038 3.00E + 05 0 13.06813.06813.068 0.43086 3.00E + 05 0

14(50) 22.673 0.44734 5.00E + 05 0 22.695 0.39549 5.00E + 05 0

15(10) 291.2 192.47 86387 26640 246.86 212.57 83231 27190

15(30) 292.06292.06292.06 132.22 2.9854E + 05 8657.7 294.68 114.47 3.00E + 05 0

15(50) 300.73 86.785 5.00E + 05 0 299.09 114.19 5.00E + 05 0

16(10) 136.96 21.556 1.00E + 05 0 127.94 14.729 1.00E + 05 0

16(30) 180.9 140.38 3.00E + 05 0 152.71152.71152.71 119.62 3.00E + 05 0

16(50) 241.85241.85241.85 111.51 5.00E + 05 0 249.92 91.765 5.00E + 05 0

17(10) 130.72130.72130.72 24.751 1.00E + 05 0 132.96 21.29 1.00E + 05 0

17(30) 149.32149.32149.32 161.11 3.00E + 05 0 237.57 194 3.00E + 05 0

17(50) 308.73 77.866 5.00E + 05 0 286.36286.36286.36 85.684 5.00E + 05 0

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix B. Results 142

Table B.5: Results of alternative local search selection strategy evaluation on the 2005 IEEE

CEC benchmark problem set: LS3HH and LS4HH.
Prob LS3HH LS4HH

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 13527 772.74 1.00E � 06 0 17349 2037.9

1(30) 1.00E � 06 0 70063 4643.4 1.00E � 06 0 1.1726E + 05 17620

1(50) 1.00E � 06 0 1.7249E + 051.7249E + 051.7249E + 05 18461 1.00E � 06 0 2.7417E + 05 75811

2(10) 1.00E � 06 0 150741507415074 1378.5 1.00E � 06 0 23836 4870.7

2(30) 1.00E � 06 0 1.1908E + 05 21837 0.411 1.3529 2.5866E + 05 37765

2(50) 1.00E � 06 0 3.5727E + 053.5727E + 053.5727E + 05 1.0133E + 05 2594.7 2039.5 5.00E + 05 288.12

3(10) 1.00E � 06 0 24457 2855.7 1.00E � 06 0 55849 18574

3(30) 2494.6 7033.2 2.9729E + 05 9499.2 4.7311E + 05 5.4541E + 05 3.00E + 05 127.48

3(50) 1.3351E + 05 66530 5.00E + 05 0 1.3999E + 06 2.1202E + 06 5.00E + 05 98.611

4(10) 1.00E � 06 0 18045 967.98 1.00E � 06 0 29194 6913

4(30) 1.00E � 06 0 2.063E + 05 43004 1136.4 1075.5 3.00E + 05 207.47

4(50) 16.21 36.188 4.9745E + 05 10417 30599 10319 5.00E + 05 380.49

5(10) 1.00E � 06 0 19033 1371.8 1.00E � 06 0 23927 2009.6

5(30) 287.27287.27287.27 305.33 3.00E + 05 0 1237.8 749.04 3.00E + 05 63.568

5(50) 3805.9 1110.2 5.00E + 05 0 5699.2 1395.3 5.00E + 05 139.38

6(10) 0.26567 1.0097 40900 18079 0.13267 0.72665 49792 12304

6(30) 1.6943 2.7528 2.9246E + 05 16037 16.3 26.287 3.00E + 05 396.98

6(50) 63.946 70.188 5.00E + 05 0 61.178 60.443 5.00E + 05 113.97

7(10) 0.169 0.15121 1.00E + 05 0 0.12933 0.080727 97179 15984

7(30) 0.0043333 0.008172 1.5782E + 05 1.1044E + 05 0.0086667 0.012794 1.92E + 05 1.1024E + 05

7(50) 0.0036667 0.0096431 2.7225E + 05 1.5275E + 05 0.0033333 0.008023 2.8849E + 05 1.5355E + 05

8(10) 20.086 0.11574 1.00E + 05 0 20.065 0.099956 1.00E + 05 75.28

8(30) 20.214 0.11448 3.00E + 05 0 20.761 0.20356 3.00E + 05 267.72

8(50) 20.84620.84620.846 0.32715 5.00E + 05 0 21.183 0.034873 5.00E + 05 524.46

9(10) 0.072 0.24686 54745 24158 0.072 0.24686 51278 22297

9(30) 3.3373 1.3947 3.00E + 05 0 20.825 6.918 3.00E + 05 246.29

9(50) 18.211 4.1952 5.00E + 05 0 100.85 25.588 5.00E + 05 401.21

10(10) 16.073 7.4463 1.00E + 05 0 15.37415.37415.374 6.7704 1.00E + 05 94.822

10(30) 54.82654.82654.826 22.228 3.00E + 05 0 64.222 32.241 3.00E + 05 139.77

10(50) 290.01290.01290.01 62.998 5.00E + 05 0 386.85 32.217 5.00E + 05 387.23

11(10) 5.5902 2.1572 1.00E + 05 0 6.4702 1.4468 1.00E + 05 57.744

11(30) 26.4 4.3447 3.00E + 05 0 28.631 5.6437 3.00E + 05 245.84

11(50) 45.466 11.535 5.00E + 05 0 67.731 9.2689 5.00E + 05 357.03

12(10) 290.46 602.81 518965189651896 36729 365.97 628.79 70247 28282

12(30) 3825.1 5366.7 3.00E + 05 0 9299.1 8224.2 3.00E + 05 72.512

12(50) 20098 13926 5.00E + 05 0 1.9387E + 05 74653 5.00E + 05 336.18

13(10) 0.48833 0.13847 1.00E + 05 0 0.484 0.17379 1.00E + 05 80.376

13(30) 3.6953 3.2199 3.00E + 05 0 11.464 4.1071 3.00E + 05 279.01

13(50) 14.089 10.555 5.00E + 05 0 34.4 4.0116 5.00E + 05 397.13

14(10) 3.5897 0.33956 1.00E + 05 0 3.6493 0.29484 1.00E + 05 99.151

14(30) 13.099 0.43684 3.00E + 05 0 13.257 0.38212 3.00E + 05 220.9

14(50) 22.59622.59622.596 0.55778 5.00E + 05 0 23.107 0.38498 5.00E + 05 447.31

15(10) 274.57 205.3 83308 28721 302.11 184.42 87039 25765

15(30) 307.45 104.01 3.00E + 05 0 323.65 104.18 3.00E + 05 137.15

15(50) 298.89298.89298.89 114.33 5.00E + 05 0 609.82 277.93 2.5073E + 05 2.54E + 05

16(10) 126.12126.12126.12 19.484 1.00E + 05 0 142.04 28.859 1.00E + 05 79.067

16(30) 231.03 164.31 3.00E + 05 0 187.49 134.05 3.00E + 05 179.61

16(50) 270 92.302 5.00E + 05 0 630.28 290.48 2.1749E + 05 2.518E + 05

17(10) 131.98 23.589 1.00E + 05 0 135.44 25.872 1.00E + 05 66.806

17(30) 204.52 180.29 3.00E + 05 0 261.87 167.5 3.00E + 05 226.97

17(50) 301.97 75.472 5.00E + 05 0 618.96 285.7 2.3404E + 05 2.5339E + 05
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Table B.6: Results of the investigation into alternative solution space diversity control mech-

anisms: TSHH (no local search) and LSHH (constant local search).
Prob TSHH LSHH

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 118701187011870 538.93 1.00E � 06 0 13205 590.59

1(30) 1.00E � 06 0 529835298352983 2723.3 1.00E � 06 0 69832 4304.7

1(50) 1.00E � 06 0 1.1563E + 051.1563E + 051.1563E + 05 9985.8 1.00E � 06 0 1.7458E + 05 18988

2(10) 1.00E � 06 0 14013 1246.7 1.00E � 06 0 15773 1145.2

2(30) 1.00E � 06 0 907279072790727 15876 1.00E � 06 0 1.1821E + 05 19876

2(50) 1.00E � 06 0 2.4547E + 052.4547E + 052.4547E + 05 78036 1.00E � 06 0 3.9112E + 05 1.0488E + 05

3(10) 1.00E � 06 0 22750 3003 1.00E � 06 0 24383 3428.6

3(30) 295.35 998.74 2.7856E + 05 27782 811.5 2115.4 2.9699E + 05 15519

3(50) 789607896078960 71769 5.00E + 05 0 1.2457E + 05 93799 5.00E + 05 0

4(10) 1.00E � 06 0 158531585315853 1341.8 1.00E � 06 0 17808 1383.5

4(30) 1.00E � 06 0 1.5021E + 05 27962 1.00E � 06 0 2.0331E + 05 34332

4(50) 1.193 5.5772 4.6643E + 054.6643E + 054.6643E + 05 60163 8.1087 17.909 5.00E + 05 523.99

5(10) 1.00E � 06 0 17110 883.31 1.00E � 06 0 19088 1034.1

5(30) 174.5 278.17 3.00E + 05 0 299.83 353.17 3.00E + 05 0

5(50) 3237 760.19 5.00E + 05 0 3738.4 769.24 5.00E + 05 0

6(10) 0 0 334173341733417 7388.8 0.133 0.72658 40452 15190

6(30) 0.13267 0.72665 2.4344E + 052.4344E + 052.4344E + 05 33935 3.7687 12.187 2.9229E + 05 15650

6(50) 4.8457 13.791 4.7795E + 054.7795E + 054.7795E + 05 35158 40.04 47.379 5.00E + 05 0

7(10) 0.162 0.13632 1.00E + 05 0 0.1310.1310.131 0.11161 1.00E + 05 0

7(30) 0.0036667 0.0080872 1.2987E + 051.2987E + 051.2987E + 05 1.1343E + 05 0.01 0.013131 2.0306E + 05 1.1305E + 05

7(50) 0.0033333 0.0095893 2.0263E + 052.0263E + 052.0263E + 05 1.6704E + 05 0.004 0.0093218 2.6732E + 05 1.5592E + 05

8(10) 20.06 0.086681 1.00E + 05 0 20.087 0.13664 1.00E + 05 0

8(30) 20.16920.16920.169 0.12041 3.00E + 05 0 20.232 0.12098 3.00E + 05 0

8(50) 20.79620.79620.796 0.37683 5.00E + 05 0 20.858 0.34138 5.00E + 05 0

9(10) 0.005 0.0050855 433204332043320 19202 0.137 0.42669 46927 25418

9(30) 2.37632.37632.3763 1.3964 2.9771E + 05 10079 3.2047 1.4938 3.00E + 05 0

9(50) 14.373 3.3496 5.00E + 05 0 20.042 6.5921 5.00E + 05 0

10(10) 15.556 9.1746 1.00E + 05 0 18.475 7.8114 1.00E + 05 0

10(30) 55.76855.76855.768 19.838 3.00E + 05 0 61.737 24.805 3.00E + 05 0

10(50) 57.47457.47457.474 48.572 5.00E + 05 0 313.54 39.575 5.00E + 05 0

11(10) 5.0464 2.2525 97283 14880 5.484 1.4235 1.00E + 05 0

11(30) 24.37824.37824.378 5.1224 3.00E + 05 0 25.349 5.9663 3.00E + 05 0

11(50) 44.831 9.4654 5.00E + 05 0 41.92841.92841.928 10.158 5.00E + 05 0

12(10) 302.86 546.06 69543 39317 416.18 645.96 67772 37142

12(30) 2611.5 3622.3 2.9488E + 05 20162 4955.8 5179.1 3.00E + 05 0

12(50) 21252 14310 5.00E + 05 0 21114 15077 5.00E + 05 0

13(10) 0.432670.432670.43267 0.16282 99050 5203.4 0.47067 0.15993 1.00E + 05 0

13(30) 2.01872.01872.0187 0.44262 3.00E + 05 0 3.3303 3.0567 3.00E + 05 0

13(50) 4.13934.13934.1393 0.92703 5.00E + 05 0 11.19 8.9088 5.00E + 05 0

14(10) 3.6397 0.29122 1.00E + 05 0 3.6233.6233.623 0.32138 1.00E + 05 0

14(30) 13.14 0.44011 3.00E + 05 0 13.06813.06813.068 0.43086 3.00E + 05 0

14(50) 22.52722.52722.527 0.3707 5.00E + 05 0 22.695 0.39549 5.00E + 05 0

15(10) 258.98 210.57 80170 30406 246.86 212.57 83231 27190

15(30) 373.72 108.43 3.00E + 05 0 294.68294.68294.68 114.47 3.00E + 05 0

15(50) 259.17259.17259.17 114.32 5.00E + 05 0 299.09 114.19 5.00E + 05 0

16(10) 138.39 25.216 1.00E + 05 0 127.94127.94127.94 14.729 1.00E + 05 0

16(30) 153.27 128.88 3.00E + 05 0 152.71152.71152.71 119.62 3.00E + 05 0

16(50) 74.47774.47774.477 45.497 5.00E + 05 0 249.92 91.765 5.00E + 05 0

17(10) 133.28 22.828 1.00E + 05 0 132.96 21.29 1.00E + 05 0

17(30) 200.71 169.72 3.00E + 05 0 237.57 194 3.00E + 05 0

17(50) 168.33 164.8 5.00E + 05 0 286.36 85.684 5.00E + 05 0
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Table B.7: Results of the investigation into alternative solution space diversity control mech-

anisms: ALSHH (adaptive local search).
Prob ALSHH

(Dims) FFV # FEs

µ � µ �

1(10) 1.00E � 06 0 12087 537.38

1(30) 1.00E � 06 0 53170 3025.3

1(50) 1.00E � 06 0 1.1587E + 05 10855

2(10) 1.00E � 06 0 139071390713907 1016.7

2(30) 1.00E � 06 0 93030 18560

2(50) 1.00E � 06 0 2.577E + 05 71368

3(10) 1.00E � 06 0 218172181721817 3112.5

3(30) 2006.8 10120 2.656E + 052.656E + 052.656E + 05 39777

3(50) 88482 57891 5.00E + 05 0

4(10) 1.00E � 06 0 16117 1480.9

4(30) 1.00E � 06 0 1.4849E + 051.4849E + 051.4849E + 05 32113

4(50) 1.821 8.6887 4.7791E + 05 50187

5(10) 1.00E � 06 0 169271692716927 1170.6

5(30) 139.52139.52139.52 177.54 3.00E + 05 0

5(50) 3064.43064.43064.4 877.39 5.00E + 05 0

6(10) 0.13333 0.72652 36263 15400

6(30) 0.67233 1.5052 2.5901E + 05 34525

6(50) 5.356 4.7524 4.9236E + 05 26607

7(10) 0.13167 0.17916 1.00E + 05 30.731

7(30) 0.006 0.0093218 1.5659E + 05 1.1934E + 05

7(50) 0.005 0.011671 2.1313E + 05 1.761E + 05

8(10) 20.05920.05920.059 0.11931 1.00E + 05 9.3526

8(30) 20.193 0.1094 3.00E + 05 39.224

8(50) 20.94 0.34657 5.00E + 05 47.324

9(10) 0.23333 0.49446 53361 30000

9(30) 2.5743 1.5592 3.00E + 05 0

9(50) 11.18211.18211.182 4.1157 5.00E + 05 0

10(10) 14.64414.64414.644 8.0407 1.00E + 05 26.704

10(30) 59.464 31.099 3.00E + 05 32.641

10(50) 60.881 51.26 5.00E + 05 20.197

11(10) 5.8024 2.2642 972739727397273 14953

11(30) 25.704 6.5042 3.00E + 05 28.768

11(50) 43.005 9.0337 5.00E + 05 31.043

12(10) 242.55 562.16 604806048060480 39101

12(30) 2479.82479.82479.8 3643.6 3.00E + 05 19.931

12(50) 171201712017120 14039 5.00E + 05 9.1287

13(10) 0.46067 0.19216 1.00E + 05 19.931

13(30) 2.288 1.4814 3.00E + 05 0

13(50) 4.257 0.8859 5.00E + 05 0

14(10) 3.6253 0.35519 1.00E + 05 0

14(30) 13.106 0.47118 3.00E + 05 0

14(50) 22.631 0.39482 5.00E + 05 31.36

15(10) 182.33 193.2 747777477774777 32918

15(30) 327.12 102.2 3.00E + 05 26.801

15(50) 273.54 94.572 5.00E + 05 29.642

16(10) 134.35 23.174 1.00E + 05 0

16(30) 227.38 161.47 3.00E + 05 45.758

16(50) 116.97 138.04 5.00E + 05 21.804

17(10) 126.32126.32126.32 19.389 1.00E + 05 0

17(30) 173.3173.3173.3 154.54 3.00E + 05 0

17(50) 153.15153.15153.15 132.86 5.00E + 05 0
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Table B.8: Results of the investigation into alternative solution space diversity control mech-

anisms: DIVHH (constant species selection) and ADIVHH (adaptive species selection).
Prob DIVHH ADIVHH

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 8756.78756.78756.7 469.54 1.00E � 06 0 8876.7 472.47

1(30) 1.00E � 06 0 306773067730677 1471.7 1.00E � 06 0 30810 1859.1

1(50) 1.00E � 06 0 62497 2540.5 1.00E � 06 0 617636176361763 2742.8

2(10) 1.00E � 06 0 127371273712737 728 1.00E � 06 0 12777 914.89

2(30) 1.00E � 06 0 96830 9455.1 1.00E � 06 0 95827 8084.9

2(50) 1.00E � 06 0 3.0483E + 05 21347 1.00E � 06 0 3.0276E + 05 20046

3(10) 1.00E � 06 0 22370 2558.7 1.00E � 06 0 220372203722037 2379.6

3(30) 15709 17425 3.00E + 05 0 14322 11644 3.00E + 05 0

3(50) 782767827678276 38647 5.00E + 05 0 83440 43728 5.00E + 05 0

4(10) 1.00E � 06 0 136501365013650 871.29 1.00E � 06 0 13783 1212.3

4(30) 1.00E � 06 0 1.3636E + 051.3636E + 051.3636E + 05 16722 1.00E � 06 0 1.3743E + 05 34916

4(50) 741.16 1837.8 5.00E + 05 0 110.87 305.21 5.00E + 05 0

5(10) 1.00E � 06 0 12513 1433.8 1.00E � 06 0 120471204712047 898.94

5(30) 572.37 670.35 3.00E + 05 0 402.87 477.12 3.00E + 05 0

5(50) 3585.9 654.71 5.00E + 05 0 3565.9 831.91 5.00E + 05 0

6(10) 0.00033333 0.0018257 296772967729677 11907 0.002 0.0040684 32763 14187

6(30) 1.1987 1.8617 2.3845E + 05 53605 0.98833 1.8469 2.2272E + 052.2272E + 052.2272E + 05 65776

6(50) 6.2293 5.6979 4.7594E + 054.7594E + 054.7594E + 05 57513 7.933 14.953 4.7642E + 05 52760

7(10) 0.165 0.09666 1.00E + 05 0 0.19267 0.16737 1.00E + 05 0

7(30) 0.0083333 0.014162 1.5818E + 05 1.2622E + 05 0.010333 0.014016 1.7338E + 05 1.2886E + 05

7(50) 0.00066667 0.0025371 1.7877E + 051.7877E + 051.7877E + 05 1.4677E + 05 0.0046667 0.010417 2.0712E + 05 1.6519E + 05

8(10) 20.051 0.097129 1.00E + 05 24.598 20.0520.0520.05 0.10417 1.00E + 05 19.205

8(30) 20.208 0.15028 3.00E + 05 13.817 20.221 0.1364 3.00E + 05 20.833

8(50) 21.077 0.13417 5.00E + 05 0 20.805 0.40291 5.00E + 05 0

9(10) 0.006 0.0049827 377433774337743 15066 0.007 0.0046609 39643 16243

9(30) 2.1807 1.9921 2.8907E + 05 32679 2.478 1.9473 2.9427E + 05 19808

9(50) 18.333 12.165 4.9994E + 05 310.38 20.999 11.252 5.00E + 05 0

10(10) 13.469 5.5986 1.00E + 05 0 12.92812.92812.928 6.7108 1.00E + 05 0

10(30) 83.46 27.429 3.00E + 05 0 71.604 24.588 3.00E + 05 1.8257

10(50) 210.67 54.125 5.00E + 05 10.148 186.37 39.198 5.00E + 05 19.491

11(10) 6.0496 2.0357 1.00E + 05 10.283 5.8025 1.5892 1.00E + 05 4.3417

11(30) 30.394 3.3909 3.00E + 05 33.192 29.559 3.6047 3.00E + 05 27.926

11(50) 59.229 3.9607 5.00E + 05 31.55 58.916 5.47 5.00E + 05 24.962

12(10) 191.16 510.98 530635306353063 39042 279.44 548.06 59723 40319

12(30) 4211.1 4194.2 3.00E + 05 8.9763 2984 4433.5 2.9576E + 05 23260

12(50) 28073 24371 5.00E + 05 0 30380 18795 5.00E + 05 0

13(10) 0.404670.404670.40467 0.14994 1.00E + 05 0 0.51333 0.14182 1.00E + 05 0

13(30) 5.0677 1.5478 3.00E + 05 0 5.0143 1.9442 3.00E + 05 0

13(50) 21.222 7.227 5.00E + 05 0 19.962 5.7001 5.00E + 05 0

14(10) 3.56373.56373.5637 0.33974 1.00E + 05 0 3.6447 0.42816 1.00E + 05 0

14(30) 13.08313.08313.083 0.45656 3.00E + 05 0 13.147 0.32714 3.00E + 05 0

14(50) 21.73121.73121.731 0.92441 5.00E + 05 0 22.135 0.91735 5.00E + 05 0

15(10) 237.03 198.35 81013 29724 259.89 196.18 85629 28758

15(30) 313.45313.45313.45 134.77 3.00E + 05 11.043 360.93 97.258 3.00E + 05 17.499

15(50) 286.76 95.286 5.00E + 05 3.6515 330.69 98.527 5.00E + 05 3.6515

16(10) 125.53125.53125.53 17.529 1.00E + 05 31.675 126.41 21.736 1.00E + 05 30.926

16(30) 234.75 148.07 3.00E + 05 30.859 163.57 123.48 3.00E + 05 35.207

16(50) 244.59 141.1 5.00E + 05 27.916 238.26 123.21 5.00E + 05 34.032

17(10) 135.59 19.435 1.00E + 05 0 132.76132.76132.76 25.888 1.00E + 05 0

17(30) 221.92 163.39 3.00E + 05 0 195.5195.5195.5 139.97 3.00E + 05 0

17(50) 177.52 106.45 5.00E + 05 0 191.53 118.35 5.00E + 05 0

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix B. Results 146

Table B.9: Results of the investigation into alternative heuristic space diversity control mech-

anisms: Baseline HMHH algorithm (no heuristic space diversity control strategy).
Prob HMHH (baseline)

(Dims) FFV # FEs

µ � µ �

1(10) 1.00E � 06 0 13310 694.98

1(30) 1.00E � 06 0 45040 1783.8

1(50) 1.00E � 06 0 745877458774587 2362.3

2(10) 1.00E � 06 0 31577 2659

2(30) 1.00E � 06 0 2.2039E + 05 49695

2(50) 0.0013341 0.0043412 4.9119E + 05 17885

3(10) 238.87 910.04 84027 11776

3(30) 1.3519E + 05 73374 3.00E + 05 0

3(50) 4.1224E + 05 1.9264E + 05 5.00E + 05 0

4(10) 1.00E � 06 0 43940 9759.9

4(30) 0.94533 2.8539 3.00E + 05 0

4(50) 340.53 332.25 5.00E + 05 0

5(10) 1.00E � 06 0 17980 1572

5(30) 1360.6 728.2 3.00E + 05 0

5(50) 4906 1030.8 5.00E + 05 0

6(10) 0.119 0.41785 65910 19543

6(30) 4.2753 22.125 2.5104E + 05 45175

6(50) 8.0497 21.09 4.7265E + 05 45948

7(10) 0.44533 0.34199 1.00E + 05 0

7(30) 0.0046667 0.0081931 1.6146E + 05 1.153E + 05

7(50) 0.003 0.0059596 2.3284E + 05 1.7801E + 05

8(10) 20.061 0.10594 1.00E + 05 0

8(30) 20.166 0.10969 3.00E + 05 0

8(50) 20.26220.26220.262 0.099158 5.00E + 05 0

9(10) 0.038 0.17798 38270 19385

9(30) 2.245 1.8063 2.8956E + 05 30956

9(50) 14.237 4.7209 5.00E + 05 0

10(10) 16.157 7.0261 1.00E + 05 0

10(30) 72.135 30.203 3.00E + 05 0

10(50) 89.756 21.106 5.00E + 05 0

11(10) 6.8758 1.7015 1.00E + 05 0

11(30) 27.311 4.4467 3.00E + 05 0

11(50) 52.332 6.9296 5.00E + 05 0

12(10) 466.17 620.43 88740 19820

12(30) 4489.4 5300.9 3.00E + 05 0

12(50) 60290 54326 5.00E + 05 0

13(10) 0.50233 0.22999 1.00E + 05 0

13(30) 1.87331.87331.8733 0.441 3.00E + 05 0

13(50) 3.86473.86473.8647 1.1894 5.00E + 05 0

14(10) 3.653 0.2848 1.00E + 05 0

14(30) 13.14 0.44261 3.00E + 05 0

14(50) 22.517 0.55336 5.00E + 05 0

15(10) 263.91 212.3 766637666376663 33922

15(30) 347.11 97.654 3.00E + 05 0

15(50) 302.11 109.61 5.00E + 05 0

16(10) 137.61 25.198 1.00E + 05 0

16(30) 195.48 138.18 3.00E + 05 0

16(50) 159.99 128.26 5.00E + 05 0

17(10) 134.52 17.935 1.00E + 05 0

17(30) 163.15163.15163.15 110.67 3.00E + 05 0

17(50) 130.69 108.95 5.00E + 05 0
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Table B.10: Results of the investigation into alternative heuristic space diversity control

mechanisms: LDHH (linearly decreasing heuristic space diversity) and EDHH (exponentially

decreasing heuristic space diversity).
Prob LDHH EDHH

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 120171201712017 642.78 1.00E � 06 0 12090 579.15

1(30) 1.00E � 06 0 436534365343653 1500.7 1.00E � 06 0 46723 2038.7

1(50) 1.00E � 06 0 84380 9942.9 1.00E � 06 0 77327 4280.2

2(10) 1.00E � 06 0 137431374313743 959.41 1.00E � 06 0 14393 902.84

2(30) 1.00E � 06 0 979739797397973 14510 1.00E � 06 0 2.0176E + 05 95248

2(50) 0.0030009 0.016431 3.7491E + 05 1.6617E + 05 0.55267 1.3763 4.11E + 05 1.6417E + 05

3(10) 1.00E � 06 0 20120 2020.8 1.00E � 06 0 195501955019550 1444.1

3(30) 55462 48441 2.9701E + 05 16395 70567 75788 3.00E + 05 0

3(50) 2.1491E + 05 1.4672E + 05 5.00E + 05 0 5.266E + 05 3.2535E + 05 5.00E + 05 0

4(10) 1.00E � 06 0 155501555015550 1344.9 1.00E � 06 0 16003 1023.7

4(30) 0.0033343 0.018257 1.502E + 05 1.0167E + 05 1.1467 3.7805 1.6407E + 05 1.0009E + 05

4(50) 37.163 181.92 2.837E + 05 1.7079E + 05 295.84 1291.7 2.6099E + 052.6099E + 052.6099E + 05 1.4466E + 05

5(10) 1.00E � 06 0 17313 1044.1 1.00E � 06 0 170771707717077 1054

5(30) 1086.8 849.77 3.00E + 05 0 1200.2 662.45 3.00E + 05 0

5(50) 5052.4 1274.2 5.00E + 05 0 5238.2 1421.9 5.00E + 05 0

6(10) 0.26533 1.0098 37347 18132 0.016 0.083896 359333593335933 13900

6(30) 1.1653 1.9058 2.3937E + 05 54813 1.076 1.7304 2.7588E + 05 41820

6(50) 21.662 26.963 4.8019E + 05 53900 35.225 49.587 5.00E + 05 0

7(10) 0.15467 0.12678 1.00E + 05 0 0.106 0.093055 93167 17726

7(30) 0.004 0.010372 1.4953E + 05 1.1659E + 05 0.0066667 0.01561 1.4694E + 05 1.1871E + 05

7(50) 0.0016667 0.0064772 1.8404E + 051.8404E + 051.8404E + 05 1.4432E + 05 0.0056667 0.011351 2.1627E + 05 1.7421E + 05

8(10) 20.03420.03420.034 0.077442 99290 3888.8 20.114 0.16596 1.00E + 05 0

8(30) 20.1520.1520.15 0.13011 3.00E + 05 0 20.239 0.1972 3.00E + 05 0

8(50) 20.622 0.34904 5.00E + 05 0 20.829 0.3542 5.00E + 05 0

9(10) 0.0046667 0.0050742 334403344033440 15441 0.52933 0.88824 54163 35998

9(30) 9.8607 5.3668 2.9727E + 05 14953 18.916 8.0898 3.00E + 05 0

9(50) 29.842 16.353 5.00E + 05 0 48.514 19.672 5.00E + 05 0

10(10) 19.136 9.4447 1.00E + 05 0 15.582 9.6233 98393 8800.1

10(30) 73.098 31.88 3.00E + 05 0 73.336 28.963 3.00E + 05 0

10(50) 40.668 16.476 5.00E + 05 0 29.14229.14229.142 20.344 5.00E + 05 0

11(10) 6.9141 1.3129 1.00E + 05 0 6.1124 2.0343 98277 9439.1

11(30) 21.74 7.7398 3.00E + 05 0 19.711 5.2357 3.00E + 05 0

11(50) 49.067 9.0971 5.00E + 05 0 43.42443.42443.424 13.12 5.00E + 05 0

12(10) 156.24 420.61 69417 35661 131.04 401.7 603576035760357 37188

12(30) 4646.4 4889 3.00E + 05 0 10348 13200 3.00E + 05 0

12(50) 43832 26157 5.00E + 05 0 56752 44038 5.00E + 05 0

13(10) 0.54667 0.19359 1.00E + 05 0 0.585 0.22664 1.00E + 05 0

13(30) 2.7937 0.87927 3.00E + 05 0 2.2563 0.63171 3.00E + 05 0

13(50) 4.9403 2.2133 5.00E + 05 0 4.794 3.0517 5.00E + 05 0

14(10) 3.457 0.54519 1.00E + 05 0 3.5107 0.42496 1.00E + 05 0

14(30) 13.204 0.31822 3.00E + 05 0 13.185 0.38084 3.00E + 05 0

14(50) 22.283 0.91453 5.00E + 05 0 22.524 1.0094 5.00E + 05 0

15(10) 222.08 194.97 79050 33379 251.95 179.67 91060 23362

15(30) 340.26 89.804 3.00E + 05 0 330.33 102.54 3.00E + 05 0

15(50) 297.23 99.908 5.00E + 05 0 307.76 101.03 5.00E + 05 0

16(10) 135.35 27.021 94230 6630.6 134.17 26.114 78710 20528

16(30) 161.8 103.94 3.00E + 05 0 189.7 154.73 3.00E + 05 0

16(50) 122.27 118.27 5.00E + 05 0 102.04102.04102.04 125.19 4.9486E + 05 13023

17(10) 137.86 18.663 1.00E + 05 0 137.21 25.201 1.00E + 05 0

17(30) 198.1 160.95 3.00E + 05 0 207.01 180.66 3.00E + 05 0

17(50) 169.22 159.14 5.00E + 05 0 120.22120.22120.22 129.83 5.00E + 05 0
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Table B.11: Results of the investigation into alternative heuristic space diversity control

mechanisms: LIHH1 (linear increasing heuristic space diversity with a priori knowledge) and

EIHH1 (exponentially increasing heuristic space diversity with a priori knowledge).
Prob LIHH1 EIHH1

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 8623.3 244.5 1.00E � 06 0 8563.38563.38563.3 277.28

1(30) 1.00E � 06 0 19253 599.27 1.00E � 06 0 191931919319193 549.57

1(50) 1.00E � 06 0 26793 739.96 1.00E � 06 0 267532675326753 670.94

2(10) 1.00E � 06 0 9173.3 294.7 1.00E � 06 0 9106.79106.79106.7 398.21

2(30) 1.00E � 06 0 26760 766.36 1.00E � 06 0 264102641026410 806.59

2(50) 1.00E � 06 0 525435254352543 736.57 1.00E � 06 0 52723 903.89

3(10) 1.00E � 06 0 13350 483.34 1.00E � 06 0 132771327713277 397.13

3(30) 1.00E � 06 0 615676156761567 1265.3 1.00E � 06 0 61603 1201.9

3(50) 1.00E � 06 0 1.5574E + 051.5574E + 051.5574E + 05 2671.5 1.00E � 06 0 1.6336e + 05 6549

4(10) 1.00E � 06 0 951095109510 347.75 1.00E � 06 0 9573.3 374.1

4(30) 1.00E � 06 0 29330 927.79 1.00E � 06 0 292672926729267 986.58

4(50) 1.00E � 06 0 59993 1287.6 1.00E � 06 0 598405984059840 1043.1

5(10) 1.00E � 06 0 17520 608.79 1.00E � 06 0 174471744717447 567.35

5(30) 1.00E � 06 0 2.5721e + 052.5721e + 052.5721e + 05 68420 0.00033427 0.0018254 2.7194e + 05 70931

5(50) 0.0399990.0399990.039999 0.059073 5.00E + 05 0 190.58 730.17 5.00E + 05 0

6(10) 0.00066667 0.0025371 189401894018940 744.91 0.00033333 0.0018257 19210 716

6(30) 0.133 0.72658 1.2291e + 051.2291e + 051.2291e + 05 46644 0 0 2.0872e + 05 49555

6(50) 0.0013333 0.0057135 3.7927e + 053.7927e + 053.7927e + 05 93024 3.8803 12.716 4.741e + 05 37361

7(10) 0.001 0.0030513 7533.37533.37533.3 339.71 0.00066667 0.0025371 7640 439.91

7(30) 0.00033333 0.0018257 166031660316603 673.38 0 0 16657 622.94

7(50) 0 0 249802498024980 703.39 0 0 25013 676.57

8(10) 20.07 0.11418 1.00E + 05 0 20.054 0.096654 1.00E + 05 0

8(30) 20.209 0.15768 3.00E + 05 0 20.12220.12220.122 0.10621 3.00E + 05 0

8(50) 21.102 0.14223 5.00E + 05 0 21.123 0.0312 5.00E + 05 0

9(10) 0.495 0.76553 79563 30822 0.233 0.41917 58827 27886

9(30) 7.8523 4.5941 3.00E + 05 0 3.4547 3.7103 2.7578e + 05 42827

9(50) 24.662 7.7736 5.00E + 05 0 21.058 6.896 5.00E + 05 0

10(10) 1.6147 1.0913 880908809088090 30887 1.8793 1.2046 88200 30602

10(30) 12.719 5.4544 3.00E + 05 0 10.55310.55310.553 4.5767 3.00E + 05 0

10(50) 28.78 10.823 5.00E + 05 0 26.41726.41726.417 10.946 5.00E + 05 0

11(10) 1.223 1.2786 74537 39566 1.0214 1.149 665406654066540 41709

11(30) 8.90188.90188.9018 3.2821 3.00E + 05 0 10.785 6.4151 3.00E + 05 0

11(50) 19.79919.79919.799 4.1018 5.00E + 05 0 21.232 7.9897 5.00E + 05 0

12(10) 174.03 416.19 72990 41976 317.66 627.11 63770 45137

12(30) 5850.1 3788.7 2.9121e + 05 48127 4822.2 4782.6 3.00E + 05 0

12(50) 26343 16432 5.00E + 05 0 35970 22535 5.00E + 05 0

13(10) 0.643 0.21991 1.00E + 05 0 0.44167 0.14283 1.00E + 05 0

13(30) 2.4147 0.67678 3.00E + 05 0 1.83631.83631.8363 0.55461 3.00E + 05 0

13(50) 4.597 0.67692 5.00E + 05 0 4.1414.1414.141 0.82065 5.00E + 05 0

14(10) 2.8263 0.6434 1.00E + 05 0 2.69532.69532.6953 0.37906 1.00E + 05 0

14(30) 10.05910.05910.059 0.82305 3.00E + 05 0 10.288 0.96526 3.00E + 05 0

14(50) 19.48219.48219.482 0.64356 5.00E + 05 0 19.92 0.74443 5.00E + 05 0

15(10) 340.36 102.85 1.00E + 05 0 366.66 88.409 1.00E + 05 0

15(30) 276.66276.66276.66 89.763 3.00E + 05 0 276.66276.66276.66 104 3.00E + 05 0

15(50) 253.35253.35253.35 93.695 5.00E + 05 0 256.66 77.386 5.00E + 05 0

16(10) 100.73100.73100.73 12.229 94410 17096 100.8 13.241 1.00E + 05 0

16(30) 179.42 167.61 3.00E + 05 0 120.7120.7120.7 142.49 3.00E + 05 0

16(50) 129.03129.03129.03 143.34 5.00E + 05 0 148.7 163.59 5.00E + 05 0

17(10) 97.72 8.1602 1.00E + 05 0 96.52596.52596.525 7.7402 1.00E + 05 0

17(30) 183.73 205.24 3.00E + 05 0 190.59 177.28 3.00E + 05 0

17(50) 143.73 142.08 5.00E + 05 0 78.11678.11678.116 78.053 5.00E + 05 0
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Table B.12: Results of the investigation into alternative heuristic space diversity control

mechanisms: LIHH2 (linear increasing heuristic space diversity without a priori knowledge)

and EIHH2 (exponentially increasing heuristic space diversity without a priori knowledge).
Prob LIHH2 EIHH2

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1, 00E � 06 0 18870 8668.3 1, 00E � 06 0 16610 8578.8

1(30) 1, 00E � 06 0 60323 30956 1, 00E � 06 0 49367 28510

1(50) 1, 00E � 06 0 1.053e + 05 62707 1, 00E � 06 0 89440 55856

2(10) 1, 00E � 06 0 32310 21104 1, 00E � 06 0 28097 12646

2(30) 1, 00E � 06 0 1.7347e + 05 85128 1, 00E � 06 0 1.0933e + 05 72461

2(50) 0.0090008 0.031985 3.4577e + 05 1.8287e + 05 1, 00E � 06 0 2.9271e + 052.9271e + 052.9271e + 05 1.5095e + 05

3(10) 3.7033 17.172 57867 37168 1, 00E � 06 0 43277 19645

3(30) 51869 86498 2.1972e + 05 1.0788e + 05 6796 17006 1.6836e + 051.6836e + 051.6836e + 05 1.0592e + 05

3(50) 2.1453e + 05 2.7217e + 05 3.975e + 053.975e + 053.975e + 05 1.5265e + 05 99777 1.0943e + 05 4.2713e + 05 1.2437e + 05

4(10) 1, 00E � 06 0 39220 23734 1, 00E � 06 0 29923 13977

4(30) 1, 00E � 06 0 1.4722e + 05 97022 1, 00E � 06 0 1.3888e + 051.3888e + 051.3888e + 05 73296

4(50) 344.97 930.78 3.9416e + 05 1.6501e + 05 0.578 2.5913 2.9951e + 05 1.712e + 05

5(10) 1, 00E � 06 0 46650 20429 1, 00E � 06 0 31960 7965

5(30) 1064.4 1734.8 2.8774e + 05 34956 670.92670.92670.92 905.42 2.8844e + 05 45133

5(50) 3908.7 2977.8 5, 00E + 05 0 3395.53395.53395.5 2249.4 4.605e + 05 1.0539e + 05

6(10) 0.25133 0.95807 57533 24690 0.00066667 0.0025371 41690 18418

6(30) 1.8913 5.2325 2.2451e + 052.2451e + 052.2451e + 05 77133 0.901 2.9717 2.3416e + 05 52399

6(50) 6.1297 8.7732 4.6432e + 05 76351 5.24 7.869 4.4701e + 054.4701e + 054.4701e + 05 80799

7(10) 0.67867 1.1493 72220 43161 0.61767 1.0662 677736777367773 40968

7(30) 0.0043333 0.0089763 1.2978e + 051.2978e + 051.2978e + 05 1.1301e + 05 0.0083333 0.012888 1.5247e + 05 1.1976e + 05

7(50) 0.0023333 0.0067891 2.3375e + 05 1.7057e + 05 0.003 0.0079438 2.0818e + 05 1.9341e + 05

8(10) 20.057 0.10968 1, 00E + 05 0 20.03420.03420.034 0.079333 1, 00E + 05 0

8(30) 20.226 0.27014 3, 00E + 05 0 20.235 0.26664 3, 00E + 05 0

8(50) 20.463 0.38992 5, 00E + 05 0 20.558 0.36105 5, 00E + 05 0

9(10) 0.067333 0.24812 46027 28073 0.038 0.17798 39850 20348

9(30) 3.4097 3.542 2.6593e + 052.6593e + 052.6593e + 05 68493 2.446 1.9105 2.8476e + 05 37453

9(50) 13.85113.85113.851 8.9144 4.5523e + 05 1.1611e + 05 16.123 14.872 4.8928e + 05 58698

10(10) 17.456 15.677 97077 16012 14.65314.65314.653 17.797 1, 00E + 05 0

10(30) 52.99152.99152.991 38.962 3, 00E + 05 0 57.979 48.81 3, 00E + 05 0

10(50) 110.71 60.034 5, 00E + 05 0 110.28 62.968 5, 00E + 05 0

11(10) 3.8435 2.491 91433 23930 3.7648 2.8672 895208952089520 27470

11(30) 19.65119.65119.651 9.1953 3, 00E + 05 0 24.223 9.253 3, 00E + 05 0

11(50) 44.635 14.737 5, 00E + 05 0 43.44 18.5 5, 00E + 05 0

12(10) 254.83 564.94 73370 32129 220.08 561.14 63337 29948

12(30) 5033.1 5266.4 3, 00E + 05 0 3296.33296.33296.3 5065 2.9662e + 05 13275

12(50) 253322533225332 17809 5, 00E + 05 0 26310 27152 5, 00E + 05 0

13(10) 0.437330.437330.43733 0.15909 1, 00E + 05 0 0.50733 0.16607 1, 00E + 05 0

13(30) 2.216 0.90388 3, 00E + 05 0 2.0943 0.48971 3, 00E + 05 0

13(50) 4.7787 2.0317 5, 00E + 05 0 6.6917 4.4423 5, 00E + 05 0

14(10) 3.11473.11473.1147 0.6036 1, 00E + 05 0 3.1803 0.50128 1, 00E + 05 0

14(30) 12.09612.09612.096 1.2419 3, 00E + 05 0 12.492 0.99427 3, 00E + 05 0

14(50) 21.38721.38721.387 1.7448 5, 00E + 05 0 21.534 1.2894 5, 00E + 05 0

15(10) 225.03 195.33 83517 27458 230.52 221.47 78130 27953

15(30) 307.57 116.67 3, 00E + 05 0 284.64284.64284.64 126.64 2.9793e + 05 11338

15(50) 298.08 97.404 5, 00E + 05 0 283.46283.46283.46 95.071 5, 00E + 05 0

16(10) 125.43 26.513 1, 00E + 05 0 121.64121.64121.64 24.171 1, 00E + 05 0

16(30) 126.52126.52126.52 115.06 3, 00E + 05 0 181.14 161.42 3, 00E + 05 0

16(50) 171.22 173.72 5, 00E + 05 0 156.36 107.54 5, 00E + 05 0

17(10) 120.71 22.704 1, 00E + 05 0 119.64119.64119.64 24.8 1, 00E + 05 0

17(30) 169.03 163.13 3, 00E + 05 0 228.75 178.19 3, 00E + 05 0

17(50) 226.73 138.82 5, 00E + 05 0 150.06 130.81 5, 00E + 05 0
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Table B.13: Results comparison: HMHH and EIHH1.
Prob HMHH EIHH1

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 11870 538.93 1.00E � 06 0 8563.38563.38563.3 277.28

1(30) 1.00E � 06 0 52983 2723.3 1.00E � 06 0 191931919319193 549.57

1(50) 1.00E � 06 0 1.16E + 05 9985.8 1.00E � 06 0 267532675326753 670.94

2(10) 1.00E � 06 0 14013 1246.7 1.00E � 06 0 9106.79106.79106.7 398.21

2(30) 1.00E � 06 0 90727 15876 1.00E � 06 0 264102641026410 806.59

2(50) 1.00E � 06 0 2.45E + 05 78036 1.00E � 06 0 527235272352723 903.89

3(10) 1.00E � 06 0 22750 3003 1.00E � 06 0 132771327713277 397.13

3(30) 295.35 998.74 2.79E + 05 27782 1.00E � 06 0 616036160361603 1201.9

3(50) 78960 71769 5.00E + 05 0 1.00E � 06 0 1.63E + 051.63E + 051.63E + 05 6549

4(10) 1.00E � 06 0 15853 1341.8 1.00E � 06 0 9573.39573.39573.3 374.1

4(30) 1.00E � 06 0 1.50E + 05 27962 1.00E � 06 0 292672926729267 986.58

4(50) 1.193 5.5772 4.66E + 05 60163 1.00E � 06 0 598405984059840 1043.1

5(10) 1.00E � 06 0 171101711017110 883.31 1.00E � 06 0 17447 567.35

5(30) 174.5 278.17 3.00E + 05 0 0.00033427 0.0018254 2.72E + 052.72E + 052.72E + 05 70931

5(50) 3237 760.19 5.00E + 05 0 190.58190.58190.58 730.17 5.00E + 05 0

6(10) 0 0 33417 7388.8 0.00033333 0.0018257 192101921019210 716

6(30) 0.13267 0.72665 2.43E + 05 33935 0 0 2.09E + 052.09E + 052.09E + 05 49555

6(50) 4.8457 13.791 4.78E + 05 35158 3.8803 12.716 4.74E + 054.74E + 054.74E + 05 37361

7(10) 0.162 0.13632 1.00E + 05 0 0.00066667 0.0025371 764076407640 439.91

7(30) 0.0036667 0.0080872 1.30E + 05 1.13E + 05 0 0 166571665716657 622.94

7(50) 0.0033333 0.0095893 2.03E + 05 1.67E + 05 0 0 250132501325013 676.57

8(10) 20.06 0.086681 1.00E + 05 0 20.054 0.096654 1.00E + 05 0

8(30) 20.169 0.12041 3.00E + 05 0 20.12220.12220.122 0.10621 3.00E + 05 0

8(50) 20.79620.79620.796 0.37683 5.00E + 05 0 21.123 0.0312 5.00E + 05 0

9(10) 0.005 0.0050855 433204332043320 19202 0.233 0.41917 58827 27886

9(30) 2.3763 1.3964 2.98E + 05 10079 3.4547 3.7103 2.76E + 05 42827

9(50) 14.373 3.3496 5.00E + 05 0 21.058 6.896 5.00E + 05 0

10(10) 15.556 9.1746 1.00E + 05 0 1.8793 1.2046 882008820088200 30602

10(30) 55.768 19.838 3.00E + 05 0 10.55310.55310.553 4.5767 3.00E + 05 0

10(50) 57.474 48.572 5.00E + 05 0 26.41726.41726.417 10.946 5.00E + 05 0

11(10) 5.0464 2.2525 97283 14880 1.0214 1.149 665406654066540 41709

11(30) 24.378 5.1224 3.00E + 05 0 10.78510.78510.785 6.4151 3.00E + 05 0

11(50) 44.831 9.4654 5.00E + 05 0 21.23221.23221.232 7.9897 5.00E + 05 0

12(10) 302.86 546.06 69543 39317 317.66 627.11 637706377063770 45137

12(30) 2611.5 3622.3 2.95E + 05 20162 4822.2 4782.6 3.00E + 05 0

12(50) 21252 14310 5.00E + 05 0 35970 22535 5.00E + 05 0

13(10) 0.432670.432670.43267 0.16282 99050 5203.4 0.44167 0.14283 1.00E + 05 0

13(30) 2.0187 0.44262 3.00E + 05 0 1.8363 0.55461 3.00E + 05 0

13(50) 4.1393 0.92703 5.00E + 05 0 4.141 0.82065 5.00E + 05 0

14(10) 3.6397 0.29122 1.00E + 05 0 2.69532.69532.6953 0.37906 1.00E + 05 0

14(30) 13.14 0.44011 3.00E + 05 0 10.28810.28810.288 0.96526 3.00E + 05 0

14(50) 22.527 0.3707 5.00E + 05 0 19.9219.9219.92 0.74443 5.00E + 05 0

15(10) 258.98 210.57 801708017080170 30406 366.66 88.409 1.00E + 05 0

15(30) 373.72 108.43 3.00E + 05 0 276.66 104 3.00E + 05 0

15(50) 259.17 114.32 5.00E + 05 0 256.66 77.386 5.00E + 05 0

16(10) 138.39 25.216 1.00E + 05 0 100.8100.8100.8 13.241 1.00E + 05 0

16(30) 153.27 128.88 3.00E + 05 0 120.7 142.49 3.00E + 05 0

16(50) 74.47774.47774.477 45.497 5.00E + 05 0 148.7 163.59 5.00E + 05 0

17(10) 133.28 22.828 1.00E + 05 0 96.52596.52596.525 7.7402 1.00E + 05 0

17(30) 200.71 169.72 3.00E + 05 0 190.59 177.28 3.00E + 05 0

17(50) 168.33 164.8 5.00E + 05 0 78.11678.11678.116 78.053 5.00E + 05 0
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Table B.14: Results comparison: PAP and EEA-SLPS.
Prob PAP EEA-SLPS

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 13857 630.64 1.00E � 06 0 13923 517.74

1(30) 1.00E � 06 0 39190 5945.1 1.00E � 06 0 35297 2974.8

1(50) 1.00E � 06 0 70543 12587 1.00E � 06 0 61427 11642

2(10) 1.00E � 06 0 18760 1030.4 1.00E � 06 0 18553 858.12

2(30) 1.00E � 06 0 90063 2729.3 1.00E � 06 0 90507 2064.3

2(50) 1.00E � 06 0 2.12E + 05 2708 1.00E � 06 0 2.1192E + 05 5535.8

3(10) 1.00E � 06 0 46067 2040.3 1.00E � 06 0 45283 2295.7

3(30) 1.00E � 06 0 2.88E + 05 5481.5 1.00E � 06 0 2.8519E + 05 5400.7

3(50) 1184.3 1011.8 5.00E + 05 0 900.69 732.05 5.00E + 05 0

4(10) 1.00E � 06 0 20483 1424.7 1.00E � 06 0 19927 1128.9

4(30) 4448.8 5562.2 2.87E + 05 39164 2161.6 3328.6 2.7523E + 05 54905

4(50) 23718 14259 5.00E + 05 0 20340 13581 5.00E + 05 0

5(10) 1.00E � 06 0 25010 2790.5 1.00E � 06 0 32470 7258.9

5(30) 1115.5 1446.5 3.00E + 05 0 894.25 777.66 3.00E + 05 0

5(50) 4779.2 1791.2 5.00E + 05 0 5151.4 1333.9 5.00E + 05 0

6(10) 0.13267 0.72665 50613 10870 0 0 49337 8334.1

6(30) 0.51867 1.3463 2.75E + 05 27166 4.6447 13.185 2.8726E + 05 30467

6(50) 17.502 17.011 5.00E + 05 0 35.467 38.309 5.00E + 05 0

7(10) 0.0026667 0.0058329 62867 35481 0.005 0.0073108 74563 36835

7(30) 0 0 82047 41811 0 0 1.1778E + 05 93406

7(50) 0.0016667 0.0046113 2.03E + 05 1.67E + 05 0.001 0.0040258 1.6185E + 05 1.3644E + 05

8(10) 20.058 0.086279 1.00E + 05 0 20.116 0.10344 1.00E + 05 0

8(30) 20.264 0.16296 3.00E + 05 0 20.281 0.1898 3.00E + 05 0

8(50) 20.399 0.13771 5.00E + 05 0 20.42 0.20265 5.00E + 05 0

9(10) 0.22033 0.40067 68493 26929 0.069667 0.36084 45953 20620

9(30) 2.6757 1.92 2.81E + 05 55032 1.255 1.6865 2.0465E + 052.0465E + 052.0465E + 05 92270

9(50) 7.615 5.9228 5.00E + 05 0 6.4427 8.5585 3.4528E + 053.4528E + 053.4528E + 05 1.6708E + 05

10(10) 12.857 6.2645 1.00E + 05 0 8.8837 5.4366 1.00E + 05 0

10(30) 70.555 19.764 3.00E + 05 0 52.687 23.623 3.00E + 05 0

10(50) 131.04 26.332 5.00E + 05 0 102.69 44.344 5.00E + 05 0

11(10) 4.085 1.2619 1.00E + 05 0 4.1765 1.5439 1.00E + 05 0

11(30) 20.034 2.6451 3.00E + 05 0 20.661 2.6114 3.00E + 05 0

11(50) 39.579 5.2391 5.00E + 05 0 40.78 6.4723 5.00E + 05 0

12(10) 231.53 539.16 71737 28064 92.191 330.6 69873 28012

12(30) 3573.5 3310.2 3.00E + 05 0 7803.4 10925 3.00E + 05 0

12(50) 30185 26195 5.00E + 05 0 33888 28340 5.00E + 05 0

13(10) 0.498 0.15873 1.00E + 05 0 0.35533 0.15822 1.00E + 05 0

13(30) 1.74 0.42099 3.00E + 05 0 1.719 0.8862 3.00E + 05 0

13(50) 3.2063 0.62491 5.00E + 05 0 3.661 1.7035 5.00E + 05 0

14(10) 3.4067 0.31705 1.00E + 05 0 3.4057 0.32298 1.00E + 05 0

14(30) 13.026 0.31914 3.00E + 05 0 12.89 0.49124 3.00E + 05 0

14(50) 22.832 0.36725 5.00E + 05 0 22.604 0.36941 5.00E + 05 0

15(10) 155.02 172.03 88220 20623 98.246 131.64 84703 23414

15(30) 261.27 126.22 3.00E + 05 54.772 257.13257.13257.13 96.888 3.00E + 05 0

15(50) 247.57247.57247.57 86.953 5.00E + 05 0 254.84 81.626 5.00E + 05 0

16(10) 126.8 21.726 1.00E + 05 0 116.11 18.226 1.00E + 05 0

16(30) 134.75 47.695 3.00E + 05 0 106.48106.48106.48 66.794 3.00E + 05 0

16(50) 155.75 60.738 5.00E + 05 0 113.34 49.239 5.00E + 05 0

17(10) 126.88 22.781 1.00E + 05 0 115.59 9.4575 1.00E + 05 0

17(30) 177.08 110.98 3.00E + 05 0 146.88 107.95 3.00E + 05 0

17(50) 246.31 88.772 5.00E + 05 0 173.04 72.529 5.00E + 05 0
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Table B.15: Results comparison: Modified AMALGAM-SO and FAUC-Bandit.
Prob AMALGAM-SO FAUC-Bandit

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 21259 35972 1.00E � 06 0 38853 18096

1(30) 1.00E � 06 0 33100 2680.3 1.00E � 06 0 2.1628E + 05 50495

1(50) 1.00E � 06 0 83251 5861.2 1.00E � 06 0 3.9614E + 05 69337

2(10) 1.00E � 06 0 91097 28241 0.062333 0.1303 100000 0

2(30) 0.016001 0.087635 1.6153E + 05 1.1561E + 05 68.307 52.263 300000 0

2(50) 10.23 55.595 4.3093E + 05 1.0929E + 05 1251.1 602.54 500000 0

3(10) 3.62E + 04 81188 1.00E + 05 182.09 3.3135E + 05 2.3001E + 05 100000 0

3(30) 3.9749E + 05 6.7835E + 05 3.00E + 05 297.61 2.1774E + 06 9.4239E + 05 300000 0

3(50) 3.5258E + 05 1.9354E + 05 5.00E + 05 411.09 3.6405E + 06 1.4462E + 06 5.00E + 05 0

4(10) 0.062334 0.3339 91857 25903 0.20233 0.38718 100000 0

4(30) 28194 10394 3.00E + 05 279.4 2703.2 1570.9 300000 0

4(50) 84661 17535 5.00E + 05 348.5 27428 8516.5 5.00E + 05 0

5(10) 1.00E � 06 0 36660 42461 1.00E � 06 0 93027 13710

5(30) 3639.9 1209.3 3.00E + 05 296.09 4501.3 1003.9 3.00E + 05 0

5(50) 8104.2 3136.2 5.00E + 05 361.84 11270 1715.5 5.00E + 05 0

6(10) 0.76167 1.7768 39415 34229 105.36 215.02 100000 0

6(30) 12.706 18.571 2.7203E + 05 62809 217.44 291.33 300000 0

6(50) 34.991 30.985 4.9458E + 05 24860 329.53 371.75 5.00E + 05 0

7(10) 0.23267 0.16613 1.00E + 05 201.88 1.1133 0.9626 100000 0

7(30) 0.010333 0.014967 1.8984E + 05 1.2875E + 05 366.07 433.63 2.9825E + 05 9603.4

7(50) 0.006 0.0096847 2.1356E + 05 1.9159E + 05 964.66 561.56 500000 0

8(10) 20.263 0.11594 1.00E + 05 192.14 20.337 0.076526 1.00E + 05 0

8(30) 20.701 0.14497 3.00E + 05 276.2 20.935 0.036175 3.00E + 05 0

8(50) 20.924 0.21506 5.00E + 05 399.66 21.135 0.03082 5.00E + 05 0

9(10) 3.0123 2.5993 87887 32250 0.64233 0.95319 84387 19219

9(30) 2.746 2.7737 2.4722E + 05 1.0135E + 05 9.2517 4.682 300000 0

9(50) 3.6053 2.5711 4.6126E + 05 1.2053E + 05 22.294 4.1053 5.00E + 05 0

10(10) 17.988 7.3616 1.00E + 05 204.81 12.641 5.2662 1.00E + 05 0

10(30) 99.106 27.234 3.00E + 05 313.97 59.488 20.262 3.00E + 05 0

10(50) 174.82 41.563 5.00E + 05 415 129.28 36.435 5.00E + 05 0

11(10) 5.9521 1.6896 1.00E + 05 193.31 6.1848 1.99 1.00E + 05 0

11(30) 31.173 2.7352 3.00E + 05 285 36.107 3.3108 3.00E + 05 0

11(50) 59.813 4.4452 5.00E + 05 310.21 68.436 4.6194 5.00E + 05 0

12(10) 469.89 814.31 69376 41505 682.42 733.23 98060 10626

12(30) 2526.42526.42526.4 3129.4 3.00E + 05 280.71 4509.1 4094.9 3.00E + 05 0

12(50) 27771 36755 5.00E + 05 429.24 206432064320643 13136 5.00E + 05 0

13(10) 0.56433 0.42115 1.00E + 05 183.96 0.97 0.41621 1.00E + 05 0

13(30) 1.4471.4471.447 0.45196 3.00E + 05 392.1 5.27 1.9156 3.00E + 05 0

13(50) 2.72032.72032.7203 0.75874 5.00E + 05 444.33 15.294 5.1243 5.00E + 05 0

14(10) 3.4857 0.30168 1.00E + 05 193.21 3.146 0.30093 1.00E + 05 0

14(30) 13.11 0.26151 3.00E + 05 261.17 13.197 0.28793 3.00E + 05 0

14(50) 22.768 0.29265 5.00E + 05 411.12 22.987 0.23939 5.00E + 05 0

15(10) 269.09 164.92 96429 15148 255.25 191.1 95267 14253

15(30) 327.58 108.32 3.00E + 05 259.61 308.85 136.03 300000 0

15(50) 306.85 108.05 4.8781E + 05 69390 321.29 130.19 5.00E + 05 0

16(10) 146.39 31.537 1.00E + 05 191.28 120.82 14.091 1.00E + 05 0

16(30) 271.9 147.42 3.00E + 05 324.32 202.35 154.3 3.00E + 05 0

16(50) 223.31 116.25 5.00E + 05 423.03 156.62 104.93 5.00E + 05 0

17(10) 151.56 26.789 1.00E + 05 199.97 126.78 21.222 1.00E + 05 0

17(30) 377.21 142.57 3.00E + 05 297.68 216.95 174.71 3.00E + 05 0

17(50) 381.6 81.206 5.00E + 05 367.45 187.63 135.19 5.00E + 05 0
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Table B.16: Results comparison: CMAES and SaNSDE.
Prob CMAES SaNSDE

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 1.00E � 06 0 8526.78526.78526.7 302.78 1.00E � 06 0 20180 424.59

1(30) 1.00E � 06 0 191101911019110 447.48 1.00E � 06 0 38973 839.51

1(50) 1.00E � 06 0 26930 726.42 1.00E � 06 0 54373 1255.6

2(10) 1.00E � 06 0 9156.7 286.1 1.00E � 06 0 38377 2088.3

2(30) 1.00E � 06 0 26783 739.1 1.00E � 06 0 2.8926E + 05 19917

2(50) 1.00E � 06 0 52903 869.2 19.154 31.42 5.00E + 05 0

3(10) 1.00E � 06 0 13320 379.11 1.00E � 06 0 46337 2059.9

3(30) 1.00E � 06 0 61173 1387.4 1.7946E + 05 1.1489E + 05 3.00E + 05 0

3(50) 1.00E � 06 0 1.566E + 05 2244.2 6.4456E + 05 2.5505E + 05 5.00E + 05 0

4(10) 1.00E � 06 0 9590 283.27 1.00E � 06 0 42767 2605.2

4(30) 1.00E � 06 0 29357 570.35 195.19 186.51 3.00E + 05 0

4(50) 1.00E � 06 0 59607 998.25 9700.8 4681.3 5.00E + 05 0

5(10) 1.00E � 06 0 174331743317433 546.04 1.00E � 06 0 36280 1098.7

5(30) 1.00E � 061.00E � 061.00E � 06 0 1.1465E + 05 3960.1 978.56 425.28 3.00E + 05 0

5(50) 1.00E � 061.00E � 061.00E � 06 0 3.4146E + 05 29588 4752.9 862.02 5.00E + 05 0

6(10) 0.00066667 0.0025371 189501895018950 744.52 0.26533 1.0098 52987 13213

6(30) 0.13267 0.72665 1.2018E + 051.2018E + 051.2018E + 05 37870 0.859 1.7187 2.7619E + 05 33794

6(50) 0.132670.132670.13267 0.72665 2.8902E + 05 51830 32.511 25.913 5.00E + 05 0

7(10) 1267 4.6252E � 13 1.00E + 05 0 0.041667 0.025608 99920 438.18

7(30) 4696.3 2.7751E � 12 3.00E + 05 0 0.012 0.017889 1.8329E + 05 1.188E + 05

7(50) 6195.3 0 5.00E + 05 0 0.0033333 0.0060648 2.929E + 05 1.9719E + 05

8(10) 20.312 0.11271 1.00E + 05 0 20.345 0.077626 1.00E + 05 0

8(30) 20.892 0.17459 3.00E + 05 0 20.886 0.041728 3.00E + 05 0

8(50) 21.127 0.030189 5.00E + 05 0 21.066 0.03368 5.00E + 05 0

9(10) 1.9457 1.5105 88203 30601 0 0 43690 2247.8

9(30) 39.564 6.4543 3.00E + 05 0 0 0 1.0608E + 05 4250.5

9(50) 62.344 7.3313 5.00E + 05 0 000 0 1.6323E + 05 11859

10(10) 1.6471.6471.647 1.1767 90947 27625 5.646 1.367 1.00E + 05 0

10(30) 9.3919.3919.391 3.2817 3.00E + 05 0 31.503 5.4713 3.00E + 05 0

10(50) 24.55124.55124.551 7.5998 5.00E + 05 0 67.351 11.503 5.00E + 05 0

11(10) 1.2989 1.3647 30310 10496 5.3248 1.0486 1.00E + 05 0

11(30) 9.02559.02559.0255 3.0546 3.00E + 05 0 27.5 1.6478 3.00E + 05 0

11(50) 19.87519.87519.875 5.2923 5.00E + 05 0 54.258 2.6223 5.00E + 05 0

12(10) 1546.1 2735.5 70053 43090 24.701 30.914 81150 23456

12(30) 20324 19261 3.00E + 05 0 10594 2868.8 3.00E + 05 0

12(50) 65826 69500 5.00E + 05 0 262512625126251 14685 5.00E + 05 0

13(10) 0.897 0.25323 1.00E + 05 0 0.342330.342330.34233 0.056366 1.00E + 05 0

13(30) 3.179 0.56064 3.00E + 05 0 1.29771.29771.2977 0.1177 3.00E + 05 0

13(50) 5.3587 0.83373 5.00E + 05 0 2.34632.34632.3463 0.17738 5.00E + 05 0

14(10) 2.58472.58472.5847 0.53024 1.00E + 05 0 3.2743 0.25292 1.00E + 05 0

14(30) 10.394 0.8103 3.00E + 05 0 12.707 0.23694 3.00E + 05 0

14(50) 19.4519.4519.45 1.0963 5.00E + 05 0 22.324 0.25815 5.00E + 05 0

15(10) 343.32 97.143 1.00E + 05 0 67.475 120.66 86313 17729

15(30) 266.27266.27266.27 64.911 3.00E + 05 0 298.02 118.04 3.00E + 05 0

15(50) 245245245 63.66 5.00E + 05 0 256.6 80.671 5.00E + 05 0

16(10) 96.62696.62696.626 9.3047 1.00E + 05 0 102.06 5.2458 1.00E + 05 0

16(30) 130.49 150.98 3.00E + 05 0 64.80764.80764.807 29.134 3.00E + 05 0

16(50) 98.632 126.2 5.00E + 05 0 78.54378.54378.543 67.16 5.00E + 05 0

17(10) 99.584 10.511 1.00E + 05 0 117.61 10.118 1.00E + 05 0

17(30) 175.66 179.47 3.00E + 05 0 104.17104.17104.17 41.022 3.00E + 05 0

17(50) 182.28 166.26 5.00E + 05 0 125.65 68.354 5.00E + 05 0
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Appendix B. Results 154

Table B.17: Results comparison: GCPSO and GA.
Prob GCPSO GA

(Dims) FFV # FEs FFV # FEs

µ � µ � µ � µ �

1(10) 138.4 6.8073 1.00E + 05 0 1.00E � 06 0 18557 1582.4

1(30) 231.81 29.491 3.00E + 05 0 1.00E � 06 0 99297 4860.4

1(50) 356.19 50.373 5.00E + 05 0 1.00E � 06 0 4.1101E + 05 20554

2(10) 544.1 1.5915 1.00E + 05 0 1.0873 1.54 1.00E + 05 0

2(30) 567 3.0169 3.00E + 05 0 446.67 228.69 3.00E + 05 0

2(50) 595.87 4.663 5.00E + 05 0 6142 2003.1 5.00E + 05 0

3(10) 970.96 1411.8 99177 4509.6 9.7613E + 05 1.0468E + 06 1.00E + 05 0

3(30) 10543 8705.2 3.00E + 05 0 5.9255E + 06 2.6545E + 06 3.00E + 05 0

3(50) 92056 80840 5.00E + 05 0 1.4672E + 07 4.648E + 06 5.00E + 05 0

4(10) 320.69 0.20813 1.00E + 05 0 380.19 510.25 1.00E + 05 0

4(30) 325.45 1.5416 3.00E + 05 0 15946 7051.1 3.00E + 05 0

4(50) 333.64 3.3105 5.00E + 05 0 49819 11900 5.00E + 05 0

5(10) 12.858 0.28301 1.00E + 05 0 869.56 1241.9 1.00E + 05 0

5(30) 22.356 0.52122 3.00E + 05 0 12887 3070 3.00E + 05 0

5(50) 31.806 0.50936 5.00E + 05 0 23042 3062.5 5.00E + 05 0

6(10) 175.39 54.32 1.00E + 05 0 346.91 1274 1.00E + 05 0

6(30) 126.4 67.495 3.00E + 05 0 1281.6 2540.4 3.00E + 05 0

6(50) 135.12 47.409 5.00E + 05 0 2356.8 4657.4 5.00E + 05 0

7(10) 433.94 23.69 1.00E + 05 0 1267 4.6252E � 13 1.00E + 05 0

7(30) 551.63 137.44 3.00E + 05 0 4696.3 2.7751E � 12 3.00E + 05 0

7(50) 570.07 105.33 5.00E + 05 0 6195.3 0 5.00E + 05 0

8(10) 393.28 23.459 1.00E + 05 0 20.197 0.12287 1.00E + 05 0

8(30) 577.37 212.99 3.00E + 05 0 20.368 0.094336 3.00E + 05 0

8(50) 490.93 130.51 5.00E + 05 0 20.45820.45820.458 0.085059 5.00E + 05 0

9(10) 120.01 7.2269E � 14 26480 799.31 0.0033333 0.0047946 189831898318983 6020.3

9(30) 120.01 7.2269E � 14 694236942369423 1540 0.0043333 0.0050401 1.568E + 05 39913

9(50) 120.01 7.2269E � 14 1.1299E + 05 3772 2.79 1.4605 4.9838E + 05 8873.1

10(10) 120.01 7.2269E � 14 38517 1131.4 31.174 12.988 1.00E + 05 0

10(30) 120.01 7.2269E � 14 1.9977E + 05 11139 122.94 32.782 3.00E + 05 0

10(50) 120.01 7.2269E � 14 4.9344E + 05 9271 210.01 48.102 5.00E + 05 0

11(10) 64449 60668 1.00E + 05 0 7.5876 1.1929 1.00E + 05 0

11(30) 6.6762E + 05 3.1267E + 05 3.00E + 05 0 30.659 3.4532 3.00E + 05 0

11(50) 1.1557E + 06 5.8345E + 05 5.00E + 05 0 54.808 6.0167 5.00E + 05 0

12(10) 9.99 0 432804328043280 3701.2 873.7 1566.8 1.00E + 05 0

12(30) 2358.22358.22358.2 1403.9 3.00E + 05 0 15214 11587 3.00E + 05 0

12(50) 28915 8503 5.00E + 05 0 96421 45347 5.00E + 05 0

13(10) 180.01 1.4454E � 13 41123 2053 0.43967 0.16951 1.00E + 05 0

13(30) 4499.3 974.88 3.00E + 05 0 1.657 0.47256 3.00E + 05 0

13(50) 10650 2614.5 5.00E + 05 0 4.7423 0.93288 5.00E + 05 0

14(10) 696.49 21.172 99730 1478.9 3.6913 0.31421 1.00E + 05 0

14(30) 715.66 46.216 3.00E + 05 0 13.092 0.31847 3.00E + 05 0

14(50) 730.94 25.802 5.00E + 05 0 22.696 0.34193 5.00E + 05 0

15(10) 967.01 0.061026 1.00E + 05 0 230.47 215.32 664876648766487 39189

15(30) 4398.1 10.078 3.00E + 05 0 330.52 176.73 2.8213E + 05 54544

15(50) 5895.3 9.2504E � 13 5.00E + 05 0 263.56 76.502 5.00E + 05 0

16(10) 239.76 0.097519 1.00E + 05 0 162.3 23.794 1.00E + 05 0

16(30) 239.2 0.11511 3.00E + 05 0 210.75 100.3 3.00E + 05 0

16(50) 239.16 0.17519 5.00E + 05 0 191.18 84.78 5.00E + 05 0

17(10) 447.56 1.4475 96700 12585 160.47 28.047 1.00E + 05 0

17(30) 419.07 11.331 3.00E + 05 0 256.62 162.06 3.00E + 05 0

17(50) 366.43 18.114 5.00E + 05 0 237.14 111.19 5.00E + 05 0
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Appendix C

Graphs

This appendix provides addition plots of the HSD of various algorithms used throughout

the thesis. The HSD of the median run of HMHH, LDHH, EDHH, EIHH2, and LIHH2

for problems 1 to 17 from the CEC 2005 problem set in dimensions 10, 30, and 50 are

plotted in Figures C.1 to C.9. The HSD of the median run of HMHH, EIHH1, PAP,

EEA-SLPS, modified AMALGAM-SO, and FAUC-Bandit for the same set of problems

are plotted in Figures C.10 to C.18.
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Appendix D

Acronyms

All acronyms used in this thesis are listed below in alphabetic order with the meaning

of the acronym alongside.

#FEs Number of function evaluations

ACO Ant colony optimization

ADIVHH HMHH with adaptive species selection approach

ALSHH HMHH with adaptive local search

AMALGAM-SO Population-based genetic adaptive method for single

objective optimization

AOS Adaptive operator selection

BBOB problem set Black-box optimization benchmarking problem set

BBPSO Barebones PSO

BFGS BroydenFletcherGoldfarbShanno algorithm

BOLT HMHH with Boltzman selection

CEC Congress on Evolutionary Computation

CLPSO Convergent linear particle swarm optimization algorithm

CMAES Covariance matrix adapting evolutionary strategy algorithm

DE Di↵erential evolution

DE/R2B/y/z DE rand-to-best algorithm

DIVHH HMHH with constant species selection approach
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EA Evolutionary algorithms

EDHH HMHH with exponentially decreasing HSD

EEA-SLPS Evolutionary algorithm based on self-adaptive learning population

search techniques

EIHH1 HMHH with exponentially increasing HSD with a priori

information

EIHH2 HMHH with exponentially decreasing HSD without a priori

information

EPM-PAP PAP based on an estimated performance matrix

ES Evolutionary strategy

FAUC-Bandit Fitness-based area-under-curve bandit algorithm

FFV Fitness function value

GA Genetic algorithm

gbest Global best position in the PSO algorithm

GCPSO Guaranteed convergence particle swarm optimization

GD Great deluge algorithm

HH Hyper-heuristic

HMHH Heterogeneous meta-hyper-heuristic

HSD Heuristic space diversity

IEEE Institute of electrical and electronics engineers

LDHH HMHH with linearly decreasing HSD

LIHH1 HMHH with linearly increasing HSD with a priori information

LIHH2 HMHH with linearly decreasing HSD without a priori information

LLM Low level meta-heuristic

LS Local search

LS1HH HMHH with local search applied to the best entity at each iteration

LS2HH HMHH with local search applied to a randomly selected entity at

each iteration

LS3HH HMHH with local search applied to an entity selected by means

of roulette-wheel selection at each iteration

LS4HH HMHH with local search defined as one of the constituent

algorithms

MA Memetic algorithm
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Multi-EA The multiple EA algorithm

NSDE The di↵erential evolution with neighbourhood search algorithm

PAP Population-based algorithm portfolio

PMS Parallel memetic structure

pbest Personal best position of a particle in the PSO algorithm

PSO Particle swarm optimization

RAND HMHH with random selection strategy

RANK HMHH with rank-based selection strategy

ROC Receiver operating curve

ROUL HMHH with roulette-wheel-based selection strategy

SA Simulated annealing

SaDE Self adaptive di↵erential evolution algorithm

SaNSDE Self-adaptive di↵erential evolution with neighbourhood search

SSD Solution space diversity

TOUR HMHH with tournament-based selection

TS Tabu search

TSHH HMHH with rank-based selection and tabu search

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix E

Symbols

This appendix provides a list of all symbols used in this thesis as well as their definitions.

#FEs , The number of function evaluations which were needed to reach the

global optimum within a specified accuracy

a , The first line search parameter

AAA , The archive of entity-to-LLM allocation information in the FAUC-

Bandit algorithm

Ai(t) , The index of the LLM applied to entity i at time t

↵ , Blend crossover parameter used in the GA

b , The second line search parameter

cij(t) , The jth dimension of the ith o↵spring at time t

c1, c2 , Acceleration constants used in the PSO algorithm

c1�, c2� , The per iteration change in the PSO acceleration constants

ccov , The learning rate for the covariance matrix update in the CMAES

algorithm

CFAUC , The scaling factor which balances exploration and exploitation in the

FAUC-Bandit algorithm

ccc(t) , Candidate o↵spring population of potential candidate solutions for in-

clusion in XXX(t) at time t

CCC(t) , The covariance matrix of the CMAES algorithm at time t
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cc
CMA

, The inverse of the backward time horizon of the evolution path pc
CMA

cµ , The learning rate for the rank-µ update of the covariance matrix in the

CMAES algorithm

c� , The inverse of the backward time horizon of the evolution path p� in

the CMAES algorithm

D , The decay factor of the FAUC-Bandit Algorithm

D(p, r) , The euclidian distance between entity p and r

Dh(t) , The heuristic space diversity metric at time t

� , The di↵erence between xmax and xmin

� , The speed of the rising water in the great deluge algorithm

ec , The threshold parameter which limits the number of consecutive moves

where no improvement occurs in the fitness of the gbest particle of the

GCPSO algorithm

es , The threshold parameter which limits the number of consecutive im-

provements in the fitness of the gbest particle of the GCPSO algorithm

✏ , The user-defined distance allowed between two entities in the species

selection mechanism

⌘ , The number of consecutive failures of the gbest particle of the GCPSO

algorithm

f(xxxi(t)) , The fitness function value of entity xxxi(t) at time t

f�k , The improvement in fitness function value due to the kth entity in pppr
succ

fff(p) , The set of features associated with problem p in Rice’s algorithm se-

lection problem

F , The scaling factor used in the DE algorithm

FFV , The di↵erence between the global optimum and the final fitness func-

tion value obtained

Fi , The scaling factor of individual i used in the self adaptive DE algorithm

F� , The per iteration change in the scaling factor, F

� , A constant between 0 and 1

HHH , The algorithm space in Rice’s algorithm selection problem

Imax , The maximum allowable number of iterations of an algorithm

IIIm(t) , The set of entities allocated to the mth LLM at time t
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k , The number of iterations between re-allocation of entities to LLMs

1 , The migration interval measured in number of iterations of the PAP

algorithm

2 , The migration interval measured in number of iterations of the EEA-

SLPS algorithm

l1 , The learning rate for the rank-one update of the covariance matrix in

the CMAES algorithm

�̂ , Number of o↵spring of best entity in the rank-based selection strategy

�̃ , Parameter used in the rank-based selection strategy

LBdiv(t) , The lower solution space diversity bound at time t

⇤⇤⇤m , The set of best individuals from all other subpopulations other than

PPPm

m⇤
i , The highest ranking non-tabu LLM w.r.t. entity i

mmm(t) , The distribution mean and current most likely best solution in the

CMAES algorithm at time t

MaxTabu , The maximum size of the tabu list in the TS algorithm

µ , The mean over 30 simulations of the associated performance measure-

ment

µcov , The parameter for weighting between the rank-one and rank-µ update

in the CMAES algorithm

µeff , The variance e↵ective selection mass of the CMAES algorithm

na , The number of LLMs available for selection

nm(t) , The number of entities allocated to the mth LLM at time t

np , The total number of subpopulations

nq , The number of entities migrated between subpopulations in the PAP

algorithm

ns , The number of entities in a population

ns1 , The number of o↵spring successfully entering the next generation gen-

erated by Eq. (2.22)

ns2 , The number of o↵spring successfully entering the next generation gen-

erated by Eq. (2.24)

nt , Tournament size of the tournament-based selection strategy

Nt , Tournament size used in the GA
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n' , The number of equality constraints in an optimization problem

n& , The number of inequality constraints in an optimization problem

nx , The number of dimensions of a particle or individual

⌫m(t) , The number of times the mth LLM has been used up until time t in

the FAUC-Bandit algorithm

N(µ, �2) , A random number sampled from a normal distribution with mean µ

and standard deviation �

nq1 , The number of entities involved in PAP migration

nq2 , The number of entities involved in EEA-SLPS migration

p , A problem instance

pc , The crossover probability used in a GA

pc� , The per iteration change in the crossover probability, pc

pc
CMA

(t) , The anisotropic evolution path in the CMAES algorithm at time t

pm , The probability of selection of the mth LLM

pmut , The mutation probability used in a GA

pr , The reproduction probability used in a DE algorithm

pr
µ

, The mean of the normal distribution from which pr is sampled in the

SaNSDE algorithm

pppr
succ

, A set storing the pr values associated with all successful entities as well

as their resulting improvement in fitness value, f�k, in the SaNSDE

algorithm

p� , The evolution path or search path in the CMAES algorithm

PPP , A set of problem instances

pT , The probability of using the DE/rand/x/y base vector selection strat-

egy to generate the trial vector in the SaNSDE algorithm

 , The water level in the great deluge algorithm

PPPm , The mth subpopulation of entities in the PAP algorithm

ql , The lth successful pri value entered into set pppr
succ

in the SaNSDE algo-

rithm

qmt , The area under the ROC of themth LLM at time t in the FAUC-Bandit

algorithm

Q�m(t) , The total improvement in fitness function value of all entities assigned

to the mth LLM from iteration t� k to iteration t
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r1j(t), r2j(t) , Random numbers in the range [0,1] sampled from a uniform random

distribution, U(0, 1)

rim(t) , The rank of the mth LLM with respect to entity i at time t used in the

TS-based selection strategy

rm(t) , The rank of the mth LLM at iteration t in the rank-based selection

strategy

⇢(t) , The time-dependent GCPSO scaling factor

RRR(t+ 1) , Combined population consisting of CCC(t + 1) and XXX(t) at time t + 1

sorted in order of decreasing fitness

� , The standard deviation over 30 simulations of the associated perfor-

mance measurement

�BBPSO , The standard deviation of the population from which vij(t+1) is sam-

pled in the barebones PSO algorithm

�CMA(t) , The step size at time t of the CMAES algorithm

SSS(fff(p)) , The selection mapping of problem p with features fff into algorithm

space HHH.

t , Time step during an algorithm’s progression

tmax , The maximum number of iterations remaining in the optimization run

in the AMALGAM algorithm

| , The target number of entities per algorithm in the HSD metric

⌧ , The index of the best solution in a swarm or population

Tij(t) , The jth component of the ith target vector at time t used in the DE

algorithm

TBolt(t) , Temperature parameter at time t of the Boltzman selection strategy

⌧⌧⌧ , The tabu list

U(a, b) , A uniform random distribution with lower bound, a and upper bound,

b

UBD
h

(t) , The upper bound of the HSD measure Dh(t)

UBdiv(t) , The upper solution space diversity bound at time t
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� , The acceptance rate used in the AMALGAM-SO algorithm

⌥ The temperature of the system used in the SA algorithm

vij(t) , The jth dimension of the velocity vector of the ith particle time t used

in the PSO algorithm

Vmax , The maximum velocity of a particle used in the PSO algorithm

'q , The qth equality constraint of an optimization problem

%i , The rank position of entity i in the FAUC-Bandit algorithm

&q , The qth inequality constraint of an optimization problem

# , A Cauchy random variable with scale parameter equal to one as used

in the SaNSDE algorithm

w , The inertia weight used in the PSO algorithm

W , The window size of the FAUC-Bandit algorithm

w� , The per iteration change in the inertia weight, w

wk , The kth recombination weight in the CMAES algorithm

xij(t) , The jth component of the ith entity or candidate solution at time t

x⇤
j(t) , The jth dimension of the best individual at time t

x̂ij(t) , The jth dimension of the best previous position of individual i at time

t used in the PSO algorithm

xxxi
n

, The nth individual randomly selected from the population in the DE

algorithm

xxxmin , The lower bound of the decision variables

xxxmax , The upper bound of the decision variables

XXX(t) , Population of candidate solutions or entities at time t

y(m(p)) , The performance mapping of algorithm m on problem p in Rice’s al-

gorithm selection problem

YYY , Objective space as defined in Rice’s algorithm selection problem

z , An arbitrary non-negative number

⇣ , The number of consecutive successes of the gbest particle of the GCPSO

algorithm
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Publications

This appendix lists all the papers that have been published, or are currently under

review, that were derived from work done in this thesis:

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. Heuristic space

diversity control for improved meta-hyper-heuristic performance. Information Sci-

ences, 300: 49–62, 2015.

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. Entity-to-algorithm

allocation: a multi-method algorithm comparison IEEE Transactions on Evolu-

tionary Computation, submitted for review.

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. The entity-to-

algorithm allocation problem: extending the analysis. Proceedings of the IEEE

Symposium on Computational Intelligence and Ensemble Learning, pages 1–8, 2014.

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. Heuristic space

diversity management in a meta-hyper-heuristic framework. Proceedings of the

IEEE Congress on Evolutionary Computation, pages 1863–1869, 2014.

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. Multi-method

algorithms: Investigating the entity-to-algorithm allocation problem. Proceedings

of the IEEE Congress on Evolutionary Computation, pages 570–577, 2013.
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• J. Grobler and A.P. Engelbrecht. Solution space diversity management in a meta-

hyperheuristic framework. Proceedings of the BRICS Congress on Computational

Intelligence, pages 270–276, 2013.

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. Investigating the

use of local search for improving meta-hyperheuristic performance. Proceedings of

the IEEE Congress on Evolutionary Computation, pages 1–8, 2012.

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. Investigating

the impact of alternative evolutionary selection strategies on multi-method global

optimization. Proceedings of the IEEE Congress on Evolutionary Computation,

pages 2337–2344, 2011.

• J. Grobler, A.P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. Alternative hyper-

heuristic strategies for multi-method global optimization. Proceedings of the IEEE

Congress on Evolutionary Computation, pages 1–8, 2010.
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