COMMON FIXED-POINT THEOREMS FOR NONLINEAR WEAKLY CONTRACTIVE MAPPINGS

S. Chandok, ${ }^{1}$ M. S. Khan, ${ }^{2}$ and M. Abbas ${ }^{3}$
Some common fixed-point results for mappings satisfying a nonlinear weak contraction condition within the framework of ordered metric spaces are obtained. The accumulated results generalize and extend several comparable results well-known from the literature.

Introduction and Preliminaries

The Banach contraction principle is one of the pivotal results in the metric fixed-point theory. It is a popular tool for the solution of existence problems in various fields of mathematics. There are several generalizations of the Banach contraction principle in the related literature on the metric fixed-point theory.

Ran and Reurings [15] extended the Banach contraction principle in partially ordered metric spaces with some applications to linear and nonlinear matrix equations. Nieto and López [14] extended the results of Ran and Reurings and used their main result to obtain a unique solution of the first-order ordinary differential equation with periodic boundary conditions. Bhaskar and Lakshmikantham [3] introduced a concept of mixed monotone mappings and obtained some coupled fixed-point results. Moreover, they applied their results to a first-order differential equation with periodic boundary conditions.

Alber and Guerre-Delabriere [1] introduced a concept of weakly contractive mappings and proved the existence of fixed point for these mappings in Hilbert spaces. In 2001, Rhoades [17] proved the fixed-point theorem which is a generalization of the Banach contraction principle. Weakly contractive mappings are closely related to the mappings of the Boyd-Wong [4] and Reich types [16]. Recently, Doric [9] proved a common fixed-point theorem for generalized (ψ, ϕ)-weakly contractive mappings. Fixed-point problems involving weak contractions and mappings satisfying the inequalities of the weak contractive type were studied by numerous authors (see $[1,5-10,17]$ and the references therein). In the present paper, we generalize the Chatterjea-type contraction mappings to (μ, ψ)-generalized Chatterjea-type contraction mappings and deduce some common fixed-point results for single-valued mappings on ordered metric spaces.

First, we recall some basic definitions and notation.
Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is said to be:
(a) of the Kannan type (see [11]) if there exists a $k \in\left(0, \frac{1}{2}\right]$ such that $d(T x, T y) \leq k[d(x, T x)+d(y, T y)]$ for all $x, y \in X$;
(b) of the Chatterjea type [7] if there exists a $k \in\left(0, \frac{1}{2}\right]$ such that $d(T x, T y) \leq k[d(x, T y)+d(y, T x)]$ for all $x, y \in X$.
Khan, et al. [12] initiated the use of a control function that alters the distance between two points in a metric space. Thus, this function was called an altering-distance function.

[^0]A function $\mu:[0, \infty) \rightarrow[0, \infty)$ is called an altering-distance function if the following properties are satisfied:
(i) μ is monotonically increasing and continuous;
(ii) $\mu(t)=0$ if and only if $t=0$.

By using the control function, we generalize the Chatterjea-type contraction mappings as follows:
Suppose that T and f are self-mappings defined on a metric space X. We say that a pair of mappings (T, f) satisfies the (μ, ψ)-generalized Chatterjea-type contractive condition if, for all $x, y \in X$,

$$
\begin{equation*}
\mu(d(T x, f y)) \leq \mu\left(\frac{1}{2}[d(x, f y)+d(y, T x)]\right)-\psi(d(x, f y), d(y, T x)) \tag{1}
\end{equation*}
$$

where $\mu:[0, \infty) \rightarrow[0, \infty)$ is an altering-distance function and $\psi:[0, \infty)^{2} \rightarrow[0, \infty)$ is a lower semicontinuous mapping such that $\psi(x, y)=0$ if and only if $x=y=0$.

Assume that M is a nonempty subset of a metric space X and that a point $x \in M$ is a common fixed (coincidence) point of f and T for $x=f x=T x(f x=T x)$. The set of fixed (resp., coincidence) points of f and T is denoted by $F(f, T)$ (resp., $C(f, T)$).

Definition 1. Let (X, \leq) be a partially ordered set. Two mappings $f, g: X \rightarrow X$ are said to be weakly increasing if $f x \leq g f x$ and $g x \leq f g x$ for all $x \in X$.

The following example shows that there exist discontinuous not nondecreasing mappings that are weakly increasing.

Example 1. Let $X=(0, \infty)$ be endowed with the ordinary ordering. Let $f, g: X \rightarrow X$ be defined by

$$
f x= \begin{cases}3 x+2 & \text { if } 0<x<1 \\ 2 x+1 & \text { if } 1 \leq x<\infty\end{cases}
$$

and

$$
g x= \begin{cases}4 x+1 & \text { if } 0<x<1 \\ 3 x & \text { if } 1 \leq x<\infty\end{cases}
$$

For $0<x<1$, we have

$$
f x=3 x+2 \leq 3(3 x+2)=g f x \quad \text { and } \quad g x=4 x+1 \leq 4 x+3=2(2 x+1)+1=f g x,
$$

whereas for $1 \leq x<\infty$, we get

$$
f x=2 x+1 \leq 3(2 x+1)=g f x \quad \text { and } \quad g x=3 x \leq 2(3 x)+1=f g x .
$$

Thus, f and g are weakly increasing maps (but not nondecreasing).
Common Fixed-Point Theorem in Ordered Metric Spaces. Suppose that (X, \preceq) is a partially ordered set. A mapping $T: X \rightarrow X$ is called monotonically increasing if, for all $x, y \in X$,

$$
\begin{equation*}
x \preceq y \quad \text { if and only if } \quad T x \preceq T y . \tag{2}
\end{equation*}
$$

A subset W of a partially ordered set X is called well-ordered if every two elements of W are comparable.
Theorem 1. Let (X, \preceq) be a partially ordered set such that there exists a complete metric d on X. Suppose that T and f are weakly increasing self-mappings on X satisfying inequality (1) for all comparable elements $x, y \in X$.

In addition, suppose that either
(i) if $\left\{x_{n}\right\} \subset X$ is a nondecreasing sequence with $x_{n} \rightarrow z$ in X, then $x_{n} \preceq z$ for every $n \in \mathbb{N}$, or
(ii) T or f is continuous.

Then T and f have a common fixed point. Moreover, the set of common fixed points of f and T is well ordered if and only if f and T have one and only one common fixed point.

Proof. Let $x_{0} \in X$. We can choose $x_{1}, x_{2} \in X$ such that $x_{1}=T x_{0}$ and $x_{2}=f x_{1}$. By induction, we construct a sequence $\left\{x_{n}\right\}$ in X such that $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=f x_{2 n+1}$, for every $n \geq 0$. As T and f are weakly increasing mappings, we obtain

$$
x_{1}=T x_{0} \preceq f x_{1}=x_{2} \preceq T x_{2}=x_{3} .
$$

By induction on n, we conclude that

$$
x_{1} \preceq x_{2} \preceq \ldots \preceq x_{2 n+1} \preceq x_{2 n+2} \preceq \ldots
$$

Since $x_{2 n+1}$ and $x_{2 n+2}$ are comparable, by virtue of inequality (1), we get

$$
\begin{aligned}
\mu\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right) & =\mu\left(d\left(T x_{2 n}, f x_{2 n+1}\right)\right) \\
& \leq \mu\left(\frac{1}{2}\left[d\left(x_{2 n}, f x_{2 n+1}\right)+d\left(x_{2 n+1}, T x_{2 n}\right)\right]\right)-\psi\left(d\left(x_{2 n}, f x_{2 n+1}\right), d\left(x_{2 n+1}, T x_{2 n}\right)\right) \\
& =\mu\left(\frac{1}{2} d\left(x_{2 n}, x_{2 n+2}\right)\right)-\psi\left(d\left(x_{2 n}, x_{2 n+2}\right), 0\right) \\
& \leq \mu\left(\frac{1}{2} d\left(x_{2 n}, x_{2 n+2}\right)\right)
\end{aligned}
$$

Since μ is a monotone increasing function, for all $n=1,2, \ldots$, we get

$$
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq \frac{1}{2} d\left(x_{2 n}, x_{2 n+2}\right) \leq \frac{1}{2}\left[d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, x_{2 n+2}\right)\right] .
$$

This implies that

$$
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq d\left(x_{2 n}, x_{2 n+1}\right)
$$

By using the similar argument, we obtain $d\left(x_{2 n+2}, x_{2 n+3}\right) \leq d\left(x_{2 n+1}, x_{2 n+2}\right)$. Hence,

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n}\right) .
$$

Thus, $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a monotonically decreasing sequence of nonnegative real numbers. Hence there exists $r \geq 0$ such that $d\left(x_{n}, x_{n+1}\right) \rightarrow r$. Thus,

$$
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq \frac{1}{2} d\left(x_{2 n}, x_{2 n+2}\right) \leq \frac{1}{2}\left[d\left(x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n+1}, x_{2 n+2}\right)\right] .
$$

Passing to the limit as $n \rightarrow \infty$, we get

$$
r \leq \lim \frac{1}{2} d\left(x_{2 n}, x_{2 n+2}\right) \leq \frac{1}{2} r+\frac{1}{2} r .
$$

Therefore, $\lim _{n \rightarrow \infty} d\left(x_{2 n}, x_{2 n+2}\right)=2 r$. In view of the continuity of μ and the lower semicontinuity of ψ, we find $\mu(r) \leq \mu(r)-\psi(2 r, 0)$. This implies that $\psi(2 r, 0)=0$ and, hence, $r=0$. Therefore, $d\left(x_{n+1}, x_{n}\right) \rightarrow 0$.

We now prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. It is sufficient to show that $\left\{x_{2 n}\right\}$ is a Cauchy sequence. On the contrary, suppose that $\left\{x_{2 n}\right\}$ is not a Cauchy sequence. Then there exists $\epsilon>0$ for which we can find subsequences $\left\{x_{2 m(k)}\right\}$ and $\left\{x_{2 n(k)}\right\}$ of $\left\{x_{2 n}\right\}$ such that $n(k)$ is the smallest index for which $n(k)>m(k)>k$, $d\left(x_{2 m(k)}, x_{2 n(k)}\right) \geq \epsilon$. This means that $d\left(x_{2 m(k)}, x_{2 n(k)-2}\right)<\epsilon$. Hence, we get

$$
\begin{aligned}
\epsilon & \leq d\left(x_{2 m(k)}, x_{2 n(k)}\right) \\
& \leq d\left(x_{2 m(k)}, x_{2 n(k)-2}\right)+d\left(x_{2 n(k)-2}, x_{2 n(k)-1}\right)+d\left(x_{2 n(k)-1}, x_{2 n(k)}\right) \\
& <\epsilon+d\left(x_{2 n(k)-2}, x_{2 n(k)-1}\right)+d\left(x_{2 n(k)-1}, x_{2 n(k)}\right) .
\end{aligned}
$$

Passing to the limit as $k \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right)=\epsilon . \tag{3}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\epsilon & \leq d\left(x_{2 m(k)}, x_{2 n(k)}\right) \leq d\left(x_{2 m(k)}, x_{2 m(k)-1}\right)+d\left(x_{2 m(k)-1}, x_{2 n(k)}\right) \\
& \leq 2 d\left(x_{2 m(k)}, x_{2 m(k)-1}\right)+d\left(x_{2 m(k)}, x_{2 n(k)}\right) .
\end{aligned}
$$

As $k \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{2 m(k)-1}, x_{2 n(k)}\right)=\epsilon . \tag{4}
\end{equation*}
$$

On the other hand, we find

$$
\begin{aligned}
d\left(x_{2 m(k)}, x_{2 n(k)}\right) & \leq d\left(x_{2 m(k)}, x_{2 n(k)+1}\right)+d\left(x_{2 n(k)+1}, x_{2 n(k)}\right) \\
& \leq d\left(x_{2 m(k)}, x_{2 n(k)}\right)+2 d\left(x_{2 n(k)+1}, x_{2 n(k)}\right) .
\end{aligned}
$$

In the limit as $k \rightarrow \infty$, we obtain

$$
\lim _{n \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)+1}\right)=\epsilon .
$$

In addition,

$$
\begin{aligned}
d\left(x_{2 m(k)-1}, x_{2 n(k)}\right) & \leq d\left(x_{2 m(k)-1}, x_{2 n(k)+1}\right)+d\left(x_{2 n(k)+1}, x_{2 n(k)}\right) \\
& \leq d\left(x_{2 m(k)-1}, x_{2 n(k)}\right)+2 d\left(x_{2 n(k)+1}, x_{2 n(k)}\right) .
\end{aligned}
$$

In the limit as $k \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} d\left(x_{2 m(k)-1}, x_{2 n(k)+1}\right)=\epsilon .
$$

Consider

$$
\left.\begin{array}{rl}
\mu(\epsilon) \leq \mu\left(d\left(x_{2 m(k)}, x_{2 n(k)}\right)\right)= & \mu(
\end{array}\left(T x_{2 m(k)-1}, f x_{2 n(k)-1}\right)\right) .
$$

Passing to the limit as $k \rightarrow \infty$ and using the continuity of μ and the lower semicontinuity of ψ, we get

$$
\mu(\epsilon) \leq \mu\left(\frac{1}{2}[\epsilon+\epsilon]\right)-\psi(\epsilon, \epsilon)
$$

and, consequently, $\psi(\epsilon, \epsilon) \leq 0$, which is a contradiction because $\epsilon>0$. Thus, $\left\{x_{2 n}\right\}$ is a Cauchy sequence and, hence, $\left\{x_{n}\right\}$ is a Cauchy sequence. As X is a complete metric space, there exists $t \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=t$. Since $\left\{x_{n}\right\}$ is a nondecreasing sequence, by (i), we have $x_{n} \preceq t$. Consider

$$
\begin{aligned}
\mu\left(d\left(x_{2 n+1}, f t\right)\right) & =\mu\left(d\left(T x_{2 n}, f t\right)\right) \\
& \leq \mu\left(\frac{1}{2}\left[d\left(x_{2 n}, f t\right)+d\left(t, T x_{2 n}\right)\right]\right)-\psi\left(d\left(x_{2 n}, f t\right), d\left(t, T x_{2 n}\right)\right) \\
& =\mu\left(\frac{1}{2}\left[d\left(x_{2 n}, f t\right)+d\left(t, x_{2 n+1}\right)\right]\right)-\psi\left(d\left(x_{2 n}, f t\right), d\left(t, x_{2 n+1}\right)\right)
\end{aligned}
$$

In the limit as $n \rightarrow \infty$, we obtain

$$
\left.\mu(d(t, f t)) \leq \mu\left(\frac{1}{2} d(t, f t)\right)-\psi(d(t, f t), 0)\right) \leq \mu\left(\frac{1}{2} d(t, f t)\right) .
$$

This implies that $d(t, f t)=0$ and, hence, $t=f t$.

Again, consider

$$
\begin{aligned}
\mu(d(T t, t)) & =\mu(d(T t, f t)) \leq \mu\left(\frac{1}{2}[d(t, f t)+d(t, T t)]\right)-\psi(d(t, f t), d(t, T t)) \\
& =\mu\left(\frac{1}{2} d(t, T t)\right)-\psi(0, d(t, T t)) \leq \mu\left(\frac{1}{2} d(t, T t)\right)
\end{aligned}
$$

This implies that $d(T t, t)=0, T t=t$. Therefore, $t=T t=f t$, i.e., t is a common fixed point of T and f.
If condition (ii) holds: Assume that T is continuous. Then $t=\lim _{n \rightarrow \infty} T x_{n}=x_{2 n+1}=T t$. Now

$$
\begin{aligned}
\mu(d(t, f t)) & =\mu(d(T t, f t)) \leq \mu\left(\frac{1}{2}[d(t, f t)+d(t, T t)]\right)-\psi(d(t, f t), d(t, T t)) \\
& =\mu\left(\frac{1}{2} d(t, f t)\right)-\psi(d(t, f t), 0) \leq \mu\left(\frac{1}{2} d(t, f t)\right)
\end{aligned}
$$

implies that $d(t, f t)=0, f t=t$. Therefore, $t=T t=f t$, i.e., t is a common fixed point of T and f.
If f is continuous, then following the argument similar to the argument presented above, we get the required result.

We now suppose that the set of common fixed points of T and f is well ordered. We now claim the uniqueness of the common fixed points of T and f. Assume, on the contrary, that $T u=f u=u$ and $T v=f v=v$ but $u \neq v$. Consider

$$
\begin{aligned}
\mu(d(u, v)) & =\mu(d(T u, f v)) \\
& \leq \mu\left(\frac{1}{2}[d(u, f v)+d(v, T u)]\right)-\psi(d(u, f v), d(v, T u)) \\
& =\mu\left(\frac{1}{2}[d(u, v)+d(v, u)]\right)-\psi(d(u, v), d(v, u)) \\
& =\mu(d(u, v))-\psi(d(u, v), d(u, v))
\end{aligned}
$$

This implies that $d(u, v)=0$, by the property of ψ. Hence, $u=v$. Conversely, if T and f have only one common fixed point, then the set of common fixed points of f and T (being a singleton) is well ordered.

Theorem 1 is proved.
If $T=f$, then we have the following result:
Corollary 1. Let (X, \preceq) be a partially ordered set such that there exists a complete metric d on X. Suppose that T is a monotone nondecreasing self-mapping on X such that

$$
\mu(d(T x, T y)) \leq \mu\left(\frac{1}{2}[d(x, T y)+d(y, T x)]\right)-\psi(d(x, T y), d(y, T x))
$$

is satisfied for all $x, y \in X$ with comparable x and y.

In addition, suppose that either
(i) if $\left\{x_{n}\right\} \subset X$ is a nondecreasing sequence with $x_{n} \rightarrow z$ in X, then $x_{n} \preceq z$ for every $n \in \mathbb{N}$ or
(ii) T is continuous.

Then T has a fixed point.
If $\mu(t)=t$, then we get the following result:
Corollary 2 (see $[5,10])$. Let (X, \preceq) be a partially ordered set such that there exists a complete metric d on X. Suppose that T is a monotonically nondecreasing self-mapping on X such that

$$
\mu(d(T x, T y)) \leq \mu\left(\frac{1}{2}[d(x, T y)+d(y, T x)]\right)-\psi(d(x, T y), d(y, T x))
$$

is satisfied for all comparable elements $x, y \in X$.
In addition, suppose that either
(i) if $\left\{x_{n}\right\} \subset X$ is a nondecreasing sequence such that $x_{n} \rightarrow z$ in X, then $x_{n} \preceq z$ for every $n \in \mathbb{N}$ or
(ii) T is continuous.

Then T has a fixed point.
Example 2. Let $M=[0,1]$ be endowed with a partial ordering: $x \preceq y$ if and only if $x \geq y$. Let d be defined as $d(x, y)=|x-y|$. We set $T x=0$ and $f x=\frac{x^{2}}{8}$ for all $x \in M$. It is easy to see that f and g are weakly increasing maps. We define $\mu:[0, \infty) \rightarrow[0, \infty)$ and $\psi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ by

$$
\mu(t)=\frac{t}{2} \quad \text { and } \quad \psi(t, s)=\frac{t+s}{16} .
$$

Thus, for $x, y \in M$, we get

$$
\mu(d(T x, f y))=\mu\left(d\left(0, \frac{y^{2}}{8}\right)\right)=\mu\left(\frac{y^{2}}{8}\right)=\frac{y^{2}}{16},
$$

and

$$
\begin{aligned}
& \mu\left(\frac{1}{2}[d(x, f y)+d(y, T x)]\right)-\psi(d(x, f y), d(y, T x)) \\
& \quad=\mu\left(\frac{1}{2}\left[d\left(x, \frac{y^{2}}{8}\right)+d(y, 0)\right]\right)-\psi\left(d\left(x, \frac{y^{2}}{8}\right), d(y, 0)\right) \\
& \quad=\mu\left(\frac{1}{2}\left[\left|x-\frac{y^{2}}{8}\right|+y\right]\right)-\psi\left(\left|x-\frac{y^{2}}{8}\right|, y\right) \\
& \quad=\frac{1}{4}\left[\left|x-\frac{y^{2}}{8}\right|+y\right]-\frac{\left|x-\frac{y^{2}}{8}\right|+y}{16} \\
& \quad=\frac{3}{16}\left[\left|x-\frac{y^{2}}{8}\right|+y\right] \geq \frac{3 y}{16} \geq \frac{y^{2}}{16} .
\end{aligned}
$$

Hence,

$$
\mu(d(T x, f y)) \leq \mu\left(\frac{1}{2}[d(x, f y)+d(y, T x)]\right)-\psi(d(x, f y), d(y, T x))
$$

Thus, all conditions of Theorem 1 are satisfied. Moreover, T and f have a unique common fixed point 0 .

REFERENCES

1. Ya. I. Alber and S. Guerre-Delabriere, "Principles of weakly contractive maps in Hilbert spaces," in: I. Gohberg and Yu. Lyubich (Eds.), New Results in Operator Theory, Adv. Appl., Birkhäuser, Basel, 8 (1997), pp. 7-22.
2. I. Altun, B. Damjanović, and D. Djorić, "Fixed point and common fixed-point theorems on ordered cone metric spaces," Appl. Math. Lett., 23, 310-316 (2010).
3. T. G. Bhaskar and V. Lakshmikantham, "Fixed-point theorems in partially ordered metric spaces and applications," Nonlin. Anal., 65, 1379-1393 (2006).
4. D. W. Boyd and T. S. W. Wong, "On nonlinear contractions," Proc. Amer. Math. Soc., 20, 458-464 (1969).
5. S. Chandok, "Some common fixed-point theorems for generalized f-weakly contractive mappings," J. Appl. Math. Inform., 29, 257-265 (2011).
6. S. Chandok, "Some common fixed-point theorems for generalized nonlinear contractive mappings," Comput. Math. Appl., 62, 36923699 (2011) (doi: 10.1016/j.camwa.2011.09.009).
7. S. K. Chatterjea, "Fixed-point theorem," C. R. Acad. Bulg. Sci., 25, 727-730 (1972).
8. B. S. Choudhury, "Unique fixed point-theorem for weakly C-contractive mappings," Kathmandu Univ. J. Sci. Eng. Tech., 5, 6-13 (2009).
9. D. Doric, "Common fixed point for generalized (ψ, ϕ)-weak contractions," Appl. Math. Lett., 22, 1896-1900 (2009).
10. J. Harjani, B. López, and K. Sadarangani, "Fixed-point theorems for weakly C-contractive mapping in ordered metric spaces," Comput. Math. Appl., 61, No. 4, 790-796 (2011).
11. R. Kannan, Some results on fixed points-II," Amer. Math. Monthly, 76, 405-408 (1969).
12. M. S. Khan, M. Swaleh, and S. Sessa, "Fixed-point theorems by altering distances between the points," Bull. Aust. Math. Soc., 30, 1-9 (1984).
13. S. B. Nadler, "Multivalued contraction mappings," Pacif. J. Math., 30, 475-488 (1969).
14. J. J. Nieto and R. R. López, "Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations," Order, 22, 223-239 (2005).
15. A. C. M. Ran and M. C. B. Reurings, "A fixed-point theorem in partially ordered sets and some applications to matrix equations," Proc. Amer. Math. Soc., 132, No. 5, 1435-1443 (2004).
16. S. Reich, "Some fixed-point problems," Atti Acad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur., 57, 194-198 (1975).
17. B. E. Rhoades, "Some theorems on weakly contractive maps," Nonlin. Anal., 47, 2683-2693 (2001).

[^0]: ${ }^{1}$ Khalsa College of Engineering and Technology (Punjab Technical University), Muktsar, Punjab, India.
 ${ }^{2}$ College of Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman.
 ${ }^{3}$ University of Pretoria, Pretoria, South Africa.

