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Some common fixed-point results for mappings satisfying a nonlinear weak contraction condition within
the framework of ordered metric spaces are obtained. The accumulated results generalize and extend
several comparable results well-known from the literature.

Introduction and Preliminaries

The Banach contraction principle is one of the pivotal results in the metric fixed-point theory. It is a popular
tool for the solution of existence problems in various fields of mathematics. There are several generalizations of
the Banach contraction principle in the related literature on the metric fixed-point theory.

Ran and Reurings [15] extended the Banach contraction principle in partially ordered metric spaces with
some applications to linear and nonlinear matrix equations. Nieto and López [14] extended the results of Ran and
Reurings and used their main result to obtain a unique solution of the first-order ordinary differential equation
with periodic boundary conditions. Bhaskar and Lakshmikantham [3] introduced a concept of mixed monotone
mappings and obtained some coupled fixed-point results. Moreover, they applied their results to a first-order
differential equation with periodic boundary conditions.

Alber and Guerre-Delabriere [1] introduced a concept of weakly contractive mappings and proved the exis-
tence of fixed point for these mappings in Hilbert spaces. In 2001, Rhoades [17] proved the fixed-point theorem
which is a generalization of the Banach contraction principle. Weakly contractive mappings are closely related
to the mappings of the Boyd–Wong [4] and Reich types [16]. Recently, Doric [9] proved a common fixed-point
theorem for generalized ( ,φ)-weakly contractive mappings. Fixed-point problems involving weak contractions
and mappings satisfying the inequalities of the weak contractive type were studied by numerous authors (see
[1, 5–10, 17] and the references therein). In the present paper, we generalize the Chatterjea-type contraction map-
pings to (µ, )-generalized Chatterjea-type contraction mappings and deduce some common fixed-point results
for single-valued mappings on ordered metric spaces.

First, we recall some basic definitions and notation.
Let (X, d) be a metric space. A mapping T : X ! X is said to be:

(a) of the Kannan type (see [11]) if there exists a k 2
✓
0,

1

2

�
such that d(Tx, Ty)  k[d(x, Tx)+d(y, Ty)]

for all x, y 2 X;

(b) of the Chatterjea type [7] if there exists a k 2
✓
0,

1

2

�
such that d(Tx, Ty)  k[d(x, Ty)+d(y, Tx)] for

all x, y 2 X.

Khan, et al. [12] initiated the use of a control function that alters the distance between two points in a metric
space. Thus, this function was called an altering-distance function.
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A function µ : [0,1) ! [0,1) is called an altering-distance function if the following properties are satisfied:

(i) µ is monotonically increasing and continuous;

(ii) µ(t) = 0 if and only if t = 0.

By using the control function, we generalize the Chatterjea-type contraction mappings as follows:
Suppose that T and f are self-mappings defined on a metric space X. We say that a pair of mappings (T, f)

satisfies the (µ, )-generalized Chatterjea-type contractive condition if, for all x, y 2 X,

µ(d(Tx, fy))  µ

✓
1

2
[d(x, fy) + d(y, Tx)]

◆
−  (d(x, fy), d(y, Tx)), (1)

where µ : [0,1) ! [0,1) is an altering-distance function and  : [0,1)2 ! [0,1) is a lower semicontinuous
mapping such that  (x, y) = 0 if and only if x = y = 0.

Assume that M is a nonempty subset of a metric space X and that a point x 2 M is a common fixed
(coincidence) point of f and T for x = fx = Tx (fx = Tx). The set of fixed (resp., coincidence) points of f
and T is denoted by F (f, T ) (resp., C(f, T )).

Definition 1. Let (X,) be a partially ordered set. Two mappings f, g : X ! X are said to be weakly
increasing if fx  gfx and gx  fgx for all x 2 X.

The following example shows that there exist discontinuous not nondecreasing mappings that are weakly
increasing.

Example 1. Let X = (0,1) be endowed with the ordinary ordering. Let f, g : X ! X be defined by

fx =

8
<

:
3x+ 2 if 0 < x < 1,

2x+ 1 if 1  x < 1

and

gx =

8
<

:
4x+ 1 if 0 < x < 1,

3x if 1  x < 1.

For 0 < x < 1, we have

fx = 3x+ 2  3(3x+ 2) = gfx and gx = 4x+ 1  4x+ 3 = 2(2x+ 1) + 1 = fgx,

whereas for 1  x < 1, we get

fx = 2x+ 1  3(2x+ 1) = gfx and gx = 3x  2(3x) + 1 = fgx.

Thus, f and g are weakly increasing maps (but not nondecreasing).

Common Fixed-Point Theorem in Ordered Metric Spaces. Suppose that (X,�) is a partially ordered set.
A mapping T : X ! X is called monotonically increasing if, for all x, y 2 X,

x � y if and only if Tx � Ty. (2)
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A subset W of a partially ordered set X is called well-ordered if every two elements of W are comparable.

Theorem 1. Let (X,�) be a partially ordered set such that there exists a complete metric d on X. Suppose
that T and f are weakly increasing self-mappings on X satisfying inequality (1) for all comparable elements
x, y 2 X.

In addition, suppose that either

(i) if {xn} ⇢ X is a nondecreasing sequence with xn ! z in X, then xn � z for every n 2 N, or

(ii) T or f is continuous.

Then T and f have a common fixed point. Moreover, the set of common fixed points of f and T is well
ordered if and only if f and T have one and only one common fixed point.

Proof. Let x0 2 X. We can choose x1, x2 2 X such that x1 = Tx0 and x2 = fx1. By induction,
we construct a sequence {xn} in X such that x2n+1 = Tx2n and x2n+2 = fx2n+1, for every n ≥ 0. As T

and f are weakly increasing mappings, we obtain

x1 = Tx0 � fx1 = x2 � Tx2 = x3.

By induction on n, we conclude that

x1 � x2 � . . . � x2n+1 � x2n+2 � . . . .

Since x2n+1 and x2n+2 are comparable, by virtue of inequality (1), we get

µ(d(x2n+1, x2n+2)) = µ(d(Tx2n, fx2n+1))

 µ

✓
1

2
[d(x2n, fx2n+1) + d(x2n+1, Tx2n)]

◆
−  (d(x2n, fx2n+1), d(x2n+1, Tx2n))

= µ

✓
1

2
d(x2n, x2n+2)

◆
−  (d(x2n, x2n+2), 0)

 µ

✓
1

2
d(x2n, x2n+2)

◆
.

Since µ is a monotone increasing function, for all n = 1, 2, . . . , we get

d(x2n+1, x2n+2) 
1

2
d(x2n, x2n+2) 

1

2

⇥
d(x2n, x2n+1) + d(x2n+1, x2n+2)

⇤
.

This implies that

d(x2n+1, x2n+2)  d(x2n, x2n+1).

By using the similar argument, we obtain d(x2n+2, x2n+3)  d(x2n+1, x2n+2). Hence,

d(xn, xn+1)  d(xn−1, xn).
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Thus, {d(xn, xn+1)} is a monotonically decreasing sequence of nonnegative real numbers. Hence there exists
r ≥ 0 such that d(xn, xn+1) ! r. Thus,

d(x2n+1, x2n+2) 
1

2
d(x2n, x2n+2) 

1

2

⇥
d(x2n, x2n+1) + d(x2n+1, x2n+2)

⇤
.

Passing to the limit as n ! 1, we get

r  lim
1

2
d(x2n, x2n+2) 

1

2
r +

1

2
r.

Therefore, limn!1 d(x2n, x2n+2) = 2r. In view of the continuity of µ and the lower semicontinuity of  , we find
µ(r)  µ(r)−  (2r, 0). This implies that  (2r, 0) = 0 and, hence, r = 0. Therefore, d(xn+1, xn) ! 0.

We now prove that {xn} is a Cauchy sequence. It is sufficient to show that {x2n} is a Cauchy sequence.
On the contrary, suppose that {x2n} is not a Cauchy sequence. Then there exists ✏ > 0 for which we can find
subsequences {x2m(k)} and {x2n(k)} of {x2n} such that n(k) is the smallest index for which n(k) > m(k) > k,

d(x2m(k), x2n(k)) ≥ ✏. This means that d(x2m(k), x2n(k)−2) < ✏. Hence, we get

✏  d(x2m(k), x2n(k))

 d(x2m(k), x2n(k)−2) + d(x2n(k)−2, x2n(k)−1) + d(x2n(k)−1, x2n(k))

< ✏+ d(x2n(k)−2, x2n(k)−1) + d(x2n(k)−1, x2n(k)).

Passing to the limit as k ! 1, we obtain

lim
n!1

d(x2m(k), x2n(k)) = ✏. (3)

Moreover,

✏  d(x2m(k), x2n(k))  d(x2m(k), x2m(k)−1) + d(x2m(k)−1, x2n(k))

 2d(x2m(k), x2m(k)−1) + d(x2m(k), x2n(k)).

As k ! 1, we get

lim
n!1

d(x2m(k)−1, x2n(k)) = ✏. (4)

On the other hand, we find

d(x2m(k), x2n(k))  d(x2m(k), x2n(k)+1) + d(x2n(k)+1, x2n(k))

 d(x2m(k), x2n(k)) + 2d(x2n(k)+1, x2n(k)).

In the limit as k ! 1, we obtain

lim
n!1

d(x2m(k), x2n(k)+1) = ✏.
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In addition,

d(x2m(k)−1, x2n(k))  d(x2m(k)−1, x2n(k)+1) + d(x2n(k)+1, x2n(k))

 d(x2m(k)−1, x2n(k)) + 2d(x2n(k)+1, x2n(k)).

In the limit as k ! 1, we get

lim
n!1

d(x2m(k)−1, x2n(k)+1) = ✏.

Consider

µ(✏)  µ(d(x2m(k), x2n(k))) = µ(d(Tx2m(k)−1, fx2n(k)−1))

 µ

✓
1

2

⇥
d(x2m(k)−1, fx2n(k)−1) + d(x2n(k)−1, Tx2m(k)−1)

⇤◆

−  (d(x2m(k)−1, fx2n(k)−1), d(x2n(k)−1, Tx2m(k)−1))

= µ

✓
1

2
[d(x2m(k)−1, x2n(k)) + d(x2n(k)−1, x2m(k))]

◆

−  (d(x2m(k)−1, x2n(k)), d(x2n(k)−1, x2m(k))).

Passing to the limit as k ! 1 and using the continuity of µ and the lower semicontinuity of  , we get

µ(✏)  µ

✓
1

2
[✏+ ✏]

◆
−  (✏, ✏)

and, consequently,  (✏, ✏)  0, which is a contradiction because ✏ > 0. Thus, {x2n} is a Cauchy sequence and,
hence, {xn} is a Cauchy sequence. As X is a complete metric space, there exists t 2 X such that limn!1 xn = t.

Since {xn} is a nondecreasing sequence, by (i), we have xn � t. Consider

µ(d(x2n+1, ft)) = µ(d(Tx2n, ft))

 µ

✓
1

2
[d(x2n, ft) + d(t, Tx2n)]

◆
−  (d(x2n, ft), d(t, Tx2n))

= µ

✓
1

2
[d(x2n, ft) + d(t, x2n+1)]

◆
−  (d(x2n, ft), d(t, x2n+1)).

In the limit as n ! 1, we obtain

µ(d(t, ft))  µ

✓
1

2
d(t, ft)

◆
−  (d(t, ft), 0))  µ

✓
1

2
d(t, ft)

◆
.

This implies that d(t, ft) = 0 and, hence, t = ft.
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Again, consider

µ(d(Tt, t)) = µ(d(Tt, ft))  µ

✓
1

2
[d(t, ft) + d(t, T t)]

◆
−  (d(t, ft), d(t, T t))

= µ

✓
1

2
d(t, T t)

◆
−  (0, d(t, T t))  µ

✓
1

2
d(t, T t)

◆
.

This implies that d(Tt, t) = 0, T t = t. Therefore, t = Tt = ft, i.e., t is a common fixed point of T and f.

If condition (ii) holds: Assume that T is continuous. Then t = limn!1 Txn = x2n+1 = Tt. Now

µ(d(t, ft)) = µ(d(Tt, ft))  µ

✓
1

2
[d(t, ft) + d(t, T t)]

◆
−  (d(t, ft), d(t, T t))

= µ

✓
1

2
d(t, ft)

◆
−  (d(t, ft), 0)  µ

✓
1

2
d(t, ft)

◆

implies that d(t, ft) = 0, ft = t. Therefore, t = Tt = ft, i.e., t is a common fixed point of T and f.

If f is continuous, then following the argument similar to the argument presented above, we get the required
result.

We now suppose that the set of common fixed points of T and f is well ordered. We now claim the uniqueness
of the common fixed points of T and f. Assume, on the contrary, that Tu = fu = u and Tv = fv = v but u 6= v.

Consider

µ(d(u, v)) = µ(d(Tu, fv))

 µ

✓
1

2
[d(u, fv) + d(v, Tu)]

◆
−  (d(u, fv), d(v, Tu))

= µ

✓
1

2
[d(u, v) + d(v, u)]

◆
−  (d(u, v), d(v, u))

= µ(d(u, v))−  (d(u, v), d(u, v)).

This implies that d(u, v) = 0, by the property of  . Hence, u = v. Conversely, if T and f have only one
common fixed point, then the set of common fixed points of f and T (being a singleton) is well ordered.

Theorem 1 is proved.

If T = f, then we have the following result:

Corollary 1. Let (X,�) be a partially ordered set such that there exists a complete metric d on X. Suppose
that T is a monotone nondecreasing self-mapping on X such that

µ(d(Tx, Ty))  µ

✓
1

2
[d(x, Ty) + d(y, Tx)]

◆
−  (d(x, Ty), d(y, Tx)),

is satisfied for all x, y 2 X with comparable x and y.
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In addition, suppose that either

(i) if {xn} ⇢ X is a nondecreasing sequence with xn ! z in X, then xn � z for every n 2 N or

(ii) T is continuous.

Then T has a fixed point.

If µ(t) = t, then we get the following result:

Corollary 2 (see [5, 10]). Let (X,�) be a partially ordered set such that there exists a complete metric d

on X. Suppose that T is a monotonically nondecreasing self-mapping on X such that

µ(d(Tx, Ty))  µ

✓
1

2
[d(x, Ty) + d(y, Tx)]

◆
−  (d(x, Ty), d(y, Tx)),

is satisfied for all comparable elements x, y 2 X.

In addition, suppose that either

(i) if {xn} ⇢ X is a nondecreasing sequence such that xn ! z in X, then xn � z for every n 2 N or

(ii) T is continuous.

Then T has a fixed point.

Example 2. Let M = [0, 1] be endowed with a partial ordering: x � y if and only if x ≥ y. Let d be

defined as d(x, y) = |x − y|. We set Tx = 0 and fx =
x

2

8
for all x 2 M. It is easy to see that f and g are

weakly increasing maps. We define µ : [0,1) ! [0,1) and  : [0,1)⇥ [0,1) ! [0,1) by

µ(t) =
t

2
and  (t, s) =

t+ s

16
.

Thus, for x, y 2 M, we get

µ(d(Tx, fy)) = µ

✓
d

✓
0,

y

2

8

◆◆
= µ

✓
y

2

8

◆
=

y

2

16
,

and

µ

✓
1

2
[d(x, fy) + d(y, Tx)]

◆
−  (d(x, fy), d(y, Tx))

= µ

✓
1

2


d

✓
x,

y

2

8

◆
+ d(y, 0)

�◆
−  

✓
d

✓
x,

y

2

8

◆
, d(y, 0)

◆

= µ

✓
1

2

 ����x− y

2

8

����+ y

�◆
−  

✓����x− y

2

8

����, y
◆

=
1

4

 ����x− y

2

8

����+ y

�
−

����x− y

2

8

����+ y

16

=
3

16

 ����x− y

2

8

����+ y

�
≥ 3y

16
≥ y

2

16
.
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Hence,

µ(d(Tx, fy))  µ

✓
1

2
[d(x, fy) + d(y, Tx)]

◆
−  (d(x, fy), d(y, Tx)).

Thus, all conditions of Theorem 1 are satisfied. Moreover, T and f have a unique common fixed point 0.
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