COMMON FIXED-POINT THEOREMS FOR NONLINEAR
WEAKLY CONTRACTIVE MAPPINGS

S. Chandok,' M. S. Khan,” and M. Abbas®

Some common fixed-point results for mappings satisfying a nonlinear weak contraction condition within
the framework of ordered metric spaces are obtained. The accumulated results generalize and extend
several comparable results well-known from the literature.

Introduction and Preliminaries

The Banach contraction principle is one of the pivotal results in the metric fixed-point theory. It is a popular
tool for the solution of existence problems in various fields of mathematics. There are several generalizations of
the Banach contraction principle in the related literature on the metric fixed-point theory.

Ran and Reurings [15] extended the Banach contraction principle in partially ordered metric spaces with
some applications to linear and nonlinear matrix equations. Nieto and Lépez [14] extended the results of Ran and
Reurings and used their main result to obtain a unique solution of the first-order ordinary differential equation
with periodic boundary conditions. Bhaskar and Lakshmikantham [3] introduced a concept of mixed monotone
mappings and obtained some coupled fixed-point results. Moreover, they applied their results to a first-order
differential equation with periodic boundary conditions.

Alber and Guerre-Delabriere [1] introduced a concept of weakly contractive mappings and proved the exis-
tence of fixed point for these mappings in Hilbert spaces. In 2001, Rhoades [17] proved the fixed-point theorem
which is a generalization of the Banach contraction principle. Weakly contractive mappings are closely related
to the mappings of the Boyd—Wong [4] and Reich types [16]. Recently, Doric [9] proved a common fixed-point
theorem for generalized (v, ¢)-weakly contractive mappings. Fixed-point problems involving weak contractions
and mappings satisfying the inequalities of the weak contractive type were studied by numerous authors (see
[1, 510, 17] and the references therein). In the present paper, we generalize the Chatterjea-type contraction map-
pings to (i, )-generalized Chatterjea-type contraction mappings and deduce some common fixed-point results
for single-valued mappings on ordered metric spaces.

First, we recall some basic definitions and notation.

Let (X, d) be a metric space. A mapping 7: X — X is said to be:

1
(a) of the Kannan type (see [11]) if there exists a k € <O, 2} such that d(Tz, Ty) < k[d(x,Tx)+d(y, Ty)]
forall z,y € X;

1
(b) of the Chatterjea type [7] if there exists a k € (O, 2] such that d(T'z, Ty) < kld(z, Ty) + d(y, Txz)] for
all z,y € X.

Khan, et al. [12] initiated the use of a control function that alters the distance between two points in a metric
space. Thus, this function was called an altering-distance function.
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A function p: [0,00) — [0, 00) is called an altering-distance function if the following properties are satisfied:
(i) p is monotonically increasing and continuous;
(i) w(t) =0 ifand only if ¢t = 0.

By using the control function, we generalize the Chatterjea-type contraction mappings as follows:
Suppose that 7" and f are self-mappings defined on a metric space X. We say that a pair of mappings (7', f)
satisfies the (u,1))-generalized Chatterjea-type contractive condition if, for all z,y € X

(T, 7)) < p ( YldCo. ) + 0 T)] ) = bl ), (. T), m

where g: [0,00) — [0,00) is an altering-distance function and : [0,00)% — [0, 00) is a lower semicontinuous
mapping such that ¢(z,y) = 0 if and only if z = y = 0.

Assume that M is a nonempty subset of a metric space X and that a point x € M is a common fixed
(coincidence) point of f and T for x = fox = Tz (fx = Tx). The set of fixed (resp., coincidence) points of f
and T is denoted by F'(f,T") (resp., C(f,T)).

Definition 1. Ler (X, <) be a partially ordered set. Two mappings f,g: X — X are said to be weakly
increasing if fr < gfx and gxr < fgx forall x € X.

The following example shows that there exist discontinuous not nondecreasing mappings that are weakly
increasing.

Example 1. Let X = (0,00) be endowed with the ordinary ordering. Let f,g: X — X be defined by

3r+2 if0<ax<l,
Jz =
2c+1 ifl1<xr<oo
and

dr+1 if0<ax<l,
gz =
3x if 1<z<o0.
For 0 < x < 1, we have
fr=3x+2<303x+2)=gfx and gr=4r+1<4x+3=202zx+1)+1= fgzx,
whereas for 1 < z < 0o, we get

fr=2r4+1<302x+1)=gfx and gr =3x <2(3x)+1= fgx.

Thus, f and g are weakly increasing maps (but not nondecreasing).

Common Fixed-Point Theorem in Ordered Metric Spaces. Suppose that (X, <) is a partially ordered set.
A mapping T': X — X is called monotonically increasing if, for all x,y € X,

r =y ifandonlyif Tz <Ty. 2)



A subset W of a partially ordered set X is called well-ordered if every two elements of W are comparable.

Theorem 1. Let (X, <) be a partially ordered set such that there exists a complete metric d on X. Suppose
that T and f are weakly increasing self-mappings on X satisfying inequality (1) for all comparable elements
x,y € X.

In addition, suppose that either

(i) if {zn} C X is a nondecreasing sequence with x,, — z in X, then x,, < z for every n € N, or
(ii) T or f is continuous.

Then T and [ have a common fixed point. Moreover, the set of common fixed points of [ and T is well
ordered if and only if f and T have one and only one common fixed point.

Proof. Let x9 € X. We can choose x1,2z9 € X such that z; = Tzg and x5 = fz;. By induction,
we construct a sequence {z,} in X such that xo, 11 = Tx9, and zop42 = frony1, forevery n > 0. As T
and f are weakly increasing mappings, we obtain

Ir = TZUO j f.%’l = X9 j T:L'Q = I3.
By induction on n, we conclude that
T1 2 %2 2. 2D Toppl D Top42 2o

Since x2y,41 and x9,42 are comparable, by virtue of inequality (1), we get

p(d(xont1, Tant2)) = w(d(Txon, froni1))

IN

! <;[d($2m frons1) + d(xon41, T562n)]> —Y(d(x2n, frony1), d(T2nt1, T2on))

w (;d<$2n7x2n+2)) — Y(d(x2n, X2n42),0)

1
<pu <2d($2n,5€2n+2)>-

Since p is a monotone increasing function, forall n =1,2,..., we get

1

d(z2n, Tant2) < 3 [d(z2n, Zon+1) + d(T2nt1, T2nt2)]-

N =

d(zon+1, Toant2) <

This implies that
d(T2n41, Tant2) < d(Z2n, Tant1)-

By using the similar argument, we obtain d(x2,+42, T2n+3) < d(z2n+1, Ton+2). Hence,

d(l’n, xn—l—l) < d(xn—ly wn)



Thus, {d(zy,xn+1)} is a monotonically decreasing sequence of nonnegative real numbers. Hence there exists
r > 0 such that d(x,, zy+1) — 7. Thus,

1

1
d(T2n+1, Tant2) < id(x2n7m2n+2) < i[d($2nax2n+1) + d(T2n41, Tons2) ]

Passing to the limit as n — oo, we get

.1 1 1
r < lim id(azgn,xgwrg) < 57“ + 57‘.

Therefore, lim,, o0 d(Z2n, T2n+2) = 2r. In view of the continuity of 1 and the lower semicontinuity of ¢, we find
w(r) < p(r) —(2r,0). This implies that ¢)(2r,0) = 0 and, hence, r = 0. Therefore, d(zyt1,x,) — 0.

We now prove that {z,} is a Cauchy sequence. It is sufficient to show that {z,} is a Cauchy sequence.
On the contrary, suppose that {xa,} is not a Cauchy sequence. Then there exists ¢ > 0 for which we can find
subsequences {ZTop (k) } and {Ta, k) } of {T2,} such that n(k) is the smallest index for which n(k) > m(k) > k,
d(Tom (k) Ton(k)) = €. This means that d(zoy, k), Tan(k)—2) < €. Hence, we get

€ < d(Zam(k)s Tan(k))
< d(Tom (ks Tan(i)—2) + A Tan(k)—25 Tan(k)—1) + A Tan(k)—15 Tan(k))
< e+ d(Ton(k)—2, Tank)—1) + ATank)—15 Tan(k))-
Passing to the limit as k¥ — oo, we obtain

Jim d(zgm(k), Tan(r)) = € 3)

Moreover,
€ < d(Zam(k) Tank)) < A(Tom(k)> Tomk)—1) + A Tom(k)—1, Tan(k))
< 2d(ZTom(k) Tam(k)—1) T ATam(k) Tan(k))-
As k — oo, we get

lim d(Zop(k)—1, Ton(k)) = € 4

n—oo

On the other hand, we find
A(Tomk)s Tan(k)) < A Tamk)s Zank)+1) + ATan)+15 Lan(k))
< d(Tom(k), Ton(k)) T 2d(Ton(k)+1, Ton(k))-
In the limit as & — oo, we obtain

Jim d(@ g (k)s Ton(e)41) = €



In addition,
A(Tam(k)—1> Ton(k)) < A(Zomk)—1> Tan(k)+1) T ATon(k)+15 Tan(k))
< d(Tom(k)—1> Tan(k)) + 2d(Tan(k) 415 Ton(k))-
In the limit as & — oo, we get

nh—>n<;o d(me(k)—l’ xQn(k)+1) =&

Consider

11(€) < p(d(T2m(ry Tan(r))) = (AT Tom@m) -1, [Ton(k)-1))

1
<nu (2 [d(@om()—15 F o)1) + d(Tan(r)—-1, szm(k;)—l)]>

= P(d(@2m k) —15 fTonk)-1)s A Zank)—1, TTom(k)-1))

1

= p (2[d(x2m<k)—u an(k)) + d(an(k) -1, f”2m<’f>)]>

- ¢(d(x2m(k)—lv x?n(k))) d(xQ’n(k)—lv x2m(k)))

Passing to the limit as £k — oo and using the continuity of y and the lower semicontinuity of v, we get

) < e (3le+ ) - vieo

and, consequently, 1 (¢, €) < 0, which is a contradiction because € > 0. Thus, {x2,} is a Cauchy sequence and,
hence, {x,} is a Cauchy sequence. As X is a complete metric space, there exists ¢ € X such that lim,,_, z, = t.
Since {z,} is a nondecreasing sequence, by (i), we have z,, < t. Consider

pld(zant1, f1)) = p(d(Tzan, 1))

<u (;{d(@n, ft) + d(t,Txgn)]> — Y(d(z2n, ft),d(t, Ta2n))

= u <;[d(flf2n7 ft) +d(t, x2n+1)]> — (d(zan, 1), d(t, T2n41)).

In the limit as n — oo, we obtain

e, 10) < o (e, £0) = wtate 11,00 < (e 1),

This implies that d(¢, ft) = 0 and, hence, t = ft.



Again, consider

w(d(Tt,t)) = p(d(Tt, ft)) < p (;[d(t, ft) + d(tht)]> — ¢(d(t, f1),d(t, Tt))

0 Gd(t,m) — (0, d(t, TE)) < p <;d(t, Tt)).

This implies that d(Tt,t) = 0, Tt = t. Therefore, t = T't = ft, i.e., t is a common fixed point of 7" and f.
If condition (ii) holds: Assume that 7" is continuous. Then t = lim,, o0 Tz, = T2p4+1 = T't. Now

u(d(t, f1)) = p(d(Tt, £1)) < p (; d(t, ft) + dt, Tt)]) — G(d(t, f1), d(t, Tt))

=u<}WJﬂ>—Mﬂtﬁ%®§u<;WJﬂ>

implies that d(t, ft) = 0, ft = t. Therefore, t = T't = ft, i.e., t is a common fixed point of 7" and f.

If f is continuous, then following the argument similar to the argument presented above, we get the required
result.

We now suppose that the set of common fixed points of 7" and f is well ordered. We now claim the uniqueness
of the common fixed points of 7" and f. Assume, on the contrary, that T = fu = u and Tv = fv = v but u # v.
Consider

p(d(u,v)) = p(d(Tu, fv))

< 1 (gletu.fo) + dtv. T ) = w(dtu. fo)do. Tw)

= o (00 + v, ] ) = (a0}, )

= p(d(u,v)) — P(d(u, v), d(u,v)).

This implies that d(u,v) = 0, by the property of 1. Hence, u = v. Conversely, if 7' and f have only one
common fixed point, then the set of common fixed points of f and T" (being a singleton) is well ordered.
Theorem 1 is proved.

If T = f, then we have the following result:

Corollary 1. Let (X, =) be a partially ordered set such that there exists a complete metric d on X. Suppose
that T' is a monotone nondecreasing self-mapping on X such that

(T, 7)) < o (Gl T) + d( Ta)) ) = vl o) . 7))

is satisfied for all x,y € X with comparable x and y.



In addition, suppose that either

(i) if {xn} C X is a nondecreasing sequence with x,, — z in X, then x, = z for every n € N or
(ii) T is continuous.

Then T has a fixed point.

If u(t) = t, then we get the following result:

Corollary 2 (see [5, 10]). Let (X, =) be a partially ordered set such that there exists a complete metric d
on X. Suppose that T is a monotonically nondecreasing self-mapping on X such that

1
(T ) < 3lale. T) + d. To)]) = 6(do. Ty), . 7))
is satisfied for all comparable elements x,y € X.
In addition, suppose that either
(i) if {xn} C X is a nondecreasing sequence such that x,, — z in X, then x,, = z for every n € N or
(ii) T is continuous.

Then T has a fixed point.

Example 2. Let M = [0,1] be endowed with a partial ordering: = =< y if and only if =z > y. Let d be
2
defined as d(z,y) = |x —y|. Weset Tx = 0 and fz = % for all x € M. It is easy to see that f and g are

t
and W(t,s) = :—68.

weakly increasing maps. We define pi: [0,00) — [0,00) and #: [0,00) x [0,00) — [0, 00) by
_!
2

p(t)

Thus, for x,y € M, we get

and

(0o, 1) + . 7)) =l f0), . 7))
Gt %) )
i) = (

(LTl L
2 8 8|
2
y
1 y2+ T 3 +y
R N 16
3 y? 3y _ v
=2 ||e=-Z > > 7
16[90 8 +y]_16_16




Hence,

11.
12.

13.
14.

15.

16.
17.

1
(T, £) < (o f) + . To)] ) =l f), . 7).
Thus, all conditions of Theorem 1 are satisfied. Moreover, 7" and f have a unique common fixed point 0.
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