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Introduction
In the current global educational climate, some degree of regulation is deemed necessary in 
both the curriculum document prescription and in systemic assessment (Kuiper, Nieveen & 
Berkvens, 2013). If teachers are to be judged by the outcomes of systemic assessments then at least 
the components making up the curriculum and the assessment tasks should be made explicit, 
so that the classroom activities may be aligned and reasoned judgments may be made by teachers 
concerning their classroom focus. 

In the first part of this article, we propose a model for assessment that integrates both external 
and classroom-based educational functions. In order for this model to function optimally, there 
is a need for coherence in the description of educational objectives, classroom activities and 
assessment; we therefore need a common language across all three educational processes. 

In the second part of the article, we provide an overview of the main cognitive categories in 
Bloom’s taxonomies, both the original and revised versions, the various frameworks from the 
Trends in International Mathematics and Science Study (TIMSS), as well as the recent South 
African curricula. 

Bloom’s Taxonomy of Educational Objectives was initially conceptualised to assist curriculum 
planners to specify objectives, to enable the planning of educational experiences and to 
prepare evaluative devices (Bloom, Engelhart, Furst, Hill & Krathwohl, 1956, p. 2). Because 
the educational objectives are phrased as general cognitive processes, including activities such as 
remembering and recalling knowledge, thinking and problem solving, it is necessary to rephrase 
the particular statements in terms of the subject under consideration (Andrich, 2002). In fact, the 
taxonomy may be ‘validated by demonstrating its consistency with the theoretical views’ that 
emerge in ‘the field it attempts to order’ (Bloom et al., 1956, p. 17). The process of thinking about 
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Mathematics, curriculum and assessment: The role 
of taxonomies in the quest for coherence

A challenge encountered when monitoring mathematics teaching and learning at high school 
is that taxonomies such as Bloom’s, and variations of this work, are not entirely adequate 
for providing meaningful feedback to teachers beyond very general cognitive categories 
that are difficult to interpret. Challenges of this nature are also encountered in the setting of 
examinations, where the requirement is to cover a range of skills and cognitive domains. The 
contestation as to the cognitive level is inevitable as it is necessary to analyse the relationship 
between the problem and the learners’ background experience. The challenge in the project 
described in this article was to find descriptive terms that would be meaningful to teachers. 
The first attempt at providing explicit feedback was to apply the assessment frameworks 
that include a content component and a cognitive component, namely knowledge, routine 
procedures, complex procedures and problem solving, currently used in the South African 
curriculum documents. The second attempt investigated various taxonomies, including those 
used in international assessments and in mathematics education research, for constructs that 
teachers of mathematics might find meaningful. The final outcome of this investigation was 
to apply the dimensions required to understand a mathematical concept proposed by Usiskin 
(2012): the skills-algorithm, property-proof, use-application and representation-metaphor dimension. 
A feature of these dimensions is that they are not hierarchical; rather, within each of the 
dimensions, the mathematical task may demand recall but may also demand the highest level 
of creativity. For our purpose, we developed a two-way matrix using Usiskin’s dimensions on 
one axis and a variation of Bloom’s revised taxonomy on the second axis. Our findings are that 
this two-way matrix provides an alternative to current taxonomies, is more directly applicable 
to mathematics and provides the necessary coherence required when reporting test results to 
classroom teachers. In conclusion we discuss the limitations associated with taxonomies for 
mathematics. 
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educational objectives, defining the objectives in terms of the 
mathematical tasks and relating these tasks to the teaching 
activities and assessment tasks is an important exercise for 
the policymakers, curriculum designers, test designers and 
teachers. 

An overview of the other taxonomies in use in TIMSS and in 
the various South African curriculum documents provides the 
background to the planning, communication and feedback 
processes for the Grade 9-11 monitoring and evaluation 
project with which the authors are currently engaged. The 
broad question arising from the project needs is: Can the 
(three) essential elements, an externally designed monitoring 
component, a classroom-based formative assessment 
component and a professional development component, be 
logically and coherently aligned for the purpose of informing 
teaching and learning?

The subquestion is: How may we best design assessment 
frameworks (the design tool specifying the purposes, structure 
and content of an assessment instrument) in such a way that 
there is coherence from the mathematical knowledge to be 
taught and learned, through the design of a set of assessment 
instruments, to providing diagnostic and practical feedback 
to teachers about learner performance and needs?

The congruence of curriculum, in the sense of what subject 
knowledge is to be learned, pedagogy, in terms of how 
particular concepts and skills are to be learned, and assessment, 
how the two former elements of the educational experience 
are to be assessed, is the central concern of this article. 

Teaching and learning
Good, and especially excellent, teachers cannot all teach to 
the same recipe. Of course, the same mathematics canon 
underpins their teaching and student learning and the 
ultimate goal is attainment of the abstract and powerful 
predicative knowledge of mathematics. But, the route to 
this end goal along a developmental path is through the 
operationalisation of mathematics in terms that can be 
grasped by the young and aspirant mathematicians (see also 
Vergnaud, 1994). Also, because learners are able to draw 
from appropriate contexts the mathematical understanding 
underpinning the formal mathematics, the creative teacher 
draws on contexts pertinent to the learners and appropriate 
for generating mathematical understanding. 

When teachers plan assessments for their classes, and 
even for the clusters of classes in a school, the assessment 
is generally geared to what the learners have been taught. 
The contents of the test will not be unexpected. The language 
will be familiar. But in the case of external assessment for 
qualification purposes, or national systemic studies in which 
school performance or teacher performance is monitored, or 
large-scale assessments in which many different countries 
are involved, the attainment of coherence of language across 
countries, schools and individual teachers is more difficult 
to achieve. Countervailing these limitations of an external 

systemic type of testing is the view that the outcomes of 
systemic-type assessment should not be the only, nor the 
primary, source of information for a school evaluation 
(Andrich, 2009). 

The lynchpin of coherence here is attention to the validity 
of the test components, consistency across the collection 
sites, so as to generate thus generating reliable test data, 
and attention to the overall validity of the assessment 
programme, including the purpose for which the assessment 
outcome is to be used (Messick, 1989). Adherence to these 
requirements is not easy to attain. The attainment demands 
clear communication about the curriculum contents and 
about the expected responses from learners. For example, the 
expectation from the teacher may be that individual concepts, 
with associated procedures, are acquired; in contrast, the 
examiner may require the learner to apply problem solving 
skills to a mathematical task requiring multiple concepts. 
Bloom et al. (1956) refer to the need to understand the 
educational context of the learner in order to correctly align 
educational assessment and correctly categorise the cognitive 
levels.

Some criticism of external systemic-type testing is noted 
here. Schoenfeld (2007) warns that the type of assessment 
items generally given in tests of larger scale may often work 
against the type of problem solving process, extended and 
thorough in nature, advocated by Polya (1957). Others point 
to socio-economic factors that impact on the school culture, 
and therefore on learning and teaching, that warrant deeper 
consideration (Nichols & Berliner, 2005, 2008; Usiskin, 
2012; Wolk,  2012). Questions about teacher autonomy 
and professionalism, and about who has the professional 
authority to monitor professional teachers, are of paramount 
importance. These critiques are noted here but are not the 
concern of this article.

Webb (1992), in response to dissatisfaction with what he 
perceives as inadequate testing processes, proposes that 
mathematics education requires a specific assessment 
programme. He argues that the then-current assessment 
models had been based on outdated psychological models 
designed for purposes no longer relevant. Aligned with 
this view,  we explore later in the article a taxonomy 
proposed by Usiskin (2012) that has been operationalised 
in the University of Chicago Schools Mathematics Project 
textbooks (UCSMP; see http://ucsmp.uchicago.edu/). 
See for example the Algebra textbook, Teacher’s Edition 
(McConnell et al., 2002).

Proposed model
In answer to the critique of current assessment practices and 
problems experienced in practice, Bennett and Gitomer (2009) 
propose a model that provides articulation between three 
components: systemic assessment (monitoring), formative 
assessment (classroom-based diagnostics and classroom 
teaching) and professional development (see Figure 1; see 
also Bennett (2010, 2011).

http://ucsmp.uchicago.edu/
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For the external monitoring component we propose along 
with Bennett and Gitomer that any mode of assessment 
should be aligned with cognitive models that are currently 
acknowledged as supporting learning. The implication is that 
when a test is designed for monitoring purposes that both the 
critical subject knowledge and the associated requirements 
from a cognitive development perspective are to be 
considered. Here we note that modern scientific techniques 
for the generation and analysis of test data may be used to 
provide information about the individual student, and to 
ensure reflection on the test instruments themselves and their 
constituent items. Suitably supported, these methods also 
permit the tracking of individual needs and performance in 
the classroom and evidence for the extent of change, progress 
and redress of performance for the specific child. These 
techniques, critical to the model, are explored elsewhere. See 
Dunne, Long, Craig and Venter (2012) and Long, Dunne and 
Mokoena (2014) for discussion on techniques for analysis and 
reporting of assessment results.

The classroom-based formative assessment component of the 
model requires that teachers be provided with information 
obtained through the monitoring component. This information 
should reflect both apparent learner proficiency and item 
performance characteristics. The feedback needs to be 
sufficiently specific to enable the teachers to reflect on how 
best to meet the emerging needs of the learners as detected 
within the assessment. We acknowledge that there will 
be circumstances in which this reflection will have to be 
accompanied by improvement of teacher mathematical 
skills, which is the intent of the professional development 
component. 

The professional development component of this system 
of interventions should be informed by a deeper insight 
into the nature of the knowledge domains. In essence, the 
professional development component is required to build 
with the teachers a model of mathematical development 

against which teachers may gauge the progress of their 
learners. The intended curriculum constitutes an essential but 
incomplete part of this professional development function. 
The component also involves identifying with the education 
role players and re-examining the various necessary factors 
involved in acquiring mathematical proficiency. Teachers 
and decision-makers together explore the reasons for these 
critical factors being absent from the school classroom and 
address strategies to address that absence. 

In order to promote congruence at the three sites, an explicit 
model of conceptual development from the perspective 
of mathematics and of cognitive development from the 
perspective of learning is required (see Vergnaud, 1988). 
These two components have both a hierarchical trajectory and 
horizontal breadth encompassing both related mathematics 
concepts and the required cognitive engagement. In order 
to make explicit at any one time the breadth and depth of 
knowledge and the responses required of individuals, an 
explicit description of the particular knowledge field is 
required. 

The purpose of Bloom’s taxonomy 
and associated challenges
When Bloom gathered a group of assessment specialists 
together in the mid-20th century, his purpose was to provide 
the assessment community with a common language about 
learning goals which would facilitate communication across 
subject matter, persons and grade levels. In an attempt to 
ensure development of ‘higher mental processes’ Bloom 
(1994, p. 2) proposed a common framework for the setting of 
examinations and for the assessment of these examinations 
(cited in Andrich, 2002, p. 40). As noted previously, this 
framework was initially conceptualised as an assessment 
tool which could aid in the classification of items for item 
banking purposes.

Monitoring 

component (external 

and summa�ve 

assessment)

Classroom-based 

component 

(forma�ve 

assessment)

Professional 

development 

component 

(focus on teacher 

agency)

Monitoring component: the identification of problem areas and developmental goals.

Classroom-based component: reflection on problem areas, finer diagnosis through

formative assessment products and processes, reflection on classroom practice.

Professional development component: targeted interventions in response to identified

subject areas through the monitoring component and formative assessment component.

Source: Adapted from Bennett, R.E., & Gitomer, G.H. (2009). Transforming K-12 assessment: Integrating accountability testing, formative assessment and professional development. In C. Wyatt-
Smith, & J.J. Cumming (Eds.), Educational assessment in the 21st century (pp. 43–62). Dordrecht: Springer. http://dx.doi.org/10.1007/978-1-4020-9964-9_3

FIGURE 1: Model for system assessment.

http://dx.doi.org/10.1007/978
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The educational objectives explicated in the taxonomy could 
then be translated into behaviours that would provide 
evidence that the objective had been achieved (Andrich, 
2002, p. 41). The aim of the common framework was to help 
curriculum designers ‘specify objectives so that it becomes 
easier to plan learning experiences and prepare evaluation 
devices’ (Bloom et al., 1956, p. 2). 

This common language and vocabulary was to serve as 
a basis for determining the specific meaning of broad 
educational goals that informed both the local and 
the international community. It was also a means for 
‘determining the congruence of educational objectives, 
activities and assessments’ (Krathwohl, 2002). The 
establishment of a broad base of descriptions that could 
describe a range of educational experience was to guard 
against the limitations of any curricula that had been 
narrowly conceptualised. For the assessment community 
a bank of items covering a range of question types was 
to provide a solution to the increasing demand for the 
construction of assessment items. 

Bloom’s original taxonomy embraced cognitive, affective and 
psychomotor skills. The cognitive processes included six major 
components: knowledge, comprehension, application, analysis, 
synthesis and evaluation. The affective aspect included five 
major components: receiving, responding, valuing, organising 
and characterising. There was a third component named 
psychomotor skills (Bloom et al., 1956). This conceptualisation 
of educational objectives, embracing a broader view of 
knowledge and the inferred cognitive responses, was 
groundbreaking at the time and the effect on education has 
been an exponential growth in taxonomy use.

It is of interest here that though knowledge is specified 
as a component, defining this component does not prove 
that straightforward. Whilst there is an element of memory 
involved, in that recalling facts, terms, basic concepts and 
answers forms part of this component, this component also 
embraces knowledge of specifics (terminology and specific 
facts), knowledge of ways and means of dealing with specifics 
and knowledge of the universal and abstractions in a field 
(principles and generalisations, theories and structures). 
The idea behind the taxonomy is that it does not only 
specify breadth but also unfolds a depth of engagement 
within a particular topic. In this respect the elements of 
the taxonomy have been regarded as hierarchical, moving 
from simple to complex, concrete to abstract, so creating a 
cumulative hierarchy of knowledge and skills (Bloom et al., 
1956; Krathwohl, 2002).

Although this idea of hierarchy has been acknowledged as 
groundbreaking, there has been critique from a number of 
sources. One of these critiques is that the elements do not 
necessarily form a hierarchy (Usiskin, 2012, and others). 
Another view is that whilst the first three elements of 
the taxonomy are somewhat hierarchical, the last three, 
in contrast, can be conceptualised as distinct but parallel 
(Anderson & Krathwohl, 2001).1 

Another critique is that the act of cognition is so highly 
interrelated and connected across its features that any 
attempt to classify and confine the thinking process is bound 
to fail. Here we note that Bloom et al. (1956) were acutely 
conscious of the danger of the fragmentation arising from 
the use of particular focuses and advocated a degree of 
classification that did least violence to the construct under 
investigation. This critique is partly addressed by the revised 
Bloom’s taxonomy that arranges the existing elements into 
two dimensions, placing types of knowledge on the vertical 
dimension and the cognitive process dimensions on the 
horizontal dimension (see Table 1) (Krathwohl, 2002). Three 
types and six cognitive processes permit a two-way 3 × 6 
array of classifications.

A further observation that results from the use of the 
taxonomy rather than the original conceptualisation is that 
for each subject area, the observable behaviours and the 
different levels of thinking and performance will manifest 
differently. The abstract nature of the taxonomy requires that 
for each subject area, the six levels have to be recontextualised 
by curriculum developers, examiners and classroom teachers 
who know the subject discipline (Andrich, 2002).

The reconceptualisation of the taxonomy into two dimensions 
makes the adaptation for the different subject knowledge 
domains somewhat easier. The inclusion of metacognitive 
strategies as a separate category in the revised Bloom’s 
taxonomy is regarded by some as a major advance in that 
without metacognition, it is argued, learning cannot be 
claimed (Anderson et al., 2001).

The difficulty of classifying items in terms of 
Bloom’s taxonomies
It is at this point that we reflect on two sets of three items, 
designed as formative assessment resources, for the formative 
assessment component of the project. The first set focuses on 
Algebra (see Worksheet 2 in Appendix 1).

1.Interesting connection here with the Van Hiele levels. 

TABLE 1: Revised Bloom’s taxonomy manifesting two dimensions used to classify assessment items in the mathematics monitoring and evaluation project.

Knowledge dimension Cognitive process dimension

Remember Understand Apply Analyse Evaluate Create

Factual knowledge 4.1 Area of a square - - - - -

Conceptual knowledge 2.1 Geometric 
sequence

- 2.2 Factorise an 
algebraic expression

4.3 Distance direction 
(Pythagoras)

- -

Procedural knowledge - 4.2 Volume of a 
cylinder

- 2.3 Analyse representations 
of a linear function

- -

Metacognitive knowledge - - - - - -
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Our attempts to classify the items that were originally created 
to cover a range of cognitive processes proved difficult. The 
individual items have been given a temporary home populating 
the cells. But how does one distinguish ‘remember X conceptual 
knowledge’, ‘understand X procedural knowledge’, and ‘apply 
factual knowledge X’ (represented in Table 1)?

We note here that the selection of a cell or cells within which 
to locate the item depends not only on the understanding of 
the mathematics involved but also on the approach that the 
learner may take to solving the problem. An issue arises for a 
class within which a particular problem has been discussed: 
re-use of the problem will be classified as ‘remember and 
apply’, whereas if the particular topic has not been dealt 
with in class the learner may be required to analyse the 
problem and apply conceptual understanding. This difficulty 
confirms the statement that by Bloom et al. (1956) that ‘it is 
necessary to know or assume the nature of the examinees 
prior educational experience’ (p. 20), in order to classify test 
questions.

Similar conceptual and taxonomic 
efforts in mathematics
Similar work in mathematics education, in parallel or 
in conjunction with the work of Bloom, Krathwohl and 
colleagues, has been conducted in an attempt to achieve 
congruence from the curriculum, through the pedagogical 
domain, and into assessment. 

Distinctions between types of mathematics knowledge, 
relational understanding and instrumental understanding by 
Skemp (1976) describe the theoretically distinct though 
practically linked constructs. He describes relational 
understanding as the ability to deduce specific rules and 
procedures from more general mathematical relations. 
Instrumental understanding describes the ability to apply 
a rule to the solution of a problem without understanding 
how it works. This contrast, however, refers to the learner’s 
understanding and may be an objective for teaching, but 
cannot easily be distinguished in an assessment item.

The somewhat different terms conceptual knowledge and 
procedural knowledge are identified by Hiebert and Lefevre 
(1986) following Scheffler (1965). The distinction is made 
between conceptual knowledge in which relations are 
established between concepts and procedural knowledge 
elements which are sequential in character. Conceptual 
knowledge is attained by ‘the construction of relationships 
between pieces of information’ or by the ‘creation of 
relationships between existing knowledge and new 
information that is just entering the system’ (Hiebert & 
Lefevre, 1986, p. 4). Hiebert and Lefevre make a secondary 
distinction between primary level relationships and the 
reflective level constructs. The primary level refers to elements 
of knowledge that are at the same level of abstraction, whilst 
the reflective level refers to a higher level of abstraction that 
occurs when two pieces of knowledge initially conceived 
as separate pieces of knowledge are abstracted to become a 

principle or concept that is generalisable to other situations. 
These levels of abstraction align with the purpose of 
mathematics education expressed by Vergnaud (1988), 
which is to transform current operational thinking into 
more advanced concepts that are generalisable across varied 
situations.

Procedural knowledge, in Hiebert and Lefevre’s (1986) 
definition is described as knowing the formal language, or 
the ‘symbol representation system’, knowing algorithms 
and rules for completing tasks and procedures and knowing 
strategies for solving problems. In practice, the two perhaps 
conceptually distinct knowledge types are intricately linked 
and cannot be distinguished (Long 2005; Usiskin, 2012; 
Vergnaud, 1988). 

Subsequently, Kilpatrick, Swafford, and Findell (2001) 
included conceptual understanding and procedural fluency, 
similar in essence to the terms used by Hiebert and Lefevre 
(1986), as two of five strands necessary for mathematical 
proficiency. The other three strands are adaptive reasoning, 
strategic competence and a productive disposition (Kilpatrick 
et al., 2001, p. 141). 

In essence, the Kilpatrick strands focus on features of learner 
activity in the mathematics classroom to which a teacher 
may properly attend. Whilst these strands are useful for the 
purpose of planning learner activity, they do not function as a 
taxonomy or typology for purposes of categorising curriculum 
knowledge or for guiding the design of a test instrument, nor 
as an instrument to judge teacher competence. 

In an attempt to make the design of curriculum, the stating of 
objectives, the educational activities and the assessment thereof 
coherent and iteratively cyclical, Usiskin (2012) and colleagues 
at the UCSMP have conceptualised an elaborated view of what 
it means to understand mathematics, which comprises five 
dimensions: skills-algorithm understanding, property-proof 
understanding, use-application understanding, representation-
metaphor and history-culture understanding. This elaborated 
view of understanding mathematics is conceived from the 
learner’s perspective and as such should be useful in terms of 
teaching and learning. This taxonomy of understanding will 
be discussed in connection with the project to which it was 
applied in a later section.

Given the above alternative distinctions made, we reflect 
on the process of categorising and describing items for the 
purpose of communication and for providing feedback to the 
teachers in our project. We turn to the items on Worksheet 2 
and Worksheet 4 (in Appendix 1). Are these items easily 
classifiable as conceptual knowledge or understanding, 
or procedural knowledge or procedural fluency? A partial 
answer from Bloom et al. (1956) is that the classification 
depends on knowledge of or an assumption about the 
learners’ prior knowledge. Nevertheless, large-scale 
studies and national systemic programmes require guiding 
assessment frameworks.



http://www.pythagoras.org.za doi:10.4102/pythagoras.v35i2.240

Page 6 of 14 Original Research

Trends in International Mathematics 
and Science Study frameworks: 
A taxonomy 
The TIMSS frameworks have been used to inform curricula and 
provide a framework against which tests may be constructed 
and results reported. Though with no direct evidence it 
appears that the Third International Mathematics and Science 
Study, as it was known in 1995, TIMSS-Repeat (1999) and the 
Trends in International Mathematics and Science Study 2003, 
2007 and 2011 have all engaged with Bloom’s taxonomy, 
both the original and revised versions, and with the various 
categorisations made in mathematics education literature. 
In order for the international large-scale studies to make a 
claim for both reliability and validity, it is essential that they 
make explicit the frameworks informing the design of the 
assessment instrument, including both the content domains 
and the cognitive domain. The early TIMSS studies, in 1995 
and 1999, used the term performance expectations to provide 
the second dimension. These expectations were as follows: 
Knowing, Using routine procedures and Problem solving at Grade 
4; Representing situations mathematically, Using more complex 
procedures, Generalising and Justifying at Grade 8 (Schmidt, 
McKnight, Valverde, Houang & Wiley, 1996; see also Table 2). 

The categories used in TIMSS 2003 for the cognitive domain 
were: Knowing facts and procedures (recall, recognise or 
identify, compute, use tools), Using concepts (know, classify, 
represent, formulate, distinguish), Solving routine problems 
(select, model, interpret, apply, verify) and Reasoning (logical, 

systematic thinking, including both inductive and deductive 
thinking) (Mullis et al., 2003). 

In 2007 and 2011, the categories changed somewhat to 
Knowing (recall, recognise, compute, retrieve, measure, 
classify or order), Applying (select, represent, model, 
implement, solve routine problems) and Reasoning (analyse, 
generalise, synthesise and integrate, justify, solve non-
routine problems) (Mullis et al., 2005, 2009) (Table 2). Without 
going into detail, one may observe broad similarities across 
the TIMSS frameworks with the Bloom’s taxonomies, both 
original and revised.

We note here that our items from Worksheet 2 and Worksheet 4 
(in Appendix 1) may be allocated to TIMSS content domains 
fairly easily as the topics in the framework are elaborated to a 
fine level of detail. The difficulty still remains with assigning 
a cognitive domain to the items or, to phrase the challenge 
differently, to assign the expected response of the learner.

Both the TIMSS frameworks and the Bloom’s taxonomies 
(both original and revised) have influenced curricula 
planning in many participating countries, including South 
Africa, over recent decades. 

RNCS and CAPS taxonomies in 
international perspective
In this section we comment, in relation to Bloom’s taxonomy 
and TIMSS, on the South African curricula, the Revised National 
Curriculum Statement (RNCS) introduced in 2002 (Department 

TABLE 2: Conceptual and cognitive domains: Bloom’s (original and revised), TIMSS 1995/1999, 2003, 2007/2011, RNCS and CAPS.

Type Bloom’s original 1956 Bloom’s revised 2002 TIMSS 1995/99 TIMSS 2003 TIMSS 2007/20011 RNCS 2002 & CAPS 2011

Knowledge Knowledge of
- specifics (facts and 
terminology)
- ways and means of dealing 
with specifics (conventions, 
trends and sequences, 
methodology)
- universals and abstractions 
(principles and generalisations, 
theories and structures)

The knowledge 
dimension (factual 
knowledge, 
conceptual 
knowledge, 
procedural 
knowledge, 
metacognitive 
knowledge)

Content domain
(mathematical 
concepts)

Content domain 
(mathematical 
concepts)

Content domain 
(mathematical 
concepts)

Content domain (mathematical 
concepts)

Cognitive 
domain

Comprehension,
Application,
Analysis,
Synthesis,
Evaluation,
(Much more detail provided in 
Kratwohl, 2002)

Remember, 
Understand, Apply, 
Analyse, Evaluate, 
Create
(Much more 
detail provided in 
Krathwohl, 2002)

Knowing,
Using routine 
procedures,
Problem solving. 
(Grade 4)
Representing 
situations 
mathematically
Using more 
complex 
procedures,
Generalising,
Justifying 
(Grade 8)

Knowing facts 
and procedures 
(recall, recognise 
and identify, 
compute, use 
tools)
Using concepts 
(know, classify, 
represent, 
formulate, 
distinguish)
Solving routine 
problems (select, 
model, interpret, 
apply, verify)
Communication 
and problem 
solving

Knowing (recall, 
recognise, 
compute, 
retrieve, 
measure, 
classify and 
order)
Applying 
(select, 
represent, 
model, 
implement, 
solve routine 
problems)
Reasoning 
(analyse, 
generalise, 
synthesise 
and integrate, 
justify, solve 
non-routine 
problems)

Knowledge (estimation and 
appropriate rounding of 
numbers, straight recall, use 
of correct formula, use of 
mathematical facts, appropriate 
use of mathematical vocabulary)
Routine procedures (perform 
well-known procedures, simple 
applications and calculations, 
derivation from given information, 
use of correct formula)
Complex procedures (complex 
calculations or higher order 
reasoning; investigate elementary 
axioms to generalise them into 
proofs for straight line geometry, 
congruence and similarity, no 
obvious route to the solution, 
connections between different 
representations, conceptual 
understanding)
Problem solving (unseen, non-
routine problems, higher order 
understanding and processes, 
break the problem down into its 
constituent parts) 

Other Affective (Receiving, 
responding, valuing, 
organising, characterising)
Psychomotor skills

- - - - -

TIMMS, Trends in International Mathematics and Science Study; RNCS, Revised National Curriculum Statement; CAPS, Curriculum and Assessment Policy Statement.
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of Education, 2002), though only fully implemented some 
5 years later, and the Curriculum and Assessment Policy 
Statement (CAPS) (Department of Basic Education, 2011), 
introduced in 2011 and implemented from 2012 to 2014.

The categorisations – knowledge, routine procedures, 
complex procedures, and problem solving – in CAPS (DBE, 
2011) are similar to the TIMSS 1995 and 1999 categories. The 
earlier RNCS curriculum used the same content categories, 
but had more elaborated cognitive dimensions, which were 
more akin to the Bloom’s categories and the TIMSS 2007 
categories. Table 3 provides a summary with the RNCS and 
CAPS categories somewhat roughly aligned.

Applying the matrix of content domain categories 
(mathematical concepts) and the cognitive domain categories 
(the responses expected from individuals) allows test 
designers to cover the broad range of knowledge requirements 
expected by the curriculum. Of course such a matrix of 
content and learner activity level inevitably sets up artificial 
distinctions between subject topics and between the responses 
expected.2 There are likely to be many occasions when the test 
designer will be in a quandary as to which category to assign 
a particular item. Table 3 provides an example of a standard 
framework providing content and cognitive domains. The 
cells would then be populated according to the curriculum 
requirements, for example as laid out in CAPS.

The requirement is for the designer to populate the tabular 
framework with suitable types and numbers of items for 
each cell in the matrix. In the case of our Worksheet 2 and 
Worksheet 4 items, they may all be allocated to the category 
Application, which includes routine procedures and complex 
procedures (Table 3), although some may argue that the items 
all belong in the Knowledge category.

The authors acknowledge that the depth of description in 
these taxonomies and frameworks has not been provided 
in this article. They are listed rather to show how there are 
similarities and differences across these frameworks which 
then point to the complexity of constructing such taxonomies.

It is necessary for the taxonomy and the various frameworks 
to be transformed into subject-specific descriptions (Andrich, 

2.See Long (2011, p. 234) for a detailed discussion.

2002; Van Wyke & Andrich, 2006). The TIMSS descriptions 
have achieved this requirement (see Mullis et al., 2003, 2005, 
2009). An interesting divergence to be explored is that whilst 
Bloom’s original and revised taxonomies claim a hierarchy of 
cognitive processes, the TIMSS framework claims only minimal 
hierarchy of cognitive domains with a range of difficulty within 
each cognitive domain (Mullis et al., 2003, p. 32).

Challenges in 21st century 
assessment
The challenge to test developers in the 21st century is to 
achieve some congruence between tests used for monitoring 
or summative purposes, for the active classroom and 
classroom-based assessment. We also propose that in addition 
to the alignment required for these modes of assessment, there 
is also critical engagement in a professional development 
cycle. The congruence of educational objectives, teaching and 
learning activities and assessment envisaged by Bloom (see 
Krathwohl, 2002) is difficult to achieve. However, given the 
importance of aligning assessment practices with classroom 
practices, it is necessary to have a framework that is explicit 
and is in some respects common to both settings. 

The current monitoring and evaluation project under 
consideration in this article has an external monitoring 
component: there is also in the design a feedback component 
provided to teachers in the interest of improving teaching 
and learning. The model for this project based on the work 
of Bennett and Gitomer (2009), and Bennett (2010, 2011), 
has been explained earlier in the article. The content of the 
assessment programme requires reviewing and making 
decisions about substantive mathematics knowledge.3 
In addition, the fact that there is feedback to the teachers 
means that there should be a common conceptual language 
and some congruence of expectations across all three 
sites, the curriculum, classroom teaching and external 
assessment. 

In this project the problem emerged of making explicit the 
content of the curriculum framework for learners in Grade 9. 
(The project also encompassed Grades 8, 10 and 11; the focus 
in this article is Grade 9.) The research team believed that 
making the framework explicit would serve three purposes: 
firstly, it would provide some direction to the constructors of 
the test items and provide an overview of the test; secondly, 
the explicit descriptions could provide feedback for teachers; 
thirdly, in the interests of democratic participation, the 
design of the test would be transparent (see Appendix 2 and 
Appendix 3).

The broad question, as stated earlier, is: Can the three essential 
elements, a monitoring component, a formative assessment 
component and a professional development component be 
logically and coherently aligned for the purpose of informing 
teaching and learning?

3.In the early stages of the project these tasks were performed by the research team. 
In later stages of the project this task became a joint function of both researchers 
and teachers.

TABLE 3: Curriculum framework for test design purposes with CAPS percentages 
for Grade 9. 

Content Area Knowledge Routine 
procedure

Complex 
procedure

Problem 
solving

Total (%)

Number, operations 
and relations 

- - - - 15

Patterns, functions 
and algebra 

- - - - 30

Space and shape 
(Geometry)

- - - - 35

Measurement - - - - 10

Data handling - - - - 10

Total (%) 25 45 20 10 100

CAPS, Curriculum and Assessment Policy Statement.
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The subquestion is: How may we best design assessment 
frameworks (the design tool specifying the purposes, 
structure and content of an assessment instrument) in such 
a way that there is full coherence from the mathematical 
knowledge to be taught and learned, through the set 
of assessment instruments to providing diagnostic and 
practical feedback to teachers about learner performance 
and needs?

In the early phases of the project, we explored alternatives to 
the current practice which draws on Bloom’s taxonomy and 
variations as described in the national curriculum documents. 
In particular, we examine the function of taxonomies in 
guiding a monitoring and developmental process.

Selecting a taxonomy
There is the obvious difficulty of assigning mathematics items 
to one particular mathematics category, but when assigning 
an item to a cognitive category, the problem is one of 
presuming how the learner will respond to the item. Whether 
an item is categorised as knowledge, routine procedures or 
complex procedures and problem solving (as in the CAPS, 
Table 2) depends on the level of knowledge acquired by the 
learner; this level relates directly to what has been taught 
(Bloom et al., 1956; Usiskin, 2012). A possible solution to this 
predicament of interpretation is to limit the categories to 
mathematics components rather than attempting to second-
guess how the generic learner will respond. This approach, 
focusing on the mathematical content of the question, may 
circumvent the difficulty test designers have in manipulating 
the mathematics to fit a cognitive category. A second criterion 
for the selection of a taxonomy, or criteria for categorising 
test items, is for the categories to align with teaching and 
learning. The question to consider here is whether or not 
feedback from a particular category will provide information 
to the teacher about needs and interventions. 

The first approach we took in this project was to describe 
in detail what we expected of the learner responding to the 
item. This approach is exemplified in the patterns, functions 
and algebra component of a Grade 9 test illustrated in the 
table in Appendix 2. The cognitive requirements form the 
horizontal headings across the table. 

The purpose of making this content aspect explicit was to 
inform teachers of the contents of the test so that they could 
make a reasoned judgement about the performance of their 
classes in relation to the test during this external monitoring 
programme. In other words if the teachers knows that Item 
X covered probability, and she also knows that she made a 
judgement call to leave probability out of the Grade 9 work 
plan with the view to having an intense focus in Grade 10, 
she would understand her students lack of performance in 
this section.

A second approach categorised the items in terms of the 
dimensions of understanding identified by Usiskin (2012; 
see  also Appendix 3). Using three criteria for a useful 

taxonomy, that is, firstly to stay true to the mathematics, 
secondly to guide a balanced assessment and thirdly to 
provide useful feedback to teachers, we thought to explore 
the potential of the five dimensions of understanding 
proposed by Usiskin, which are also operationalised in the 
UCSMP high school textbooks. He proposes that for a full 
understanding of concepts, five dimensions are necessary:

•	 The skills-algorithm dimension of understanding deals 
with the procedures and algorithms required to achieve 
answers. This dimension includes the understanding of 
procedures and algorithms, which Usiskin (2012) and 
others assert is much deeper than what has been called 
procedural understanding or procedural fluency (see 
Kilpatrick et al., 2001; Long, 2005). The understanding 
and ability to carry out a skill invariably involves 
at base the understanding of the associated concept 
and requires all sorts of skills. This dimension of 
understanding mathematics concepts is what is mostly 
addressed in school classrooms and found in systemic 
type tests. 

•	 The property-proof understanding of concepts deals with 
the principles underlying, for example, the number 
system and operations. It may be argued that a procedure 
is only really understood when one can identify the 
mathematical properties that underlie the procedures. 
Knowledge of the properties and being able to ‘prove’ 
that the procedure works enables one to more confidently 
generalise the procedure to other problems. Here we 
may contrast conceptual understanding with procedural 
understanding, although as argued previously this 
distinction has to be qualified. 

•	 The use-application understanding of mathematics deals 
with the applications of mathematics in real situations. A 
person may understand how to perform some procedure 
and may know why his method works, but they cannot 
fully understand unless they know when, why and how to 
use the skill and procedure in applications. Applications 
are not necessarily higher order thinking, but rather a 
different type of thinking according to Usiskin (2012).

•	 Usiskin (2012) avers that the three types of understanding 
previously described do not give a complete picture: 
to fully understand a concept a person must be able to 
represent the concept in different ways. The representation-
metaphor understanding refers to the pictures, graphs 
or objects that illustrate concepts and that can be used 
interchangeably with symbolic representation. Such 
analogies may need to be in one or more of verbal, figural, 
graphical or tabular modes and may need to invoke 
more than a linear ordering or more than a single static 
dimension. They may also require a location in time.

•	 The fifth is the history-culture dimension. Whilst this 
theme is an important dimension of understanding, 
it cannot easily be tested where responses require only 
short answers. It reflects a sense of the interrelatedness 
of mathematical content and its embedding in the social 
fabric of experience. Some key consequences of this 
dimension of understanding include an appreciation of 
the utility and creativity associated with mathematical 
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thinking and problem solving at the level of the learner 
and an insight into the proximity of mathematics. We 
suggest it has motivational consequences.

In applying this revised taxonomy we faced two dilemmas. 
The first was that we had to conform in some degree to 
the status quo. The CAPS document, the legal framework 
guiding teachers in their everyday teaching and assessment, 
requires strict adherence. In that document the four levels 
applied are Knowledge, Routine procedures, Complex procedures 
and Problem solving (DBE, 2011). We generally use three 
categories, Knowledge, Applications and Problem solving. 

The second dilemma was where to include problem solving. 
Usiskin’s (2012) focus is on understanding a concept. 
Does problem solving form part of the dimensions of 
understanding, so, for example, could we place problem 
solving into the category use-application, or should it have a 
category of its own? 

The process ‘problem solving’ has many different 
interpretations. In some sectors problem solving means a 
‘word sum’; to others the term means encountering a problem 
never seen before by the learner cohort. This salient but 
inherently unverifiable definition is very difficult in practice 
because a teacher or test designer may never know whether 
a learner has seen a particular problem type previously or 
not. The good teacher, enthusiastic parent or grandparent 
and the Internet could all have a part to play in rendering a 
really good problem routine, in that it becomes something 
the child has seen and perhaps solved before. Problem 
solving according to Polya (1957) has distinct phases. The 
problem solver when confronted with a problem they 
have not seen previously needs to firstly understand the 
problem, then think about the strategy to use, then ‘generate 
a relevant and appropriate easier related problem’, then 
‘solve the related problem’, and finally ‘figure out how to 
exploit the solution or method to solve the original problem’ 
(Schoenfeld, 2007, p. 66).

Taking this process seriously means that problem solving 
is not possible in a standard testing situation. We have 
to acknowledge here that our tests are omitting a very 
significant part of mathematics. In fact, Schoenfeld (2007) 
asserts that the types of questions and answers common in 
many mathematics classrooms work against the generation 
of good problem solvers in those classrooms. In the case of 
problem solving we have compromised and included the 
notion of problem solving as a separate category, although 

knowing that the items allocated to that category are only 
shadows of what Polya would describe as a real problem.

So, in Table 4, we have assigned the items from Worksheet 2 
and Worksheet 4 (see Appendix 1) to one of the dimensions, 
knowing that the allocation to another single dimension may 
be argued and that a single item may well span two categories, 
true to the nature of mathematics applications. Each of these 
four dimensions of understanding, skills-algorithms, property-
proof, use-application and representation-metaphor, has aspects 
that can be memorised; they also have potential for the highest 
level of creative thinking, for example the invention of a new 
algorithm (Usiskin, 2012). Each of the dimensions is relatively 
independent of the others. Each of the understandings 
has proponents who teach mathematics largely from that 
single perspective. Usiskin (2012) claims however that the 
understanding of mathematics is multidimensional, with 
each of these dimensions contributing some elements of the 
notion of understanding.

We argue that this taxonomy of dimensions provides, firstly, 
a necessarily mathematics-specific taxonomy and, secondly, 
that these dimensions support good teaching practice 
and that therefore feedback to teachers in terms of these 
dimensions may be helpful. 

An interesting observation is that by including an additional 
somewhat hierarchical dimension the taxonomy becomes 
three-dimensional: the mathematical knowledge as listed in 
the curriculum, the dimensions of understanding and the 
levels of complexity involved.

Note that the explicit weightings in Table 4 are aligned to 
the South African curriculum documents and would differ 
depending on the content domain and on the constitution 
of the class and their aspirations. Having a class of aspiring 
engineers may warrant more emphasis on problem solving 
and the creative application of mathematics, whilst also 
not neglecting routine algorithms that are an important 
component of the engineer’s tool box. 

Conclusion
At the heart of the matter for the curriculum designer, 
the teacher and the assessment specialist is an advanced 
understanding of mathematics that takes into account the 
interconnections between the current school mathematics 
topics, the connections to the earlier concepts and the 
progression in subsequent years to more advanced topics 

TABLE 4: Dimensions of understanding, levels of processing, and possible weightings.

Strategies Skills-algorithm Properties and principles Use-application Representation Total

Routine strategies
(one process)

- - 4.3 Distance, direction  
application

- 40%

Complex strategies
(two or more steps)

2.2 Factorise an algebraic expression
4.2 Volume of a cylinder

2.1 Geometric sequence
4.1 Area of a square

- 2.3 Representations  
of a linear function

30%

Problem solving
(Polya’s process)

- - - - 20%

Highly creative engagement 
with a unique outcome

- - - - 10%

Total 30% 20% 30% 20% 100%
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(Usiskin, Peressini, Marchisotto & Stanley, 2003). Also 
required is the exploration of alternate definitions, the linking 
between concepts, knowledge of a wide range of applications 
and alternate ways of approaching problems (Usiskin et al., 
2003). This background knowledge informs the designer in 
any systemic testing programme. In a model such as the one 
envisaged by Bennett & Gitomer (2009), there is the potential 
that attention be paid to the critical areas of mathematics and 
that these areas are aligned with the classroom.

The fact that we are constrained by existing test programmes, 
which serve some purpose in the current system, implies that 
we need to find way of progressively adapting the existing 
requirements. We must simultaneously bear in mind both 
that administrators and teachers are change weary and that 
any changes need to be thoroughly debated and explicit 
consensus reached about the role and forms of systemic tests. 

We note here that we have developed formative assessment 
resources (Worksheet 2 and Worksheet 4 in Appendix 1) that 
are linked to the monitoring component, and are designed 
in sets with each of the items covering different dimensions 
and ranging in difficulty. The purpose of these products is 
for teacher use in the classroom so that the teacher does not 
have to rely only on external monitoring for feedback about 
teaching and learning, but will also have useful resources at 
his or her disposal. Monitoring and accountability purposes 
can accommodate time lags that intervention strategies 
cannot afford.

As has already been observed, professional development that 
does not relate to the classroom experience may not be useful. 
In addition, systemic assessment that gives no thought to its 
diagnostic relevance in the classroom must be questioned. 
The dilemma here, as with the levels advocated by Bloom, 
is how to operationalise these levels or components of 
understanding, in such a way that they manifest evidence that 
the objectives of the curriculum have been met or that learner 
proficiency is being developed and exhibited. Bloom’s levels 
or TIMSS cognitive domains convey very little in themselves 
unless they can be interpreted for a specific mathematical 
context (as they have been in the TIMSS frameworks). For 
these systems of categories to be useful, they have to be 
further elaborated by the subject specialist. The Usiskin 
taxonomy serves this purpose.

Devices such as Table 4 guide the designer of an assessment 
programme towards appropriate balance and coverage of 
curriculum and attempts to cover different types of cognitive 
engagement for the context of a specific grade. However, 
further mathematical insight is required to populate such a 
multidimensional framework with appropriate items. These 
insights include the apparent difficulty level of items within 
each cell in the table. A norm-referenced instrument can 
emerge, suitable for diagnostic and intervention purposes, 
which will require some form of marking memo. Such an 
instrument can be valuable in every classroom but perhaps at 
different times and stages to suit the progress of the learners 
in each context. This variability suggests the importance of 

collaborative projects that construct comparable assessment 
instruments using a common design framework across the 
targeted curriculum and then share access to the resulting 
variety of classroom-focused instruments.

Any additional criterion-referencing, as may be desired 
for adjudicating individual learner attainment in a 
classroom summative assessment or in a systemic testing 
programme, will require some external specification of 
explicit outcome criteria for various levels of performance 
quality. These criteria require judgments about the extent 
to which each of the constituent items are indicators of 
the required performance levels. These judgments should 
also be explicitly recorded and may influence memo 
mark allocations. The related matter of conditions for the 
legitimacy of addition of marks to establish a single overall 
performance total is a separate non-trivial issue, but is not 
discussed further in this article. 

The challenge presented to the mathematics education 
community by Vergnaud (1994) is that the analysis of concepts 
and processes must be from a mathematical perspective. He 
asserts that no linguistic or logical system or natural language 
description, or levels of abstraction, such as Bloom’s taxonomy, 
can provide the ‘concepts sufficient to conceptualise the 
[mathematical] world and help us meet the situations and 
problems that we experience’ (Vergnaud, 1994, p. 42). 

It is the precision of symbolic representation and well-defined 
concepts in mathematics that conveys both the essential 
aspects of the mathematical situation and the schemes used 
by the learner of mathematics. This somewhat radical stance 
challenges educational researchers and practitioners, whilst 
being pragmatic in the current policy environment, to keep 
in mind the essential mathematics.

A related challenge is to maintain the distinction between a 
learning environment, which requires extensive investigation 
and engagement with meaningful contexts, and an external 
assessment programme, which inevitably focuses on 
the outcomes of a process. Short-circuiting the learning 
process with obsessive testing may be counterproductive. 
Here we are reminded of two modes of evaluation, that 
of the connoisseur, a genuine appreciation of the art of 
teaching, and that of the critic, an inspector that moves in 
with a checklist (Eisner, 1998). Bloom et al.’s (1956) aim in 
formulating the taxonomy of educational objective was to 
extend the repertoire of teaching through engagement with 
the taxonomy. We envisage that the ideas expressed in this 
article will provide the impetus for further discussion.
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Worksheet 4: Grade 9: Measurement
1.	 The area of a square is 4 m2. Calculate the area of the shape if 

one side of the original square is doubled.
2.	 Calculate the volume of the cylinder. Use 22/7 as an 

approximation for π.

3.	 An airplane flies 300 km due north. However the pilot ignored 
the constant side wind which took him off course. The flight 
path is shown in the figure below. How far is he from his 
original destination?

Appendix 1
Worksheet 2: Grade 9: Patterns, functions and 
algebra
1.	 Determine the general term for this pattern:

Term 1 Term 2 Term 3

2.	 Factorise fully: 20x2 – 45y4

3.	 A, B and C show different representations of a linear function. 
Which one of the following three representations does not 
represent the same linear function?

	 A:	 −2 −1 0 1 2 3

−2 0 2 4 6 10

	 B: y = 2x + 2
	 C: 

0 1–1

–1

0

1

2

3

4

5

6

7

8

9

10

–2–3 2 3 4 5 6 7

12 cm

35 cm

300 km

Starting point

Actual
destination

500 km
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Appendix 2 
TABLE 1−A2: Adapted cognitive domain categories (Grade 9).

Algebra and Functions Knowledge of algebraic language 
and the ability to simplify 
algebraic expressions, solve 
simple equations and work 
with one representation of a 
relationship or rule.

Comprehension and 
application of factors and 
the laws of exponents. 
Making connections 
between different 
representations of a 
relationship.

Solving problems 
that require selecting 
a representation for 
a situation, solving 
equations and 
interpreting graphs.

Algebraic skills and processes:
Solving equations by inspection, trial-and-improvement or algebraic 
processes (using additive and multiplicative inverses; factorisation) 
Using the distributive law and algebraic skills to simplify algebraic 
expressions, to find the product of two binomials, to factorise algebraic 
expressions (common factors and difference of squares)
Using the laws of exponents to simplify expressions 

1 (simplifying algebraic 
expression)
2 (multiplying algebraic factors)
5a (solving equations)
5b (solving algebraic fraction 
equations) 
5c (solving exponential equations)
9 (properties of a rectangle, 
applying algebra)

8 (applying algebraic 
principles to solving a 
problem)
9 (applying algebraic 
principles to solving a 
problem)

Sequences, graphing and functions:
Investigating numeric and geometric patterns and relationships by adding 
terms and explaining and representing the rules that generate them
Drawing graphs on the Cartesian plane for given equations (in two 
variables) or determining equations or formulae from given graphs or tables
Representing and using relationships between variables to determine input 
or output values and to interpret the equivalence of different descriptions 
of the same relationship or rule presented in different ways in order to 
select the most useful representation for a given situation

3a (linear sequence) 
3b (equation representing a 
sequence)
3c (applying a function)

6 (explain the relationship 
between function 
relationship and table) 
7 (interpreting distance-
time graphs)
11a (finding coordinates 
from equations)
11b (plotting coordinates)

4a (equations 
representing a 
situation)
4b (solve by 
inspection and using 
equations)
10a (identifying a 
pattern)
10b (constructing a 
formula)
10c (applying the 
formula)
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Appendix 3

TABLE 1−A3: Items allocated to Usiskin’s dimensions (Grade 9).

Algebra and functions Knowledge (mathematical concepts) Applications and problem solving

Skills and algorithms Properties principles Representation Proofs and 
justification

Use and applications Problem 
solving

Algebraic skills and processes
Solving equations by inspection, trial-
and-improvement or algebraic processes 
(using additive and multiplicative 
inverses; factorisation) 
Using the distributive law and algebraic 
skills to simplify algebraic expressions, 
to find the product of two binomials, to 
factorise algebraic expressions (common 
factors and difference of squares)
Using the laws of exponents to simplify 
expressions 

1 (simplifying algebraic 
expression)
2 (multiplying algebraic 
factors)
5a (solving equations)
5b (solving algebraic 
fraction equations) 

5c (solving exponential 
equations)
9 (properties of a 
rectangle, applying 
algebra)

- - 8 (applying algebraic 
principles to solving a 
problem)
9 (applying algebraic 
principles to solving a 
problem)

-

Sequences, graphing and functions
Investigating numeric and geometric 
patterns and relationships by adding 
terms and explaining and representing 
the rules that generate them
Drawing graphs on the Cartesian plane 
for given equations (in two variables) or 
determining equations or formulae from 
given graphs or tables
Representing and using relationships 
between variables to determine input 
or output values and to interpret the 
equivalence of different descriptions of 
the same relationship or rule presented 
in different ways in order to select the 
most useful representation for a given 
situation 

3a (linear sequence) 
3b (equation 
representing  
a sequence)
3c (applying a function)

6 (explain the 
relationship between 
function and table)

7 (interpreting 
distance-time 
graphs)
11a (finding 
coordinates from 
equations)
11b (plotting 
coordinates)

- 4a (equations 
representing a 
situation)
4b (solve by 
inspection and using 
equations)

10a (identifying a 
pattern)
10b (constructing 
a formula)
10c (applying the 
formula)


