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Microcystis aeruginosa is the dominate cyanobacteria in freshwater bodies causing proliferation of toxic
harmful algal blooms (HABs), worldwide. Thus a biological control method based on predatory bacteria
is an alternative environmental solution to the control of these HABs, A Flow cytometric technique was
used to assess the viability of Microcystis spp. cells after deliberate co-culturing with a predatory bacte-
rium, Bacillus mycoides B16. Under static conditions, B. mycoides had a lytic effect on Microcystis cells that
resulted in a significant (p = 0.0000) population decline of 97% in six days. In contrast under turbulent
conditions, B. mycoides had a lytic effect on Microcystis spp. cells resulting in a significant (df=5;

= -7.21; p=0.0003) population decrease of 85% in the same time period. The Levene test also showed
a significant (p = 0.0003) decrease in Microcystis cell numbers, which also coincided with a significant
(t=11.31; p=0.0001) increase in B. mycoides cell numbers. This suggested that B. mycoides, a hetero-
troph, was utilizing the Microcystis as a source of nutrition. The effect of agitation may have contributed
to the delay in cell lysis as it disturbed the physical contact between the predator and prey. The control
samples showed a significant (df = 5; t = +6.86; p = 0.0010) increase in Microcystis spp. cell numbers. B.
mycoides was able to lyse Microcystis spp. cells under these conditions and may thus be considered as
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a potential biological control agent for the management of Microcystis spp. harmful algal blooms.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Most harmful algal blooms (HAB) in freshwater ecosystems are
dominated by Microcystis aeruginosa, a cyanobacterium that pro-
duces potent microcystins that have been implicated in the deaths
of humans, wild and domestic animals and microalgae and conven-
tional water treatment processes are unable to remove the micro-
cystins in the drinking waters (Sigee et al., 1999; de Figueiredo
et al., 2004; Oberholster et al., 2009). Thus the control and manage-
ment of HABs is important and may involve a number of measures
each with its unique challenges (Hadjoudja et al., 2009; Chang
et al., 2014). The control methods have been applied by water reg-
ulatory bodies in management of HABs with varying levels of suc-
cess (Sigee et al., 1999). The use of biological control agents,
bacteria, protozoa, fungi and virus have been attempted but are
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confined to laboratory studies (Burnham et al., 1981; Choi et al.,
2005; Gumbo et al., 2010; Kang et al., 2012). Part of this challenge
is to understand the actual dynamics between the microbial agent
and cyanobacteria and to develop new tools to further elucidate
the microbial agent/cyanobacteria interactions.

Other researchers such as Burnham et al. (1984), Nakamura
et al. (2003) and Kang et al. (2012) have evaluated the lytic activity
of predator bacteria on the reduction of Microcystis cells based on
chlorophyll a (Chl-a) and cyanobacteria cell counts. Nakamura
et al. (2003) initially used the criteria of Chl-a analysis with varying
levels of success. The Chl-a method revealed that there were no
differences in lytic activities between the bacteria treatments and
controls. Closer inspection with light microscopy revealed that
Bacillus cereus N14 lysed Microcystis spp. cells and that the bacteria
did not degrade the Chl a moiety, hence the discrepancy in the Chl-
a results (Nakamura et al., 2003). Daft and Stewart (1971) revealed
a similar pattern of non-degradation of heterocysts by the bacte-
rium CP-1. The heterocysts, a centre for oxygenated photosynthesis
and nitrogen fixation, also contain Chl-a moiety. Thus an alterna-
tive method to assess to the reduction or death of Microcystis
spp. cells based on cyanobacteria’s metabolic and physiological
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status after exposure to a stressor is required. Flow cytometry is
such a method and has been used to assess viability of Microcystis
spp. following exposure to different environmental stress factors
such as nutrient limitation (Brookes et al., 2000), nutrient enrich-
ment (Latour et al., 2004), copper toxicity (Franklin et al., 2004;
Hadjoudja et al., 2009), turbulence (Regel et al., 2004), acid mine
drainage exposure (Regel et al., 2002), ultrasonic irradiation (Lee
et al., 2000) and viral infection (Brussaard et al., 2001).

The viability of Microcystis spp. cells was assessed by flow cyto-
metric analysis of two cellular functions, i.e. esterase activity and
membrane integrity, after staining with fluorescent diacetate
(FDA) and propidium iodide (PI) respectively. FDA is a cell-perme-
ant molecule which diffuses in all cells, but is only cleaved in cells
with intact esterase. However once within active cells, the FDA
substrate is cleaved by non-specific esterases releasing a polar
fluorescein product that is retained inside cells with an intact
membrane and the cells fluoresces green under blue light excita-
tion (Joux and Lebaron, 2000). The intensity of the fluorescence
will invariably increase over time depending on the metabolic sta-
tus of active esterases. Propidium iodide (PI) is a polar substance
that easily penetrates only damaged cell membranes. Once inside
the cell, PI binds to double strand nucleic acids by intercalation
and fluoresces bright red under blue light excitation (Yamaguchi
and Nasu, 1997). The main objective of this study was to use flow
cytometry for the assessment of Microcystis spp. viability after
incubation with Bacillus mycoides B16 under static and turbulent
conditions. The specific objectives were: to optimize the flow cyto-
metric analysis; to determine the population heterogeneity of
Microcystis spp. cells in an exponential phase; to determine the
population changes of Microcystis spp. (live and dead cells counts)
after co-culturing with B. mycoides B16 under static and turbulent
conditions and to simultaneously determine the population
changes of B. mycoides B16.

2. Materials and methods
2.1. Culture of organisms

A pure culture suspension of M. aeruginosa PCC7806 (prey) was
kindly provided by Prof T Downing, Nelson Mandela Metropolitan
University, South Africa. The Microcystis spp. was cultured in
500 ml sterilized and modified BG11 medium (Kriiger and Eloff,
1977) in 11 Erlenmeyer flasks under shaking incubation (Labcon
shaker, South Africa) (78 rpm) for 8 d under continuous light at
room temperature. Two 18 W cool white florescent lamps (Lohuis
FT18W/T8 1200LM) that were suspended above the flasks pro-
vided continuous lighting (2000 lux). The Extech Instruments Dat-
alogging light meter model 401036 measured the light intensity. A
subsample of growing Microcystis spp. cells was sampled under
aseptic conditions, stained simultaneous with FDA and PI fluores-
cent stains and then subjected to flow cytometric analysis.

A pure culture suspension of Bacillus mycoides B16 (predator)
(isolated by us, Gumbo et al. (2010)) was prepared by inoculation
into 100 ml sterilized one-tenth of Tryptic soy broth (TSB) in a
250 ml Erlenmeyer flask and shake incubated (128 rpm, 25 °C)
for 24 h (Di Franco et al., 2002). Lyophilized cells were prepared
by centrifugation of fresh cultures (10,000 rpm, 15 min, 25 °C)
and freeze dried (Edwards freeze dryer: minus 50 °C, 2.8 mbar,
72 h). The lyophilized powder was stored at 4 °C until further use.

2.2. Experimental design

2.2.1. Predator-prey interactions under static conditions
Bacteria treated samples involved the use of six 250 ml cotton
wool plugged Erlenmeyer flasks which were sterilized prior to

addition of 100 ml Microcystis spp. suspension, in exponential
growth phase (approximately 106 cells per ml) and then Bacillus
mycoides B16 powder (approximately 0.4 g equivalent to 10'?-
cfu per ml) (Fig. 1). The control samples involved six 250 ml cotton
wool plugged Erlenmeyer flasks were sterilized prior to addition of
100 ml Microcystis spp. suspension, in exponential growth phase
(approximately 10° cells per ml).

The twelve Erlenmeyer flasks were then incubated under simi-
lar conditions as those for culturing of host cyanobacteria but
without shaking or agitation of Erlenmeyer flasks for a period of
6 d. On a daily basis samples were withdrawn under aseptic condi-
tions and subjected to bacterial plate counts; plating on modified
BG11 agar plates; fluorescent staining and flow cytometric
analysis.

2.2.2. Predator-prey interactions in a turbulent environment

The experimental set from above (Section 2.2.1) was followed
with the following modification. The Erlenmeyer flasks were sha-
ken (78 rpm) but incubated under similar conditions as those for
culturing of host cyanobacteria for a period of 6 d. On a daily basis
samples were withdrawn under aseptic conditions and subjected
to bacterial plate counts; plating on modified BG11 agar plates;
fluorescent staining and flow cytometric analysis.

2.3. Preparation of fluorescent dyes and the staining of Microcystis spp.
samples

A fluorescent diacetate (FDA) (Sigma Chemicals F7378) stock
solution was prepared by dissolving 50 mg FDA in 5 ml reagent
grade acetone and stored in the dark at —20 °C until further use
(Hadjoudja et al., 2009). The FDA staining technique for M. aerugin-
osa developed by Brookes et al. (2000) was followed in this study. A
procedure similar to that of Ross et al. (1989) and Franklin et al.
(2001) was followed in the development of a Propidium iodide
(PI) staining technique for M. aeruginosa. A PI (Sigma Chemicals
81845) stock solution was prepared by dissolving 25 mg PI in
5 ml distilled water and was stored at 4 °C until further use.

From each of the twelve flasks (bacteria treated and control
samples), 1 ml of sample was abstracted under aseptic conditions
and then were homogenized for 20s (Ultrasonic Homogenizer
4710 series, Cole-Palmer Instrument Co, Chicago, IL) to disrupt
the clumps that were formed (Orr and Jones, 1998). Then after
sonic homogenization of the bacteria treated and control samples,
100 pl of a Microcystis spp. was transferred to 10 ml centrifuge
tube where 100 pul of FDA working solution (120 pg per ml) was
added and incubated at room temperature for 7 min in the dark.
Then after incubation, to the same centrifuge tube, 100 pl of PI
working solution (60 pg per ml) was added followed by 100 pl of

Fig. 1. The experimental layout of the twelve Erlenmeyer flasks, six control
Microcystis spp. suspension samples and six with B. mycoides B16 treated and
Microcystis spp. suspension samples on d4.
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FLOW-COUNT Fluorospheres beads (Beckman Coulter, USA) were
then added. The samples with the fluorescent dyes and Fluoro-
spheres beads were then subjected to flow cytometric analysis.

2.4. Optimizing the flow cytometer

The Beckman Coulter Epics ALTRA flow cytometer was cali-
brated with flow check and UV beads to determine the range of
particle sizes to reject or accept. A suspension of UV beads (particle
range 1.7-2.2 pum), flow check beads (10 um) and a pure culture
suspension of B. mycoides B16 were analyzed on the forward scat-
ter mode (FS). The UV beads and then a suspension of B. mycoides
B16 was analyzed without any fluorescent staining to determine
the region where the bacteria would lie in the dot plot diagram.
A suspension of Microcystis cells (control) was stained with FDA
to ascertain the region where the viable or live cells would lie.
The PMT3 detector was used to analyze the fluorescein fluores-
cence. A suspension of Microcystis cells (control) was stained with
PI to ascertain the region where the dead cells would lie. The PMT4
detector was used to analyze the PI red fluorescence.

2.5. Determining population changes of Microcystis spp. cells after co-
culture with B. mycoides B16 with flow cytometric analysis

A Beckman Coulter Epics ALTRA flow cytometer (excitation:
argon laser 15 mW, 488 nm) for the excitation of fluorescent stains,
green fluorescein and propidium iodide (PI). But the green fluores-
cence interference of PI fluorescence was successfully resolved
when the optical filters for PMT 2 and PMT 3 were interchanged
so that the two fluorescent stains FDA and PI were simultaneous
applied to the Microcystis samples in a single run. The green fluo-
rescein fluorescence was measured in channel B (PMT 2 log,
553 voltage) after passing through the 550 nm dichroic long pass
filter and then through a 525 nm band pass filter. The red PI fluo-
rescence was measured in channel D (PMT 4 log, 740 voltage) after
passing through the 640 nm dichroic long pass filter and then
through a 610 nm band pass filter.

Thus the Microcystis spp. cells were distinguished from other
particles by gating on two parameter plots of forward scatter
(FSC) indicative of cell size and positive chlorophyll a red auto-
fluorescence (630 nm). Approximately 10,000 events or 300 volt-
ages (whichever came first) were used in recording of flow cyto-
metric data. The forward and side light scatter signals were used
to derive 2-parameter cytograms.

The flow cytometric (FCM) graphs were drawn with the Win-
MDI 2.8 (Joseph Trotter 1993-1998) free software that was made
available on the Internet. <http://facs.scripps.edu/software.html>.

2.6. Determining the population changes of B. mycoides B16 through
bacteria plate counts

From each of the twelve flasks (bacteria treated and control
samples), 1 pl of sample was abstracted under aseptic conditions
and then plated on 10% Tryptic Soy agar and BG 11 agar (Kriiger
and Eloff, 1977) respectively and the plates were incubated at
room temperature.

2.7. Data analysis

Data from FCM were analyzed using the BMDP Statistical
Software Inc (1993). An independent sample t-test compared the
means of two independent groups, i.e. bacteria treated and control
(bacteria untreated) Microcystis spp. samples. The Levene’s Test for
Equality of Variances tests whether the variances of the two groups
are different. The null hypothesis would state that the means are
the same. A p<0.05 (indicating a sufficiently large difference

between groups) would suggest that the null hypothesis is rejected
and conclude that the two groups are significantly different.

A one-sample t-test compares the mean of one sample to a fixed
estimate, usually zero (0). A significant result indicates that the
group’s mean differs from the fixed value. Hypothesis testing can
help answer questions such as:

o Are the increases (positive sign) in the B. mycoides B16 popula-
tion numbers related to the decreases (negative sign) in Micro-
cystis (population) cell counts?

e In controls (bacteria untreated) Microcystis spp. samples indi-
cate an increase (positive sign). How large is the direction of
the increase?

3. Results and discussion
3.1. Optimizing the flow cytometric analysis

The Beckman Coulter Epics ALTRA flow cytometer was cali-
brated with flow check and UV beads to determine the range of
particle sizes. The fluorescence intensity of UV beads and flow
check beads formed the basis on which particles (>1 pm) were
excluded and inclusion of particles (<10 pm) in subsequent flow
cytometric analysis (Fig. 2a and b). The suspension of B. mycoides
B16 was analyzed without any fluorescent staining to determine
the region where the bacteria would lie in the dot plot diagram
(Fig. 2¢c). Therefore the gating process was carried to exclude parti-
cles including cell debris, bacteria from subsequent flow cytomet-
ric analysis (Fig. 2d).

The viability of Microcystis cells was assessed by flow cytomet-
ric analysis of two cellular functions, i.e. esterase activity and
membrane integrity, after staining with fluorescein diacetate
(FDA) and propidium iodide (PI) respectively. A suspension of
Microcystis cells (control) was stained with FDA to ascertain the
region (R1) where the viable or live cells would lie (Fig. 3a). The
PMT3 detector was used to analyze the fluorescein fluorescence.
The other particles such as cell debris, B. mycoides B16 bacteria
were located in region (R2). Microcystis cells have the green photo-
synthetic pigment, chlorophyll a that was excited by the blue laser
causing it to fluoresce red that contributed to inference with PI red
fluorescence. Thus the FDA gating parameter was set to exclude the
analysis of chlorophyll a autofluorescence (Fig. 3b and c).

A suspension of Microcystis cells (control) was stained with PI to
ascertain the region (R1) where the dead cells would lie (Fig. 3d).
The other particles such as cell debris and B. mycoides B16 bacteria
were located in region (R2). Microcystis cells have the green photo-
synthetic pigment, chlorophyll a that was excited by the blue laser
causing it to fluoresce red and contributed to interference with PI
fluorescence. Thus the PI gating parameter was set to exclude the
analysis of chlorophyll a autofluorescence (Fig. 3e). A major point
was the observation that the ‘live cell’ region (Fig. 3a) was similar
to the ‘dead cell’ region (Fig. 3d) and as such it was difficult to dis-
tinguish the two regions. The green fluorescence was the main
cause of this interference (Fig. 3f). The green fluorescence and PI
red fluorescence were well resolved from chlorophyll a red fluores-
cence (Fig. 3b and e). The green fluorescence interference of PI fluo-
rescence was successfully resolved when the optical filters for PMT
2 and PMT 3 were interchanged; hence the two fluorescent stains
were then simultaneous applied to the Microcystis samples in a sin-
gle run.

3.2. The Simultaneous staining of Microcystis spp. samples in an
exponential phase

The simultaneous and dual staining of Microcystis spp. revealed
the presence of four sub-populations (population heterogeneity)


http://facs.scripps.edu/software.html

J.R. Gumbo et al./Physics and Chemistry of the Earth 72-75 (2014) 24-33 27

™
N
21 () UV beads
[
e
[9p]
L
o T T T
100 10° 10? 108 10*
PMT1 Log
S |(c) Before gating of bacteriasuspension
C
=
(2]
L
o T T
10° 10! 102 10° 10

PMT1 Log

[s¢]
N
2 | (b) Flow check beads
{ o
£
n
w
o T T T
100 10° 102 103 104
PMT1 Log
& L
©](d) After gating of bacterid sispénsion
| o
£
[2)
uw
o T g T
100 10' 102 103 104

PMT1 Log

Fig. 2. Calibration of instrument-particle size exclusion: (a) UV beads, range 1.7-2.2 um, (b) Flow check beads (10 pum in size), (c) Before and (d) after gating to exclude
particles less than 1 um such as B. mycoides B16 from subsequent FCM analysis. FSLin = measures the size of a particle, forward scatter mode. PMT1 log = measures side

scatter (cell granularity and complexity).

that was composed of 91.6% live cells; 7.6% cells with selective per-
meability; 0.5% cell debris and 0.3% dead cells (Fig. 4a). The popu-
lation heterogeneity was as a result of the following. The FDA stain
was transported across the cell wall into the cell and in the process
the esterase enzymes decoupled the FDA to produce fluorescein,
which was retained within the cell (Breeuwer et al., 1995). The
fluorescein was then excited by blue laser and fluoresced green
(Fig. 4b). These Microcystis spp. cells with active metabolism and
no leaking membrane) were designated as viable cells (live) (R3).
Some Microcystis spp. cells had damaged cell membranes such that
these cells allowed both stains (FDA and PI) to diffuse through. As a
result of residual esterase activity, the cells were able to produce
fluorescein, which fluoresced green upon blue laser excitation
(Fig. 4b). The PI intercalated with the nuclear acid material to fluo-
resce red upon excitation (Fig. 4c). The cell debris category was
classified as R4 and therefore this R4 data was discarded. The fluo-
rescent stains, FDA and PI, were simultaneous applied to a culture
of Microcystis spp. cells that was in an exponential growth phase
(Fig. 4d). The transmission electron microscope study of Gumbo
and Cloete (2011) confirmed that these Microcystis spp. cells had
intact cell membranes and cell debris.

The other category of Microcystis spp. cells without a cell mem-
brane the PI easily diffused through and reacted with the nuclear
acid material to fluoresce red. Thus the Microcystis spp. cells with-
out a cell wall and or damaged cell membrane were designated as
dead cells (R1 and R2) for the purposes of this study. This supports
the observation of Joux and Lebaron (2000) that cells with
damaged and or with selective membranes would eventually lose
their nucleoid material to the external environmental must be

considered as dead cells. Thus the flow cytometric counts con-
firmed that the majority of Microcystis cells were live and were
in exponential phase on 5 d.

3.3. Predator-prey interactions as determined by FDA/PI staining
under static conditions

The B. mycoides B16, the predatory bacterium was added to
each of the six Erlenmeyer flasks, of approximately 1 x 10'? colony
forming units (CFU) per ml was added to Microcystis spp. cell sus-
pensions (1 x 10° cells per ml) to give a predator: prey ratio of
10°:1 in order to achieve lysis of Microcystis spp. in a shorter time.

Under static conditions, i.e., daily hand shaking before sam-
pling, the flow cytograms (FCM) counts revealed that during the
first two days, the treated and control samples showed a 49%
increase (a positive t value of 0.59) in numbers of live Microcystis
spp. cells (Fig. 5; Table 1). The independent Levene t-test analysis
of the live Microcystis numbers means (treated and control sam-
ples) showed no significant difference (p > 0.05). Thus, the bacteria
that were added had no effect on the growth of Microcystis spp. The
results of earlier study of Gumbo and Cloete (2010), suggested that
the predator bacteria were adjusting to their new environment,
during the ‘lag phase’ and hence did not cause lysis of the Microcys-
tis spp. cells.

From d 3 to 6 the predatory bacteria, Bacillus mycoides B16 had a
lytic effect on Microcystis spp. cells and resulted in a significant 4-
log decrease (p < 0.05; negative t values) after in five days (Fig. 5).
In another related study by Gumbo and Cloete (2010) showed
ultrastructural damage that was inflicted upon the Microcystis
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spp. cells and the disruption and damage of the cell membranes by
the predatory bacterium, Bacillus mycoides B16. The control sam-
ples showed an increase of 65% of live Microcystis spp. cells over
the same period (Fig. 5). For the controls samples, the light micros-
copy and scanning electron microscopy study have showed healthy
and normal Microcystis cells in colonial formations (Gumbo and
Cloete, 2010). Some of bacteria treated flasks showed a slight

Table 1

Independent Levene t-test analysis of Microcystis spp. numbers mean (treated and
control samples) under static conditions. Pooled t-test values and associated
probabilities.

Time (d) df Degrees of freedom Live Dead

t test p value ttest p value
1 10 -0.27 07915  +1.98 0.0754
2 10 +0.597 0.5701 +1.49 0.1659
3 10 —~15.98"  0.0000 -7.73 0.0000
4 10 -7.68 0.0000 -2.68 0.0230
5 10 -14.50 0.0000° -12.15 0.0000
6 10 -7.19 0.0000 -3.85  0.0032

" No significant difference, i.e., bacteria had no effect.
" Significance different, i.e., bacteria had an effect.

¢ An increase (+ positive sign).

A decrease (— negative sign).

o

increase in live Microcystis spp. cells on d 6. This may be explained
by aggregating damaged Microcystis cells as seen on region R2 of
the flow cytograms (Fig. 5a). These Microcystis spp. cells though
indicating that they are live, but plating an aliquot sample from
the bacteria treated samples on BG11 agar did not reveal any viable
cells that were able to grow. This observation was also supported
by the study of Joux and Lebaron (2000) who showed that cells
with damaged and or with selective membranes would eventually
die as because their nuclear material was compromised. However
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the light microscopy and scanning electron microscopy study did
not show any intact Microcystis cells on d 6 (Gumbo and Cloete,
2010).

The independent Levene t-test analysis of the population of
dead Microcystis spp. cell counts was not similar to that of live
Microcystis spp. cell counts (Table 1). The dead Microcystis spp. cells
were assessed using propidium iodide (PI) fluorescence. From day
1 to 2, there was an insignificant increase in the numbers of dead
Microcystis spp. cells in the treated and control samples (p > 0.5;
Fig. 6; Table 1). The results of earlier study of Gumbo and Cloete
(2010), suggested that the predator bacteria were adjusting to their
new environment, during the ‘lag phase’ and hence did not cause
lysis of the Microcystis spp.

There was a variable decline in the numbers of dead Microcystis
spp. cells, for the bacteria treated samples (Fig. 6). In the same per-
iod there was a slight increase and decrease in the numbers of dead
Microcystis spp. cells, in the control samples. In the absence of
predator bacteria, the decrease in the control samples may be
due to natural aging and death. The independent Levene t-test
analysis of dead Microcystis spp. cells (bacteria treated and control)
showed a significant decrease (t values negative; p <0.05), i.e. B.
mycoides B16 was responsible for lysing the Microcystis spp. cells
resulting in dead cells.

The number of dead Microcystis spp. cells was expected to
increase in the bacteria treated samples. However the opposite
was observed. The PI stained the nucleic acids (RNA and DNA).
The study of Nakamura et al. (2003) has indicated that B. cereus
N14 was found feeding exclusively on M. aeruginosa and M. viridis
as its sole nutritional source. The study of von Wintzingerode et al.
(1997) also confirmed the close relationship between B. mycoides
and B. cereus. Thus we can speculate that the predatory bacteria,
B. mycoides B16 was feeding on the nucleic acids indicating a
decrease in the PI value hence a fewer ‘dead’ cells. Alternatively
there was a natural degradation of the nucleic acids in the aqueous
environment. Veldhuis et al. (2001) reported that the last stages of
automortality of phytoplankton involved fragmentation (degrada-
tion) of genomic DNA. Another possibility that may contribute to
the erratic PI results is the interspecies variation of RNA and DNA
per cyanobacteria cell. Brussaard et al. (1999) reported that prior
to flow cytometric analysis, the phytoplankton cells were incu-
bated with RNase to remove the RNA component in order to report
only the DNA component.

The findings of our research suggest that B. mycoides B16 had
effect on the growth of Microcystis spp. by disrupting the plasma-
lemma and thylakoid membranes (Gumbo and Cloete, 2011)
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Fig. 6. PI fluorescence illustrating changes in Microcystis spp. cell numbers after
exposure to B. mycoides B16 and control samples under static conditions. (Mean
values of six replicates + standard deviation. Bars indicate standard deviation.)

resulting in reduced photosynthetic activity. The Microcystis spp.
responded to these adverse conditions by utilizing stored energy
reserves for maintenance of essential processes instead of growth
and therefore there was a decline in RNA activity (Borbéy et al.,
1990).

3.4. Predator-prey interactions in a turbulent environment

The effect of B. mycoides B16 on the growth of Microcystis spp.
was investigated under turbulent conditions, i.e., shaking of flasks.
The cyanobacteria growth was monitored through flow cytometric
counts of Microcystis spp. cells after dual staining with fluorescence
diacetate (FDA) which stained only live cells followed by propidi-
um iodide (PI) which stained only dead cells. The dual staining of
Microcystis cells revealed two different cell populations: live and
dead cells (Fig. 7). Both fluorescent stains (FDA and PI) were able
to stain Microcystis cells with compromised membranes and these
cells were classified as dead.

The aged Microcystis spp. batch culture had an addition of fresh
modified BG11 media before subdividing them into bacteria trea-
ted and control samples. The purpose of introducing fresh nutri-
ents was to stimulate growth of cyanobacteria cells. Under
turbulent conditions, the flow cytometric counts revealed that dur-
ing the first three days, the treated and control samples showed a
10x increase (a positive t value of +1.27; Table 2; Fig. 8) in num-
bers of live Microcystis spp. cells. The statistical comparisons of live
Microcystis spp. cells mean (treated and control) were not signifi-
cantly affected (p > 0.05; Table 2), i.e., the bacteria did not contrib-
ute to the death of Microcystis spp. cells.

During the same time period, d 1-d 3, the one sample t-test
analysis showed that there was a significant increase in Microcystis
spp. cell numbers (bacteria treated) (t=+7.77; df=5; p<0.05;
Table 3) (Fig. 8). Where the predator bacteria numbers in the bac-
teria treated Microcystis samples were assessed the bacteria cell
numbers increased significantly (t = +3.30; df = 5; p > 0.05; Table 3)
(Fig. 9). Between 4 d and 6 d there was a decrease of almost 1-log
in the population of live Microcystis cell numbers in the bacteria
treated samples (Fig. 9). This contrasted with the control samples,
which showed an increase of 1-log in live Microcystis cell numbers
(Fig. 8). The independent Levene t-test, comparisons of live Micro-
cystis numbers (treated and control) showed significant decrease
(p < 0.05; Table 2), i.e., B. mycoides B16 was responsible for lysing
the Microcystis cells resulting into dead cyanobacteria cells.

The one sample t-test confirmed the reduced growth in Micro-
cystis spp. cell numbers (bacteria treated) was significant
(t=-7.21; df =5, p<0.05; Table 3). This result was in contrast
with the control samples, where a 60% increase in Microcystis
spp. cell numbers was observed in six days (Table 3; Fig. 8). The
predator bacteria numbers showed a significant increase
(t=+11.31: df = 5; p < 0.05; Table 3: Fig. 10) and coincided with a
decrease in Microcystis cell numbers. These findings suggest that
the B. mycoides B16, a heterotroph, was probable utilizing the
Microcystis as a source of nutrition as supported by the study of
Nakamura et al. (2003). The flow cytometric counts showed that
B. mycoides B16 had a lytic effect on the growth of Microcystis cells
resulting in a population decline of 85% in six days under turbulent
conditions. Burnham et al. (1981) reported similar results in the
lysis of Phormidium luridum by the predator, Myxococcus xanthus
PCO2 under turbulent conditions.

The dead Microcystis cell numbers increased by 30% in bacteria
treated samples (Fig. 9). The independent Levene t-test of dead
Microcystis cell numbers (treated and control) showed a significant
decrease in treated samples (p < 0.05; Table 2; Fig. 9), indicating
that B. mycoides B16 was responsible for lysing the Microcystis cells
resulting in dead cells. In the control samples, the population of
dead cyanobacteria cells increased by 49% after 6 d. This may be
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Fig. 7. A typical two parametric plot illustration of Microcystis spp. population heterogeneity on 6 d: (a) B. mycoides B16 treated sample and (b) Untreated (control) sample.
BG 11 agar plates with (c) No growth of Microcystis spp. cells after exposure to B. mycoides B16; (d) Control sample showing growth of Microcystis spp. cells indicating viability.

Table 2

Independent Levene t-test analysis of Microcystis cell numbers (treated and control
samples) under turbulent conditions. (Pooled t-test values and associated
probabilities).

Time (d) df Degrees of freedom Live Dead
t test p value t test p value

1 10 +0.77 0.4611° +2.77 0.0198"
2 10 +1.85 0.0937 +0.59 0.5693"
3 10 +1.27°  0.2342° -0.16 0.8749"
4 10 —-5.30° 0.0003" -2.54  0.0293"
5 10 —4.72 0.0008° —10.19 0.0000"
6 10 -6.19 0.0001" -2.87 0.0165"

" No significant difference, i.e., bacteria had no effect.
™ Significance different, i.e., bacteria had an effect.

2 An increase (+ positive sign).

> A decrease (— negative sign).

due to natural aging and death due to limited food source in the
Erlenmeyer flasks.

The B. mycoides B16 managed to reduce the numbers of live
Microcystis spp. cells by 97% under static conditions (Table 1) and
85% under turbulent conditions (Table 2) in six days. These results
suggest that Microcystis spp. lysis is probable dependent on physi-
cal contact efficiency. Shilo (1970) and expanded by Burnham et al.
(1984) also found that the agitation of flasks might disturb the bac-
teria from establishing contact with cyanobacteria thus slowing
the lysis process. Nevertheless B. mycoides B16 was able to lyse
Microcystis under static and turbulent conditions. This suggests
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Fig. 8. Changes in population levels of live Microcystis spp. cells in B. mycoides B16
treated and control samples under turbulent conditions. (Mean values of six
replicates * standard deviation. Bars indicate standard deviation.)

that B. mycoides B16 has potential as a good biological control
agent since it might encounter such conditions in the real world.
Other researchers such as Ashton and Robarts (1987) and Bird
and Rashidan (2001) have implicated predatory bacteria in the ter-
mination of harmful algal blooms. The flow cytometry technique
proved to be convenient, fast, reliable and accurate method for
the determination of large numbers of live (viable) and dead
(non-viable) Microcystis cells after exposure to the predator bacte-
ria, B. mycoides B16.
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Table 3

One sample t-test, showing t values and associated (p) probabilities showing changes in organism populations.

Time (d) df Microcystis (B. mycoides B16 treated) B. mycoides B16 Microcystis (control)

Numbers t p Numbers t p Numbers t p
1-3 5 Increase +7.77% 0.0006 Increase +3.30 0.0215 Increase +7.13 0.0008
4-6 5 Decrease —7.21° 0.0008 Increase +11.31 0.0001 Increase +3.91 0.0113

df = degrees of freedom.
2 An increase (+ positive sign).
> A decrease (— negative sign).
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Fig. 9. Changes in population levels of dead Microcystis cells in B. mycoides B16
treated and control samples under turbulent conditions. (Mean values of six
replicates # standard deviation. Bars indicate standard deviation.)
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4. Conclusion

e The flow cytometry technique was able to successfully assess
viable and membrane compromised Microcystis cells after
simultaneous staining with fluorescein diacetate and propidium
iodide.

e The dual staining of Microcystis cells revealed the presence four-
population groups (heterogeneity). During the progress of B.
mycoides B16 induced lysis of Microcystis cells, a transition
phase from live cells through membrane compromised state,
death phase and lastly cell debris was observed.

e The control samples of Microcystis cells resulted in a 65% growth
under static and turbulent conditions in six days

e The predator bacteria numbers showed a significant increase
and coincided with a decrease in Microcystis cell numbers.
These findings suggest that the B. mycoides B16 was utilizing
the Microcystis as a source of nutrition.

e FCM showed that B. mycoides B16 had a lytic effect on Microcys-
tis cells that resulted in a population decline of over 97% under
static conditions and 85% under turbulent conditions in six
days. This suggests that B. mycoides B16 has potential as a good
biological control agent since it might encounter such condi-
tions in the real world.
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