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Abstract. In this paper, the inconsistency lemmas of intuitionistic and
classical propositional logic are formulated abstractly. We prove that,
when a (finitary) deductive system ` is algebraized by a variety K, then
` has an inconsistency lemma—in the abstract sense—iff every alge-
bra in K has a dually pseudo-complemented join semilattice of compact
congruences. In this case, the following are shown to be equivalent:
(1) ` has a classical inconsistency lemma; (2) ` has a greatest compact
theory and K is filtral—i.e., semisimple with EDPC; (3) the compact
congruences of any algebra in K form a Boolean lattice; (4) the compact
congruences of any A ∈ K constitute a Boolean sublattice of the full con-
gruence lattice of A. These results extend to quasivarieties and relative
congruences. Except for (2), they extend even to protoalgebraic log-
ics, with deductive filters in the role of congruences. A protoalgebraic
system with a classical inconsistency lemma always has a deduction-
detachment theorem (DDT), while a system with a DDT and a greatest
compact theory has an inconsistency lemma. The converses are false.

1. Introduction

In the axiomatic development of classical propositional logic, the incon-
sistency lemma emerges as a corollary of the deduction theorem, to be used
in proving completeness. It states that, for any set Γ ∪ {α} of formulas,

Γ ∪ {α} is inconsistent iff Γ ` ¬α;(1)

Γ ∪ {¬α} is inconsistent iff Γ ` α.(2)

In intuitionistic propositional logic, (1) remains true, but (2) is false.

Here we shall be concerned with arbitrary deductive systems `, but we
always understand these to be finitary, i.e., whenever Γ ` α, then Γ′ ` α
for some finite Γ′ ⊆ Γ. The deduction-detachment theorem (or DDT) has
a natural formulation in this general setting, where the concrete role of →
is taken over by an unspecified set of binary formulas. It is well known
that a system ` has a DDT of this kind iff it is protoalgebraic and has
a dually Brouwerian join semilattice of compact theories. In that case,
the compact deductive filters of any algebra of the appropriate type are
also dually Brouwerian, and ` is filter-distributive with the filter extension
property. For strongly algebraizable logics, the existence of a DDT amounts
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to the equational definability of principal congruences in the corresponding
algebras—briefly, EDPC. See Czelakowski [12, 15] and Blok et al. [3, 10].

As the theory of the DDT is rather satisfying, it is natural to ask whether
a similarly abstract account of the inconsistency lemma can be given. This
paper supplies such an account. Because (2) fails in intuitionistic logic, our
basic definition generalizes (1). It has a specialization—called a classical
inconsistency lemma—which abstracts the conjunction of (1) and (2).

We prove that a protoalgebraic deductive system has an inconsistency
lemma in the general sense iff its join semilattice of compact theories is
dually pseudo-complemented ; it has a classical inconsistency lemma iff this
semilattice is a Boolean lattice. In both cases, the characteristic properties
of the compact theories are shared by the compact deductive filters of all
algebras. In the classical case, the set of compact filters is closed under finite
intersections. It follows on lattice-theoretic grounds that a protoalgebraic
system with a classical inconsistency lemma has a DDT, while a system
with a DDT and a greatest compact theory has an inconsistency lemma.
The converses are false, even for strongly algebraizable logics.

We also show that, when a variety K algebraizes a deductive system ` with
a greatest compact theory, then ` has a classical inconsistency lemma iff K is
filtral—i.e., semisimple with EDPC. In that case, for all A ∈ K, the compact
congruences of A form a Boolean sublattice of the congruence lattice of A.
Actually, these results are proved in slightly greater generality—for quasi -
varieties and relative congruences. Examples are discussed in Section 6.

Filtral classes were introduced by Magari [32, 33, 34]. They have been
studied for a long time by many authors, e.g., [2, 5, 14, 21, 22, 23], but their
connection with inconsistency lemmas seems to be new.

2. Preliminaries

From now on, ` denotes a fixed but arbitrary (sentential) deductive sys-
tem, i.e., a substitution-invariant finitary consequence relation over formulas
in some algebraic language. Among other standard abbreviations, we signify
‘Γ ` α for all α ∈ Π’ by Γ ` Π, and ‘Γ ` Π and Π ` Γ’ by Γ a` Π.

We assume a familiarity with the basic theory of deductive systems and
matrix semantics, cf. [15, 20, 40]. If 〈A, F 〉 is a matrix model of `, then F is
called a ` –filter of the algebra A. Because the set of ` –filters of A is closed
under arbitrary intersections, it becomes a complete lattice when ordered
by set inclusion. This lattice is algebraic (as ` is finitary), so its compact
elements are just the finitely generated ` –filters of A. In A, the ` –filter
generated by a subset Y is denoted as FgA` Y , while F+AG stands for the join

of two ` –filters F and G. Thus, for instance, F +A FgA` Y = FgA` (F ∪ Y ).
The universe of A is denoted as A.

Algebras are assumed to have the type of `, unless we say otherwise.
Recall that ` –theories are just ` –filters of the absolutely free algebra Fm
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generated by the variables of `, and substitutions are endomorphisms of
Fm.

Since ` has infinitely many variables, we may assume that two disjoint
denumerable sequences of distinct variables,

v1, v2, v3, . . . and x1, x2, x3, . . . ,

have been isolated for the rest of the discussion. We shall work mainly with
the first sequence, using the second to avoid interpretational clashes. For
each n ∈ N := {1, 2, 3, . . . }, we define

Fm(n) = {β ∈ Fm : the variables occurring in β are among v1, . . . , vn}.

If σ ∈ Fm(n) and A is an algebra, with a1, . . . , an ∈ A, then σA(a1, . . . , an)
denotes h(σ), where h : Fm→ A is any homomorphism such that h(vi) = ai
for i = 1, . . . , n. If Ξ ⊆ Fm(n), then

ΞA(a1, . . . , an) abbreviates {ξA(a1, . . . , an) : ξ ∈ Ξ}.

We omit the superscripts in σA, ΞA, +A and FgA` when A is Fm.

We need to recall two definitions and three results from abstract algebraic
logic.

Definition 2.1. A congruence relation θ on an algebra A is said to be
compatible with a subset F of A provided that F is a union of θ–classes, i.e.,
whenever a ≡ θ b and a ∈ F , then b ∈ F .

Lemma 2.2. ([9]) Let 〈A, F 〉 and 〈B, G〉 be matrix models of `, and let
h : A→ B be a homomorphism of algebras. Then

(i) h−1[G] is a ` –filter of A, and
(ii) if h is surjective and kerh is compatible with F , then h[F ] is a
` –filter of B.

Here, as usual, kerh := {〈a, a′〉 ∈ A×A : h(a) = h(a′)}.

Definition 2.3. ([7, 12, 13]) ` is said to be protoalgebraic if there exists
Λ ⊆ Fm(2) such that

` Λ(v1, v1) and(3)

Λ(v1, v2), v1 ` v2.(4)

Note that Λ can be chosen finite, because ` is finitary.

Theorem 2.4. ([9, Thm. 7.6]) ` is protoalgebraic iff the following is true
whenever F and G are ` –filters of an algebra A, and θ is a congruence of
A: if F ⊆ G and θ is compatible with F , then θ is compatible with G.

Numerous additional characterizations of protoalgebraicity are known, e.g.,
see [15, 20]. The process of filter generation in algebras is very complicated
in general, but it improves as follows in the protoalgebraic case:
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Lemma 2.5. ([11, Thm. 3.1]) Let ` be protoalgebraic, and let A be an
algebra, with Y ∪ {a} ⊆ A.

Then a ∈ FgA` Y iff there exist Γ ∪ {α} ⊆ Fm and a homomorphism

h : Fm → A such that Γ ` α and h[Γ] ⊆ Y ∪ FgA` ∅ and h(α) = a.

The implication from right to left is obvious (regardless of protoalgebraicity),
but the forward implication fails in some non-protoalgebraic systems (see
[11, Ex. 3.1]).

3. The Inconsistency Lemma

A set Ξ of formulas of ` is said to be inconsistent in ` if Ξ ` α for all
α ∈ Fm. Observe that

(5) if Ξ is finite and inconsistent in `, then Ξ a` h[Ξ] for all substitutions h,

because infinitely many variables are at our disposal. The equivalence of the
following conditions is almost immediate. (To infer (iv) from (iii), use (5).)

(i) ` has a greatest compact theory
(ii) Fm is a compact ` –theory
(iii) some finite set of formulas is inconsistent in `
(iv) some finite subset of Fm(1) is inconsistent in `
(v) there is a finite Ξ ⊆ Fm(1) such that A = FgA` ΞA(a) for every

algebra A and all a ∈ A.

Recall that in classical and intuitionistic propositional logic, the theory Fm
is compact. The finite generating sets for Fm include Ξ = {v1,¬v1} and, in
the latter case, Ξ = {⊥}.

Definition 3.1. Let Ψn ⊆ Fm(n) for all n ∈ N. We call {Ψn : n ∈ N} an
IL-sequence for ` provided that, whenever Γ ∪ {α1, . . . , αn} ⊆ Fm, then

Γ ∪ {α1, . . . , αn} is inconsistent in ` iff Γ ` Ψn(α1, . . . , αn).

Remark 3.2. Suppose {Ψn : n ∈ N} an IL-sequence for `. Then

(6) Ψn(α1, . . . , αn) ∪ {α1, . . . , αn} is inconsistent in `
for all n ∈ N and α1, . . . , αn ∈ Fm, as Ψn(α1, . . . , αn) ` Ψn(α1, . . . , αn).
Since the elements of {α1, . . . , αn} are not ordered, it follows from (6) and
Definition 3.1 that

Ψn(α1, . . . , αn) a` Ψn(αf1, . . . , αfn) for any permutation f of 1, . . . , n.

On similar grounds, if {Φn : n ∈ N} is another IL-sequence for `, then
Ψn a` Φn for all n.

Remark 3.3. It is easy to see that ∅ occurs in some IL-sequence for ` iff
v1 ` v2, iff {∅ : n ∈ N} is an IL-sequence for `. In this case, every algebra
A has at most two ` –filters (A and possibly ∅), whence every ` –filter of
A is compact.
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Definition 3.4. An IL-sequence {Ψn : n ∈ N} for ` is said to be elementary
if it consists of finite sets Ψn. We say that ` has an inconsistency lemma—
briefly an IL—if it has an elementary IL-sequence.

This definition encompasses the familiar inconsistency lemma (1) of in-
tuitionistic (and classical) propositional logic, because (1) amounts to the
conjunction, over all n ∈ N, of the claims

Γ ∪ {α1, . . . , αn} is inconsistent iff Γ ` ¬(α1 ∧ . . . ∧ αn).

Our convention that 0 /∈ N is significant. (Without it, the constant-free
formulation of classical logic would have no inconsistency lemma.) Defini-
tions 3.1 and 3.4 could be streamlined in the case of systems with a binary
connective ∧ such that v1, v2 a` v1 ∧ v2. But some systems with an IL have
no such connective, e.g.,

{{v1 → v2 → . . . → vn → ⊥} : n ∈ N}

is an IL-sequence for the →,⊥ fragment of intuitionistic logic. 1

Remark 3.5. When ` has an IL-sequence {Ψn : n ∈ N}, then it has
an inconsistency lemma iff it has a greatest compact theory. Indeed, (6)
shows that Ψ1 ∪ {v1} a` Fm, i.e., Fm = Fg`(Ψ1 ∪ {v1}). Thus, Fm is
compact if Ψ1 can be chosen finite. Conversely, if some finite Ξ ⊆ Fm(1)
is inconsistent in `, then for each n ∈ N, there is a finite Ψ′n ⊆ Ψn such
that Ψ′n ∪ {v1, . . . , vn} ` Ξ, because ` is finitary. This shows that each
Ψ′n ∪ {v1, . . . , vn} is inconsistent in `, whence {Ψ′n : n ∈ N} is an elementary
IL-sequence for `, in view of (5). 2

If {Ψn : n ∈ N} is an elementary IL-sequence for `, then for any ` –filter
F of the algebra Fm and any α1, . . . , αn ∈ Fm, we clearly have

Fm = F + Fg` {α1, . . . , αn} iff Ψn(α1, . . . , αn) ⊆ F .

The next theorem extends this equivalence from Fm to all algebras, but its
proof appears to require the assumption of protoalgebraicity.

Theorem 3.6. Let {Ψn : n ∈ N} be an elementary IL-sequence for a proto-
algebraic deductive system `. Let F be a ` –filter of an algebra A, and let
a1, . . . , an ∈ A, where n ∈ N. Then

A = F +A FgA` {a1, . . . , an} iff ΨA
n (a1, . . . , an) ⊆ F .

1 Here and subsequently, suppressed parentheses in iterated implications associate to
the right, e.g., γ → α→ β means γ → (α→ β). In accommodating examples of this kind,
our notion of an IL contrasts with the condition called ‘PIRA’ in [19].

2 Of course, when ` does not have a greatest compact theory, it can be extended to
one that does, by adding a new constant ⊥ and an inference rule ⊥ / v1 to any given ax-
iomatization. This move creates no new theorems or derivable rules in the old vocabulary.



6 J.G. RAFTERY

Proof. By Remark 3.5, some finite Ξ ⊆ Fm(1) is inconsistent in `, and by
Remark 3.2,

(7) Ψn, v1, . . . , vn ` Ξ(vn+1).

By (7), and because A = FgA` ΞA(a) for all a ∈ A, it suffices to prove the
forward implication in the present theorem’s statement.

Let a ∈ A and suppose A = F + FgA` {a1, . . . , an}, i.e., ΞA(a) ⊆ F +

FgA` {a1, . . . , an}. For each ξ ∈ Ξ, Lemma 2.5 shows that there exist Γξ ∪
{βξ} ⊆ Fm and a homomorphism hξ : Fm→ A such that

Γξ ` βξ and hξ[Γξ] ⊆ F ∪ {a1, . . . , an} and hξ(βξ) = ξA(a).

As ` is finitary, we may assume that each Γξ is finite. Then, by substitution-
invariance, we can arrange that Γξ ∪ {βξ} and Γξ′ ∪ {βξ′} involve disjoint
sets of variables whenever ξ 6= ξ′ ∈ Ξ, and that all of these variables are
among x1, x2, x3, . . . . Because of this, we can choose a single homomorphism
h : Fm→ A that agrees with hξ on the variables of Γξ∪{βξ} for each ξ ∈ Ξ,
and we can also arrange that h(vi) = ai for i = 1, . . . , n and h(vn+1) = a.
We now have⋃

ξ∈Ξ Γξ ` {βξ : ξ ∈ Ξ} and h
[⋃

ξ∈Ξ Γξ

]
⊆ F ∪ {a1, . . . , an}.

Choose a finite Λ ⊆ Fm(2) as in Definition 2.3. For each ξ ∈ Ξ, it follows
from (4) that

(8) Λ(βξ, ξ(vn+1)), βξ ` ξ(vn+1),

and for all λ ∈ Λ,

h(λ(βξ, ξ(vn+1))) = λA(h(βξ), h(ξ(vn+1))) = λA(ξA(a), ξA(a)) ∈ F,
by (3). So, if

Γ :=
(⋃

ξ∈Ξ Γξ

)
∪
(⋃

ξ∈Ξ Λ(βξ, ξ(vn+1))
)
∪ {v1, . . . , vn},

then Γ ` Ξ(vn+1) (by (8)) and h[Γ] ⊆ F ∪ {a1, . . . , an}. Now

Γ = Γ′ ∪Π1 ∪ . . . ∪Πn, say,

where h[Γ′] ⊆ F and vi ∈ Πi and h[Πi] = {ai} for i = 1, . . . , n.

For each i and each α ∈ Πi, we also have

(9) Λ(vi, α), vi ` α,
by (4), and h(vi) = h(α), so we may assume without loss of generality that
Πi = {vi}. Indeed, h[Γ′] ⊆ F remains true if we add every

λ(vi, α) (λ ∈ Λ, vi 6= α ∈ Πi, 1 ≤ i ≤ n)

to Γ′ (by (3)), whereupon Γ ` Ξ(vn+1) survives if we delete every element
other than vi from each Πi (by (9)).

In other words, we can arrange that Γ = {γ1, . . . , γr, v1, . . . , vn}, where h
sends γ1, . . . , γr into F . Now Γ is inconsistent in ` (because Γ ` Ξ(vn+1)),



INCONSISTENCY LEMMAS IN ALGEBRAIC LOGIC 7

so γ1, . . . , γr ` Ψn, by the IL. Then, since h[{γ1, . . . , γr}] ⊆ F , we have
ΨA
n (a1, . . . , an) = h[Ψn] ⊆ F , as required. �

A deductive system ` is said to have a deduction-detachment theorem
(DDT) if, for some fixed family Σ of binary formulas, the law

Γ ∪ {α} ` β iff Γ ` Σ(α, β)

applies to all sets of formulas Γ ∪ {α, β}. In this case, ` is protoalgebraic
and Σ can be chosen finite, as ` is finitary. The inconsistency lemma of
classical or intuitionistic propositional logic is a corollary of the standard
DDT for these systems, viz. Γ∪{α} ` β iff Γ ` α→ β. In the introduction,
we mentioned a semantic characterization of the DDT, given in [12]. We can
now characterize the inconsistency lemma in an analogous way and, thanks
to Theorem 3.6, a somewhat similar argument can be used. First, we must
recall some notions from lattice theory:

An idempotent commutative semigroup 〈S; +〉 is called a join semilattice
with 0 if it has a least element with respect to the order

x ≤ y ⇐⇒ x+ y = y.

It is then said to be dually pseudo-complemented if it has a greatest element
1 and, for each a ∈ S, there is a smallest b ∈ S such that a+ b = 1. This b
is denoted as a∗. Observe that a∗∗ ≤ a for all a ∈ S.

Clearly, the compact ` –filters of an algebra A form a join semilattice
with 0 under the operation +A, and the semilattice order ≤ is just ⊆.

Theorem 3.7. Let ` be a protoalgebraic deductive system. Then the fol-
lowing conditions are equivalent.

(i) ` has an inconsistency lemma.
(ii) For every algebra A, the compact ` –filters of A form a dually

pseudo-complemented semilattice with respect to +A.
(iii) The join semilattice of compact ` –theories is dually pseudo-comple-

mented.

Proof. We may assume that Fm is a compact ` –theory, as this is entailed by
all three conditions (see Remark 3.5). In other words, some finite Ξ ⊆ Fm(1)
is inconsistent in `.

(i) ⇒ (ii): Let {Ψn : n ∈ N} be an elementary IL-sequence for `.
Let a1, . . . , an be elements of an algebra A, where n ∈ N, and let H =
FgA` {a1, . . . , an}. For any ` –filter F of A, we have

A = F +A H iff ΨA
n (a1, . . . , an) ⊆ F,

by Theorem 3.6. So, because Ψn is finite, FgA`ΨA
n (a1, . . . , an) is compact

and equal to H∗ in the semilattice of compact ` –filters of A. Finally, if ∅
is a ` –filter of A, then ∅∗ = A, which is also compact, because ` has a
greatest compact theory.
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(ii)⇒ (iii) is trivial.

(iii)⇒ (i): Let n ∈ N and choose a finite Ψ′n ⊆ Fm so that

Fg`Ψ′n = (Fg` {v1, . . . , vn})∗

in the semilattice of compact ` –theories. Let

Ψn = g[Ψ′n],

where g is a substitution that fixes v1, . . . , vn and sends all other variables
to v1, so Ψn is a finite subset of Fm(n). For any ` –theory F (compact or
not), we have

(10) Fm = F + Fg` {v1, . . . , vn} iff Fg`Ψ′n ⊆ F (i.e., Ψ′n ⊆ F ).

This is due to the compactness of Fm and the fact that F is a join of compact
elements of the lattice of all ` –theories, because this lattice is algebraic.

Given Γ∪{α1, . . . , αn} ⊆ Fm, let h be a surjective substitution that sends
vi to αi for i = 1, . . . , n and that sends to v1 all other variables occurring
in Ψ′n. Then h[Ψ′n] = Ψn(α1, . . . , αn) and Γ = h[h−1[Γ]]. It suffices to show
that Γ ∪ {α1, . . . , αn} is inconsistent in ` iff Γ ` Ψn(α1, . . . , αn).

By Lemma 2.2(i), h−1[Fg` Γ] and h−1[Fg` (Γ ∪ {α1, . . . , αn})] are ` –
theories, and kerh is obviously compatible with h−1[Fg` Γ]. By protoalge-
braicity and Theorem 2.4, kerh is also compatible with the larger theory

Y := h−1[Fg` Γ] + Fg`{v1, . . . , vn} = Fg`
(
h−1[Fg` Γ] ∪ {v1, . . . , vn}

)
.

Therefore, h[Y ] is a ` –theory, by Lemma 2.2(ii). It follows that h[Y ] con-
tains Fg` (Γ ∪ {α1, . . . , αn}), because it contains

h[h−1[Γ] ∪ {v1, . . . , vn}] = Γ ∪ {α1, . . . , αn}.

On the other hand, it is clear that Y ⊆ h−1[Fg` (Γ ∪ {α1, . . . , αn})], so

(11) h[Y ] = Fg` (Γ ∪ {α1, . . . , αn}).

Now Γ ∪ {α1, . . . , αn} is inconsistent in ` iff Γ, α1, . . . , αn ` Ξ,

iff Γ, α1, . . . , αn ` h[Ξ] (as Ξ a` h[Ξ]),

iff h[Ξ] ⊆ h[Y ] (by (11)),

iff Ξ ⊆ Y (because kerh is compatible with Y ),

iff Fm = h−1[Fg` Γ] + Fg`{v1, . . . , vn},
iff Ψ′n ⊆ h−1[Fg` Γ] (by (10)),

iff h[Ψ′n] ⊆ Fg` Γ,

iff Γ ` h[Ψ′n], i.e., Γ ` Ψn(α1, . . . , αn). �

Corollary 3.8. If a protoalgebraic deductive system ` has an inconsistency
lemma, then every finite algebra has a dually pseudo-complemented lattice
of ` –filters.
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A join semilattice 〈S; +〉 with 0 is said to be dually Brouwerian if, for any
a, b ∈ S, there is a smallest c ∈ S such that a ≤ b+c. As we recounted in the
introduction, a deductive system has a DDT iff it is protoalgebraic and has
a dually Brouwerian join semilattice of compact theories [12] (see [10] also).
A dually Brouwerian join semilattice with 0 is dually pseudo-complemented
if it has a greatest element, so the next result follows from Theorem 3.7.

Corollary 3.9. If a deductive system with a greatest compact theory has a
deduction-detachment theorem, then it has an inconsistency lemma.

A syntactic proof is also possible. The converse of Corollary 3.9 is false,
even for protoalgebraic systems (see the discussion of Π in Section 6).

A deductive system with an inconsistency lemma need not be protoalge-
braic, e.g., the usual IL of intuitionistic propositional logic (IPL) persists in
the implication-less fragment of IPL (i.e., the ∧,∨,¬,⊥,> fragment), which
is no longer protoalgebraic [8]. The proof of Theorem 3.7 makes consider-
able use of protoalgebraicity, however, and it is not clear how to prove it
in the absence of that assumption. On the other hand, every algebraizable
deductive system is protoalgebraic. We discuss this case below.

Given a quasivariety K and an algebra A of the same type, the K–
congruences of A are the congruences θ such that A/θ ∈ K. They form an
algebraic closure system over A×A, and hence an algebraic lattice, ordered
by inclusion, in which the compact elements are just the finitely generated
K–congruences. At the same time, for any subset F of A, there is always a
largest congruence of A that is compatible with F ; it is denoted by ΩAF .
A deductive system ` is said to be algebraized by K if, for every algebra
A, the rule F 7→ ΩAF defines an isomorphism from the ` –filter lattice of
A onto the lattice of K–congruences of A. We say that ` is (elementarily)
algebraizable if it is algebraized by some quasivariety K. In this case K is
unique, and if K is a variety, then ` is said to be strongly algebraizable.
These definitions are equivalent to the original syntactic ones, see Blok and
Pigozzi [8].

For every quasivariety K, the K–congruence lattices of A and A/CgAK ∅ are

isomorphic, where CgAK Y denotes the least K–congruence of A containing

a subset Y of A × A. Since A/CgAK ∅ ∈ K, the following conclusion can be
drawn from Theorem 3.7.

Theorem 3.10. Let K be a quasivariety that algebraizes a deductive system
`. Then the following conditions are equivalent.

(i) ` has an inconsistency lemma.
(ii) For every algebra A, the join semilattice of compact K–congruences

of A is dually pseudo-complemented.
(iii) For every A ∈ K, the join semilattice of compact K–congruences of

A is dually pseudo-complemented.

If K is a variety, then these conditions are equivalent to
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(iv) For every A ∈ K, the join semilattice of compact congruences of A
is dually pseudo-complemented.

4. Classical Inconsistency Lemmas

Suppose 〈S; +〉 is a dually pseudo-complemented join semilattice with 0.
A well known result of Glivenko [27] shows that the sub-poset {a∗ : a ∈ S}
of 〈S;≤〉 is a Boolean lattice, i.e., a complemented distributive lattice (see
[28, p. 49] also). Of course, the join operation of this lattice is +. The meet
operation · is given by a · b = (a∗ + b∗)∗. In particular, if 〈S; +〉 satisfies
x∗∗ = x, then it is a Boolean lattice with respect to the join semilattice
order. The converse is true as well, because in a Boolean lattice, (dual)
pseudo-complements coincide with complements and the latter are unique.

Note, however, that when the compact ` –filters of an infinite algebra
form a Boolean lattice, they don’t always form a sublattice of the lattice of
all ` –filters, because the intersection of two compact ` –filters need not be
compact.

In classical propositional logic, the familiar inconsistency lemma (2) can
be formulated equivalently as the conjunction, over n ∈ N, of the assertions

(12) Γ ∪ {¬(α1 ∧ . . . ∧ αn)} is inconsistent iff Γ ` {α1, . . . , αn}.

Of course, (2) and (12) are false in the context of intuitionistic logic, where
p ` ¬¬p is derivable but ¬¬p ` p is not. For arbitrary deductive systems
`, we may abstract (12) as follows.

Definition 4.1. An IL-sequence {Ψn : n ∈ N} for ` will be called classical
provided that, whenever n ∈ N and Γ ∪ {α1, . . . , αn} ⊆ Fm, then

Γ ∪Ψn(α1, . . . , αn) is inconsistent in ` iff Γ ` {α1, . . . , αn}.

We say that ` has a classical inconsistency lemma if it has a classical ele-
mentary IL-sequence.

Remark 3.2 shows that when ` has a classical IL-sequence, then every IL-
sequence for ` is classical. It is easily verified that a [classical] IL-sequence
for ` remains a [classical] IL-sequence for any axiomatic extension of ` (in
the same language).

Suppose {Ψn : n ∈ N} is an elementary IL-sequence for `, where no Ψn

is empty. For each n ∈ N, let #n = |Ψn| and let Ψn = {ψ1
n, . . . , ψ

#n
n }. Put

Ψ#nΨn := Ψ#n(ψ1
n, . . . , ψ

#n
n ).

Each Ψ#nΨn is a well defined (finite non-empty) subset of Fm(n), by the
observation about permutations in Remark 3.2. For any α1, . . . , αn ∈ Fm,
we have

(13) α1, . . . , αn ` Ψ#nΨn(α1, . . . , αn),
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because {α1, . . . , αn} ∪ Ψn(α1, . . . , αn) is inconsistent in `. Writing α for
α1, . . . , αn, we deduce from Ψ#nΨn(α) ` Ψ#nΨn(α) that

(14) Ψ#nΨn(α) ∪Ψn(α) is inconsistent in `.

In the classical case, this entails an abstraction of p a` ¬¬p :

Lemma 4.2. Let {Ψn : n ∈ N} be an elementary IL-sequence for `, with
Ψn 6= ∅ for all n. This sequence is classical iff, for any formulas α1, . . . , αn
(n ∈ N), we have

(15) α1, . . . , αn a` Ψ#nΨn(α1, . . . , αn).

In that case, whenever a1, . . . , an are elements of an algebra A, then

(16) FgA`{a1, . . . , an} = FgA` ΨA
#nΨA

n (a1, . . . , an).

Proof. In the forward direction, (14) yields Ψ#nΨn(α) ` {α1, . . . , αn}, be-
cause {Ψn : n ∈ N} is classical. This, with (13), gives (15), hence the second
claim of the lemma. Conversely, (15) allows us to reformulate the criterion
in Definition 4.1 as

Γ ∪Ψn(α1, . . . , αn) is inconsistent in ` iff Γ ` Ψ#nΨn(α1, . . . , αn),

the truth of which follows from the (ordinary) IL. �

Theorem 4.3. Let ` be a protoalgebraic deductive system. Then the fol-
lowing conditions are equivalent.

(i) ` has a classical inconsistency lemma.
(ii) For every algebra A, the compact ` –filters of A form a Boolean

sublattice of the lattice of all ` –filters of A.
(iii) The join semilattice of compact ` –theories is a Boolean lattice.

In this case, every finite algebra has a Boolean lattice of ` –filters.

Proof. If v1 ` v2, then {∅ : n ∈ N} is a classical elementary IL-sequence for
` and all three conditions hold (see Remark 3.3). We may therefore assume
that v1 6` v2; equivalently, ∅ does not occur in any IL-sequence for `. Now
the set Λ in Definition 2.3 cannot be empty, by (4). So, by (3), ∅ is not a
` –filter of any algebra.

(i)⇒ (ii): Let {Ψn : n ∈ N} be a classical elementary IL-sequence for `,
and let H be a compact ` –filter of an algebra A. Since H 6= ∅, it has the
form FgA`{a1, . . . , an}, where n ∈ N. In the join semilattice of compact ` –

filters of A, we have H∗ = FgA` ΨA
n (a1, . . . , an), by the proof of Theorem 3.7.

Because Ψn 6= ∅, the same argument shows that

H∗∗ = FgA` ΨA
#nΨA

n (a1, . . . , an),

so H∗∗ = H, by (16). Thus, the compact ` –filters of A form a Boolean lat-
tice with respect to ⊆, by the result of Glivenko mentioned at the beginning
of this section. It remains to show that the intersection of any two compact
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` –filters of A is compact. Let a = a1, . . . , an ∈ A and b = b1, . . . , bm ∈ A,
where n,m ∈ N (so Ψn,Ψm 6= ∅). We claim that

(17) FgA` {a} ∩ FgA` {b} = FgA`ΨA
#n+#m(ΨA

n (a),ΨA
m(b)),

where the right hand side abbreviates

FgA` ΨA
#n+#m(ψ1

n
A

(a), . . . , ψ#n
n

A
(a), ψ1

m
A

(b), . . . , ψ#m
m

A
(b)).

Indeed, A = FgA` {a}+A FgA` ΨA
n (a) = FgA` {b}+A FgA` ΨA

m(b), whence

A = FgA`{a}+A FgA`(ΨA
n (a) ∪ΨA

m(b)) = FgA`{b}+A FgA`(ΨA
n (a) ∪ΨA

m(b)),

and so FgA`ΨA
#n+#m(ΨA

n (a),ΨA
m(b)) ⊆ FgA` {a} ∩ FgA` {b}, by Theorem 3.6.

Conversely, suppose c ∈ FgA` {a} ∩ FgA` {b}. Then

FgA` {a}+A FgA` ΨA
1 (c) ⊇ FgA` {c}+A FgA` ΨA

1 (c) = A,

and similarly for b, so

A = FgA` {a}+A FgA` ΨA
1 (c) = FgA` {b}+A FgA` ΨA

1 (c).

Then ΨA
n (a) ∪ ΨA

m(b) ⊆ FgA` ΨA
1 (c), by Theorem 3.6 again. Now Boolean

lattices satisfy x ≤ y∗ =⇒ y ≤ x∗, so

FgA` {c} ⊆ FgA` ΨA
#n+#m(ΨA

n (a),ΨA
m(b)),

completing the proof of (17). Since the right hand side of (17) is compact,
we have proved (ii).

(ii)⇒ (iii) is trivial.

(iii)⇒(i): By (iii), the semilattice of compact ` –theories is dually pseudo-
complemented, so by Theorem 3.7 and its proof, ` has an elementary
IL-sequence {Ψn : n ∈ N} and (Fg` {α1, . . . , αn})∗ = Fg`Ψn(α1, . . . , αn)
whenever α1, . . . , αn ∈ Fm. The identity x∗∗ = x shows that (15) holds,
so the IL-sequence is classical, by Lemma 4.2. �

Corollary 4.4. If a protoalgebraic deductive system has a classical incon-
sistency lemma, then it has a deduction-detachment theorem.

Proof. This follows from Theorem 4.3 and the analogous characterization of
the DDT, because the + reduct of a Boolean lattice 〈B; ·,+,∗ 〉 is a dually
Brouwerian join semilattice with 0, in which a · b∗ is always the least c such
that a ≤ b+ c. �

Alternatively, we can verify that, whenever {Ψn : n ∈ ω} is a classical
elementary IL-sequence for ` and Γ ∪ {α, β} ⊆ Fm, then

Γ ∪ {α} ` β iff Γ ` Ψ1+#1(α,ψ1
1(β), . . . , ψ#1

1 (β)).

Corollary 4.5. If a protoalgebraic deductive system ` has a classical in-
consistency lemma, then the ` –filters of any algebra A form a pseudo-
complemented 3 distributive lattice.

3 i.e., for each ` –filter F , there is a largest ` –filter G such that F ∩G = FgA
` ∅.
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Proof. By Corollary 4.4, ` has a DDT, and a DDT always entails filter-
distributivity [12]. Because the ` –filter lattice of A is algebraic, it is iso-
morphic to the ideal lattice of the join semilattice S of compact ` –filters
of A, and S is a Boolean lattice, by Theorem 4.3. But, by another result
of Glivenko [27], the ideal lattice of a distributive lattice with 0 is always
pseudo-complemented (see [28, p. 91]). �

5. Semisimplicity, EDPRC and Filtrality

A quasivariety K is said to be relatively congruence distributive if its mem-
bers have distributive lattices of K–congruences; it has the relative congru-
ence extension property if every K–congruence on a subalgebra of a member
of K is the restriction of some K–congruence on the parent algebra. An al-
gebra A ∈ K is said to be K–subdirectly irreducible or finitely K–subdirectly
irreducible or K–simple if, in the K–congruence lattice of A, the identity
relation idA = {〈a, a〉 : a ∈ A} is completely meet-irreducible or meet-
irreducible or a co-atom, respectively. Each member of a quasivariety K is
isomorphic to a subdirect product of K–subdirectly irreducible algebras in K
[38, Thm. 1.1]. If every K–subdirectly irreducible algebra in K is K–simple,
then K is said to be relatively semisimple. We say that K has equationally
definable principal relative congruences (EDPRC) if there exists a finite set
Φ ⊆ Fm(4)× Fm(4) such that, whenever A ∈ K and a, b, c, d ∈ A, then

〈c, d〉 ∈ CgAK {〈a, b〉} iff
(
ϕA(a, b, c, d) = ηA(a, b, c, d) for all 〈ϕ, η〉 ∈ Φ

)
.

In the event that K is a variety, the congruences and K–congruences of
algebras in K are the same, so the prefixes ‘K–’ and ‘relatively’ can all be
dropped.

Varieties with EDPC were introduced in [22] under a different name; they
were studied in a series of papers in Algebra Universalis by Blok, Köhler and
Pigozzi (in various author-combinations), published between 1980 and 1994.
A variety K is said to be filtral if every congruence θ on a subdirect product
A of subdirectly irreducible algebras in K is determined by a suitable filter
Xθ over the index set I of the product—that is to say,

θ = {〈a, b〉 ∈ A×A : {i ∈ I : a(i) = b(i)} ∈ Xθ}

(where Xθ consists of subsets of I and is closed under finite intersections and
supersets within I). The filtral varieties turn out to be just the semisimple
varieties with EDPC [22], and the discriminator varieties coincide with the
congruence permutable filtral varieties (see [4, Cor. 3.4] or [23, Thm. 4.13]).

We use KFSI to denote the class of all finitely K–subdirectly irreducible
algebras in a quasivariety K. If K is relatively congruence distributive, then
the algebras in KFSI are finitely subdirectly irreducible in the absolute sense
[18]. The next result is due to Czelakowski and Dziobiak [16, Thm. 2.3]. For
varieties, it was proved earlier in [6].
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Theorem 5.1. The following conditions on a relatively congruence distribu-
tive quasivariety K are equivalent.

(i) KFSI is closed under subalgebras and ultraproducts (i.e., it is a uni-
versal class).

(ii) For all A ∈ K, the compact K–congruences of A form a sublattice
of the K–congruence lattice of A (i.e., the intersection of any two
compact K–congruences is compact).

Corollary 5.2. If an algebra A belongs to a relatively semisimple quasivari-
ety K with EDPRC, then the compact K–congruences of A form a sublattice
of the K–congruence lattice of A.

Proof. Every quasivariety with EDPRC is relatively congruence distribu-
tive and has the relative congruence extension property [10]. By the lat-
ter property, the class of K–simple algebras in K is closed under nontrivial
subalgebras. It is also closed under nontrivial ultraproducts, as a direct
consequence of EDPRC, see for instance [15, Prop. Q.9.5]. Whenever Q is
the smallest quasivariety containing a class M of similar algebras, then ev-
ery algebra in QFSI can be embedded into an ultraproduct of members of
M, by [16, Lem. 1.5]. So, since K is relatively semisimple, the nontrivial
algebras in KFSI are K–simple. Thus, KFSI is closed under subalgebras and
ultraproducts, and the result follows from Theorem 5.1. �

A dual generalized Boolean lattice is a distributive lattice 〈L; ·,+〉 with a
least element 0 such that, for any a, b ∈ L, there exists c ∈ L with a · c = 0
and a+ c = a+ b. Note that, in this case, 〈L; ·,+〉 is a Boolean lattice iff it
has a greatest element.

Blok and Pigozzi proved that the join semilattice of compact congruences
of an algebra A in a filtral variety K is always a dual generalized Boolean
lattice [5, Cor. 4.3]. Careful inspection of their proof shows that the result
remains true for the K–congruences of A when K is a relatively semisimple
quasivariety with EDPRC. Indeed, regardless of semisimplicity, the equa-
tions defining the principal relative congruences can be used, as in the case
of varieties, to construct another equation that is valid in just those mem-
bers of K that have dual generalized Boolean lattices of compact relative
congruences. Clearly, this equation holds in the relatively simple members
of K, and equations persist in subdirect products. From this, we deduce:

Lemma 5.3. Let K be a relatively semisimple quasivariety with EDPRC,
such that, for every A ∈ K, the total congruence A × A is compact in the
K–congruence lattice of A. Then the compact K–congruences of any algebra
in K form a Boolean lattice with respect to ⊆.

Theorem 5.4. Let K be a quasivariety that algebraizes a deductive system
`. Then the following conditions are equivalent.

(i) ` has a classical inconsistency lemma.
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(ii) ` has a greatest compact theory and K is relatively semisimple with
EDPRC.

(iii) For every A ∈ K, the compact K–congruences of A form a Boolean
sublattice of the lattice of all K–congruences of A.

In this case, the finite algebras in K have Boolean lattices of K–congruences.

Proof. Again, we may assume without loss of generality that ` has a greatest
compact theory. So, for every A ∈ K, the set A is a compact ` –filter of A,
whence A×A is a compact K–congruence of A (because K algebraizes `).

(i)⇒ (ii): By (i) and Theorem 4.3, the join semilattices of compact K–
congruences of all algebras in K are Boolean lattices. Suppose A ∈ K is
K–subdirectly irreducible. The unique cover µ of idA in the lattice of K–
congruences of A is a principal K–congruence, whence it is compact, as is
idA. Therefore, µ is also the unique atom in the semilattice of compact
K–congruences of A, but a Boolean lattice with a unique atom has just two
elements. So, because A×A is also compact, µ = A×A, i.e., A is K–simple.
This shows that K is relatively semisimple. Since EDPRC is the algebraic
counterpart of the DDT [10], we can infer (ii) from Corollary 4.4.

(ii)⇒ (iii) follows from Lemma 5.3 and Corollary 5.2.

(iii)⇒ (i): If (iii) holds, then it persists for arbitrary A (as opposed to
A ∈ K), by the remark preceding Theorem 3.10. Then (i) follows from
Theorem 4.3, because K algebraizes `. �

Corollary 5.5. Let ` be a strongly algebraizable deductive system with a
greatest compact theory. Then ` has a classical inconsistency lemma iff it
is algebraized by a filtral variety.

When a relatively semisimple quasivariety with EDPRC satisfies the hy-
potheses and equivalent conditions of Theorem 5.4, it need not be a variety.
(A counter-example is given at the end of Section 6.)

Recall that a class of similar algebras is strictly elementary if it is axioma-
tized by a finite set of first order sentences. A deductive system is said to be
finitely axiomatized if it is the deducibility relation of some formal system
having only finitely many axioms and inference rules. When a quasivariety
K algebraizes a deductive system `, then K is finitely axiomatized iff ` is.
This follows from Theorems 2.17 and 4.7 in [8], and it relies on the finitarity
of `. From these observations and Theorem 5.4, we conclude:

Corollary 5.6. Let ` be a deductive system that is algebraized by some
quasivariety K, where ` has a classical inconsistency lemma. Then ` is
finitely axiomatized iff the class of K–simple algebras in K is strictly ele-
mentary.

Proof. K is relatively semisimple with EDPRC, by Theorem 5.4. So, by
Corollary 5.2 and its proof, K is relatively congruence distributive and the
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compact K–congruences of algebras in K are closed under finite intersec-
tions. Czelakowski and Dziobiak have shown that a quasivariety Q with
these two properties is finitely axiomatized iff QFSI is strictly elementary
[16, Thm. 3.4]. But KFSI is the class of K–simple (or trivial) algebras in K,
again by the proof of Corollary 5.2. �

Corollary 5.7. If two categorically equivalent varieties algebraize deductive
systems ` and `′, then ` has a [classical ] inconsistency lemma iff `′ does.

Proof. The category equivalence functor preserves the isomorphism type of
the congruence lattice of any algebra, and a lattice isomorphism between
complete lattices restricts to an isomorphism between their semilattices of
compact elements, so the result follows from Theorems 3.10 and 5.4. �

A similar result holds for the DDT.

6. Examples

The filtral variety BA of all Boolean algebras is the only nontrivial semi-
simple variety of Heyting algebras. Thus, by Theorem 5.4, no consistent
axiomatic extension of intuitionistic propositional logic (IPL) has a clas-
sical inconsistency lemma, except for classical propositional logic (CPL).
Similarly, CPL is the only axiomatic consistent extension of the →,⊥ frag-
ment of IPL having a classical inconsistency lemma. Corollaries 4.4 and 4.5
do not add up to a characterization of classical inconsistency lemmas, be-
cause IPL has a DDT and the congruence lattices of Heyting algebras are
distributive and pseudo-complemented (indeed, the compact congruences
form distributive lattices with 0).

IPL is itself an axiomatic extension of the contraction-less substructural
logic FLew of [24]. FLew still has a greatest compact theory, generated by
{⊥}. When a variety K algebraizes an axiomatic extension of FLew, then
K is filtral iff it is a discriminator variety, iff the theorems of the extension
include p∨ (pk → ⊥) for some positive integer k (see [31] or [24, Chap. 11]).
By Theorem 5.4, these are exactly the axiomatic extensions of FLew with
a classical inconsistency lemma. The respective classical IL-sequences are

{{(v1 � . . . � vn)k → ⊥} : n ∈ N},

where � denotes fusion.

The relative subvarieties K of the quasivariety of bounded BCK-algebras
algebraize the axiomatic extensions of the→,⊥ fragment BCK⊥ of FLew. 4

In any such K, the K–simple algebras are simple in the absolute sense [26],
and semisimplicity has been characterized syntactically by Torrens [39]. It

4 A relative subvariety of a quasivariety M is the intersection of M with a variety of the
same type.
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follows from [39] that an axiomatic extension of BCK⊥ has a classical in-
consistency lemma iff its theorems include

(p→k+1 q)→ (p→k q) and (p→ q)→ (((p→m ⊥)→ q)→ q)

for suitable k,m ∈ N. 5 In this case, the algebraic counterpart K is a dis-
criminator variety iff (p → ⊥) → ⊥ and p are logically equivalent in the
extension of BCK⊥. The proof, and an example where K is a (filtral) vari-
ety but not a discriminator variety, can be found in [39]. The instances in
which (p→ ⊥)→ ⊥ and p are equivalent include the  Lukasiewicz k–valued
logics (k ∈ N). The classical IL-sequence would normally be written as

{{¬((v1 � . . . � vn)k)} : n ∈ N}
in this context, where p� q and ¬(p→ ¬q) are interchangeable.

The infinite-valued  Lukasiewicz logic has no classical inconsistency lemma,
as it is algebraized by the variety of all MV-algebras, which lacks EDPC. In
fact, this logic has no inconsistency lemma of the ordinary kind. The argu-
ment, due to the referee, is as follows. In the opposite case, it would follow
from the inconsistency of Ψ1(p)∪ {p} and the local deduction theorem that
Ψ1(p) ` ¬(pn) for some n ∈ N. Then, for each m ∈ N, the inconsistency of
mp ∧ ¬p would entail the theoremhood of Ψ1(mp ∧ ¬p), and hence that of
¬((mp∧¬p)n). But, for each n, we can choose an m and a value of p in the
real interval (0, 1) for which ¬((mp ∧ ¬p)n) doesn’t take the value 1 in the
usual MV-algebra on [0, 1].

The product logic Π of [29] is also algebraized by a variety without EDPC,
but it does have an inconsistency lemma of the ordinary kind, with

{{¬(v1 � . . . � vn)} : n ∈ N}
as IL-sequence. This shows that a strongly algebraizable system with an
inconsistency lemma (and hence a greatest compact theory) need not have
a DDT; in particular, Corollary 3.9 is not reversible. To refute EDPC in
this context, consider the natural product algebra A on the ordered multi-
plicative submonoid

{0} ∪ {2−n : n ∈ {0} ∪ N}
of the reals, and let B = AN/U , where U is a free ultrafilter over N. For
1̄, ā, b̄ ∈ AN, if 1̄(n) = 1 and ā(n) = 1

2 and b̄(n) = 2−n for all n, then

〈b̄/U, 1̄/U〉 /∈ CgB(ā/U, 1̄/U), although 〈b̄(n), 1̄(n)〉 ∈ CgA(ā(n), 1̄(n)) for
all n. So, by  Los’ Theorem on ultraproducts, ‘〈z, w〉 ∈ Cg(x, y)’ can’t
be equivalent (in product algebras) to a finite conjunction of equations in
x, y, z, w.

The weakening axiom p → (q → p) is a theorem of FLew. Among the
substructural logics without weakening are the uninorm-based fuzzy logic
IUML of [37] and its consistent extensions. These systems have connectives
→,∧,¬ and constants t,⊥ such that ¬¬p ↔ p and (p→ ¬q)→ (q → ¬p)

5 Here, p→0 q := q and p→k+1 q := p→ (p→k q).
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are theorems. They are incomparable with the consistent extensions of
FLew, but stronger than the system RMt from relevance logic. All con-
sistent extensions of IUML are axiomatic [25], with a DDT and a greatest
compact theory, generated by {⊥}. The form of the DDT is Γ∪ {α} ` β iff
Γ ` (α ∧ t)→ β.

IUML is algebraized by the variety OSM⊥ of bounded odd Sugihara
monoids (see [25, 35] and their references). It is shown in [25] that OSM⊥
is categorically equivalent to the variety of Gödel algebras—a subvariety of
Heyting algebras. So, by Corollary 5.7, no consistent extension of IUML
has a classical inconsistency lemma, except for the largest such extension
IUML3, whose algebraic counterpart is categorically equivalent to BA. (A
variety K is categorically equivalent to BA iff it is generated by a primal
algebra, see [30, 17, 36]. In this case, K is a discriminator variety.)

The variety that algebraizes IUML3 is generated by a well known algebra
Z⊥3 on the idempotent commutative ordered monoid −1 < 0 < 1, where 0 is
the identity and −1� 1 = −1. In this algebra, ∧ is the minimum operation,
¬ is the usual additive inversion, t = 0, ⊥ = −1, and x→ y := ¬(x� ¬y).
Even in IUML3, the formulas ¬p and p→ ⊥ are not logically equivalent.

It can be verified that

{{v1 → . . . → vn → ⊥} : n ∈ N}

is a classical IL-sequence for IUML3, and also for its →,⊥ fragment. The
→ and →,⊥ fragments of IUML3 have a common DDT, viz. Γ ∪ {α} ` β
iff Γ ` (α→ (β → β))→ (α→ β), cf. [1]. The→,⊥ fragment is algebraized
by the smallest quasivariety Q containing the →,⊥ reduct of Z⊥3 . So, Q is
relatively semisimple with EDPRC, by Theorem 5.4, but it is not a variety.
Indeed, the →,⊥ reduct of Z⊥3 is Q–simple, but not simple, as it admits a
factor algebra on {{−1, 1}, {0}}, not belonging to Q. In particular, an alge-
braizable system with a classical inconsistency lemma need not be strongly
algebraizable.
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