Abelian Cayley graphs of given degree and diameter 2 and 3

Tomás Vetrík

Department of Mathematics and Applied Mathematics
University of Pretoria, Pretoria, South Africa
tomas.vetrik@gmail.com

Abstract

Let $C C_{d, k}$ be the largest possible number of vertices in a cyclic Cayley graph of degree d and diameter k, and let $A C_{d, k}$ be the largest order in an Abelian Cayley graph for given d and k. We show that $C C_{d, 2} \geq \frac{13}{36}(d+2)(d-4)$ for any $d=6 p-2$ where p is a prime such that $p \neq 13, p \not \equiv 1(\bmod 13)$, and $A C_{d, 3} \geq \frac{9}{128}(d+3)^{2}(d-5)$ for $d=8 q-3$ where q is a prime power.

Keywords: Cayley graph, degree, diameter, cyclic group, Abelian group
Let G be a group and let X be a set of generators for this group. Then the vertices of a Cayley graph $C(G, X)$ are the elements of G and there is an edge between two vertices u and v in $C(G, X)$ if and only if there is a generator $a \in X$ such that $v=u a$. In this paper we consider undirected Cayley graphs, hence if $a \in X$, then a^{-1} is also in X. If G is an Abelian group (a cyclic group), then the graph $C(G, X)$ will be called an Abelian Cayley graph (a cyclic Cayley graph).

Let $A C_{d, k}$ be the maximum number of vertices in an Abelian Cayley graph of degree d and diameter k, and let $C C_{d, k}$ be the largest order of a cyclic Cayley graph of degree d and diameter k. The degree-diameter problem for Abelian Cayley graphs and cyclic Cayley graphs is to determine or bound $A C_{d, k}$ and $C C_{d, k}$ for given d and k. It is well-known that the number of vertices in a graph of degree d and diameter k can not exceed the Moore bound $1+d+d(d-1)+\ldots+d(d-1)^{k-1}$. However there is much better upper bound for Abelian Cayley graphs. For $d \rightarrow \infty$ and fixed k we have $C C_{d, k} \leq A C_{d, k} \leq \frac{d^{k}}{k!}+O\left(d^{k-1}\right)$; see [7]. Thus $A C_{d, 2} \leq \frac{d^{2}}{2}+O(d)$ and $A C_{d, 3} \leq \frac{d^{3}}{6}+O\left(d^{2}\right)$. On the other hand it is easy to construct Abelian Cayley graphs of order $\left(\frac{d}{k}\right)^{k}+O\left(d^{k-1}\right)$, hence for $d \rightarrow \infty$ and fixed k we have $A C_{d, k} \geq\left(\frac{d}{k}\right)^{k}+O\left(d^{k-1}\right)$; see [1]. Let us also mention a work of Garcia
and Peyrat [2] who proved that $A C_{d, k} \geq \frac{d^{k-2.17}}{21 k!}$ for sufficiently large d and $k \leq d$. Dougherty and Faber [1] presented a number of results on Abelian Cayley graphs for small d and large k. Constructions of Cayley graphs of non-Abelian groups can be found for example in [4] and [5].

We will focus on Abelian Cayley graphs and cyclic Cayley graphs of small diameter. Macbeth, Šiagiová and Širáñ [3] showed that $A C_{d, 2} \geq \frac{3}{8}\left(d^{2}-4\right)$ for $d=4 q-2$, where q is an odd prime power, and they constructed two families of cyclic Cayley graphs of diameter 2 as well. The first family gives the bound $C C_{d, 2} \geq \frac{9}{25}(d+3)(d-2)$ for $d=5 p-3$, where $p \equiv 2(\bmod 3)$ is a prime. The other family was also constructed for an infinite set of degrees d and the order $\frac{d^{2}}{3}+O\left(d^{\frac{3}{2}}\right)$. These results were generalized in [6], where it is proved that $A C_{d, 2} \geq \frac{3}{8} d^{2}-1.45 d^{1.525}$ for any sufficiently large d, and $C C_{d, 2} \geq 9 p(p-1)$ for all $d \geq 12$ and $p \equiv 2(\bmod 3)$ such that $\frac{d}{6} \leq p \leq \frac{d+3}{5}$.

We present cyclic Cayley graphs which yield a better bound than lower bounds on $C C_{d, 2}$ given in [3] and [6].
Theorem 1. $C C_{d, 2} \geq \frac{13}{36}(d+2)(d-4)$ for any $d=6 p-2$ where p is a prime such that $p \neq 13, p \not \equiv 1(\bmod 13)$.

Proof. Let F^{*} be the multiplicative group and let F^{+}be the additive group of the Galois field $G F(p)$, where p is a prime such that $p \neq 13, p \not \equiv 1(\bmod$ 13). Let $G=F^{*} \times F^{+} \times Z_{13}$. Since F^{*}, F^{+}and Z_{13} are cyclic groups, and the orders of any two of them have no common divisor greater than 1 , the group G is also cyclic. We denote the identity element in F^{*} by 1 , and the identity in F^{+}and Z_{13} will be denoted by 0 .

Let $a_{0}=(1,0,1), a(x)=(x, x, 1), b\left(x_{1}\right)=\left(x_{1}, 0,3\right)$ and $c\left(x_{2}\right)=\left(1, x_{2}, 4\right)$, where $x, x_{1} \in F^{*}$ and $x_{2} \in F^{+}$. Then $a_{0}^{-1}=(1,0,-1), a(x)^{-1}=\left(x^{-1},-x,-1\right)$, $b\left(x_{1}\right)^{-1}=\left(x_{1}^{-1}, 0,-3\right)$ and $c\left(x_{2}\right)^{-1}=\left(1,-x_{2},-4\right)$. We use the generating set $X=\left\{a_{0}, a_{0}^{-1}, a(x), a(x)^{-1}, b\left(x_{1}\right), b\left(x_{1}\right)^{-1}, c\left(x_{2}\right), c\left(x_{2}\right)^{-1} \mid\right.$ for any $x, x_{1} \in F^{*}$ and $\left.x_{2} \in F^{+}\right\}$. The Cayley graph $C(G, X)$ is of degree $d=|X|=6 p-2$ and order $|G|=13 p(p-1)=\frac{13}{36}(d+2)(d-4)$.

In order to prove that the diameter of $C(G, X)$ is 2 , it suffices to show that any non-identity element of G which is not in X can be obtained as a product of 2 generators of X. It follows from [3] that if $x_{1} \neq 1$ and $x_{2} \neq 0$, then

$$
\left(x_{1}, x_{2}, 0\right)=a\left(x_{1} x_{2} u\right) a\left(x_{2} u\right)^{-1}=\left(x_{1} x_{2} u, x_{1} x_{2} u, 1\right)\left(\left(x_{2} u\right)^{-1},-x_{2} u,-1\right)
$$

where $u=\left(x_{1}-1\right)^{-1}$. It is easy to see that

$$
\begin{aligned}
& \left(x_{1}, 0,0\right)=b\left(x_{1}\right) b(1)^{-1}=\left(x_{1}, 0,3\right)(1,0,-3) \text { for any } x_{1} \in F^{*} \text { and } \\
& \left(1, x_{2}, 0\right)=c\left(x_{2}\right) c(0)^{-1}=\left(1, x_{2}, 4\right)(1,0,-4) \text { for any } x_{2} \in F^{+} .
\end{aligned}
$$

We consider all the other elements of G. For any $x_{1} \in F^{*}, x_{2} \in F^{+}$and $i, j \in\{-1,1\}$, we have

$$
\begin{aligned}
& \left(x_{1}, x_{2}, 3 i+4 j\right)=b\left(x_{1}^{i}\right)^{i} c\left(j x_{2}\right)^{j}=\left(x_{1}, 0,3 i\right)\left(1, x_{2}, 4 j\right) \\
& \left(x_{1}, x_{2}, i+4 j\right)=a\left(x_{1}^{i}\right)^{i} c\left(j x_{2}-i j x_{1}^{i}\right)^{j}=\left(x_{1}, i x_{1}^{i}, i\right)\left(1, x_{2}-i x_{1}^{i}, 4 j\right) \\
& \left(x_{1}, 0, i+3 j\right)=a_{0}^{i} b\left(x_{1}^{j}\right)^{j}=(1,0, i)\left(x_{1}, 0,3 j\right)
\end{aligned}
$$

Finally, if $x_{2} \neq 0$,

$$
\left(x_{1}, x_{2}, i+3 j\right)=a\left(i x_{2}\right)^{i} b\left(i x_{1}^{j} x_{2}^{-i j}\right)^{j}=\left(i x_{2}^{i}, x_{2}, i\right)\left(i x_{1} x_{2}^{-i}, 0,3 j\right)
$$

Hence any element of G can be expressed as a product of at most 2 generators in X. The proof is complete.

Much less is known about large Abelian Cayley graphs of diameter 3. We mentioned above that for $d \rightarrow \infty$ and fixed $k, \frac{d^{3}}{27}+O\left(d^{2}\right) \leq A C_{d, 3} \leq \frac{d^{3}}{6}+$ $O\left(d^{2}\right)$. The following result improves the lower bound on $A C_{d, 3}$ considerably.

Theorem 2. $A C_{d, 3} \geq \frac{9}{128}(d+3)^{2}(d-5)$ for any $d=8 q-3$ where q is a prime power.

Proof. Let $G=F^{*} \times F^{+} \times F^{+} \times Z_{36}$, where F^{*} is the multiplicative group and F^{+}is the additive group of the Galois field $G F(q) ; q$ is a prime power. Again, the identity element in F^{*} is 1 , and the identity in F^{+}and Z_{36} is denoted by 0 . Let

$$
a_{0}=(1,0,0,1) \text { and } b_{0}=(1,0,0,3)
$$

For $x, \bar{x}, x_{1}, x_{2} \in F^{*}$ and $x_{3} \in F^{+}$we define

$$
\begin{aligned}
& a(x)=(x, x, 0,1), b(\bar{x})=(\bar{x}, 0, \bar{x}, 3), c\left(x_{1}\right)=\left(x_{1}, 0,0,9\right), \\
& d\left(x_{2}\right)=\left(1, x_{2}, 0,0\right) \text { and } e\left(x_{3}\right)=\left(1,0, x_{3}, 18\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& a_{0}^{-1}=(1,0,0,-1), b_{0}^{-1}=(1,0,0,-3) \\
& a(x)^{-1}=\left(x^{-1},-x, 0,-1\right), b(\bar{x})^{-1}=\left(\bar{x}^{-1}, 0,-\bar{x},-3\right) \\
& c\left(x_{1}\right)^{-1}=\left(x_{1}^{-1}, 0,0,-9\right), d\left(x_{2}\right)^{-1}=d\left(-x_{2}\right) \text { and } e\left(x_{3}\right)^{-1}=e\left(-x_{3}\right) .
\end{aligned}
$$

The generating set $X=\left\{a_{0}, a_{0}^{-1}, b_{0}, b_{0}^{-1}, a(x), a(x)^{-1}, b(\bar{x}), b(\bar{x})^{-1}, c\left(x_{1}\right)\right.$, $c\left(x_{1}\right)^{-1}, d\left(x_{2}\right), e\left(x_{3}\right) \mid$ for any $x, \bar{x}, x_{1}, x_{2} \in F^{*}$ and $\left.x_{3} \in F^{+}\right\}$. The Cayley graph $C(G, X)$ is of degree $d=|X|=8 q-3$ and order $|G|=36 q^{2}(q-1)=$
$\frac{9}{128}(d+3)^{2}(d-5)$. It remains to prove that the diameter of $C(G, X)$ is equal to 3 . We have

$$
\begin{aligned}
& \left(x_{1}, x_{2}, 0,0\right)=a\left(x_{1} x_{2} u\right) a\left(x_{2} u\right)^{-1} \text { where } u=\left(x_{1}-1\right)^{-1}, x_{1} \neq 1 \text { and } x_{2} \neq 0, \\
& \left(x_{1}, 0,0,0\right)=c\left(x_{1}\right) c(1)^{-1} \text { for any } x_{1} \in F^{*} .
\end{aligned}
$$

Since $\left(1, x_{2}, 0,0\right)$ is in X for $x_{2} \in F^{*}$, we can obtain any element $\left(x_{1}, x_{2}, 0,0\right)$ where $x_{1} \in F^{*}$ and $x_{2} \in F^{+}$as a product of at most 2 generators of X. Similarly, it is possible to show that any element $\left(x_{1}, 0, x_{3}, 0\right), x_{1} \in F^{*}$, $x_{3} \in F^{+}$can be obtained as a product of 2 generators of X. This helps us to show that we can express any element $\left(x_{1}, x_{2}, x_{3}, s\right)$ of G for $s=0,1,3$ or 18 as a product of at most 3 generators of X. We have

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, 0\right)=\left(x_{1}, 0, x_{3}, 0\right) d\left(x_{2}\right) \text { if } x_{2} \neq 0, \\
& \left(x_{1}, x_{2}, x_{3}, 1\right)=\left(x_{1} x_{2}^{-1}, 0, x_{3}, 0\right) a\left(x_{2}\right) \text { if } x_{2} \neq 0, \\
& \left(x_{1}, 0, x_{3}, 1\right)=\left(x_{1}, 0, x_{3}, 0\right) a_{0}, \\
& \left(x_{1}, x_{2}, x_{3}, 3\right)=\left(x_{1} x_{3}^{-1}, x_{2}, 0,0\right) b\left(x_{3}\right) \text { if } x_{3} \neq 0, \\
& \left(x_{1}, x_{2}, 0,3\right)=\left(x_{1}, x_{2}, 0,0\right) b_{0}, \\
& \left(x_{1}, x_{2}, x_{3}, 18\right)=\left(x_{1}, x_{2}, 0,0\right) e\left(x_{3}\right) .
\end{aligned}
$$

Now we consider the other elements of G. Let $i, j \in\{-1,1\}$.

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, 3+i\right)=a\left(x_{1}^{i} x_{3}^{-i}\right)^{i} b\left(x_{3}\right) d\left(x_{2}-i x_{1}^{i} x_{3}^{-i}\right) \text { if } x_{3} \neq 0 \text { and } x_{2} \neq i x_{1}^{i} x_{3}^{-i}, \\
& \left(x_{1}, x_{2}, 0,3+i\right)=a\left(x_{1}^{i}\right)^{i} b_{0} d\left(x_{2}-i x_{1}^{i}\right) \text { if } x_{2} \neq i x_{1}^{i}, \\
& \left(x_{1}, i x_{1}^{i} x_{3}^{-i}, x_{3}, 3+i\right)=a\left(x_{1}^{i} x_{3}^{-i}\right)^{i} b\left(x_{3}\right) \text { if } x_{3} \neq 0, \\
& \left(x_{1}, i x_{1}^{i}, 0,3+i\right)=a\left(x_{1}^{i}\right)^{i} b_{0}, \\
& \left(x_{1}, x_{2}, x_{3}, 9+i+3 j\right)=a\left(i x_{2}\right)^{i} b\left(j x_{3}\right)^{j} c\left(i j x_{1} x_{2}^{-i} x_{3}^{-j}\right) \text { if } x_{2}, x_{3} \neq 0, \\
& \left(x_{1}, x_{2}, 0,9+i+3 j\right)=a\left(i x_{2}\right)^{i} b_{0}^{j} c\left(i x_{1} x_{2}^{-i}\right) \text { if } x_{2} \neq 0, \\
& \left(x_{1}, 0, x_{3}, 9+i+3 j\right)=a_{0}^{i} b\left(j x_{3}\right)^{j} c\left(j x_{1} x_{3}^{-j}\right) \text { if } x_{3} \neq 0, \\
& \left(x_{1}, 0,0,9+i+3 j\right)=a_{0}^{i} b_{0}^{j} c\left(x_{1}\right), \\
& \left(x_{1}, x_{2}, x_{3}, 9+3 j\right)=b\left(j x_{3}\right)^{j} c\left(j x_{1} x_{3}^{-j}\right) d\left(x_{2}\right) \text { if } x_{2}, x_{3} \neq 0, \\
& \left(x_{1}, x_{2}, 0,9+3 j\right)=b_{0}^{j} c\left(x_{1}\right) d\left(x_{2}\right) \text { if } x_{2} \neq 0, \\
& \left(x_{1}, 0, x_{3}, 9+3 j\right)=b\left(j x_{3}\right)^{j} c\left(j x_{1} x_{3}^{-j}\right) \text { if } x_{3} \neq 0, \\
& \left(x_{1}, 0,0,9+3 j\right)=b_{0}^{j} c\left(x_{1}\right), \\
& \left(x_{1}, x_{2}, x_{3}, 9+i\right)=a\left(i x_{2}\right)^{i} c\left(i x_{1}^{-1} x_{2}^{i}\right)^{-1} e\left(x_{3}\right) \text { if } x_{2} \neq 0, \\
& \left(x_{1}, 0, x_{3}, 9+i\right)=a_{0}^{i} c\left(x_{1}^{-1}\right)^{-1} e\left(x_{3}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, 9\right)=c\left(x_{1}^{-1}\right)^{-1} d\left(x_{2}\right) e\left(x_{3}\right) \text { if } x_{2} \neq 0 \\
& \left(x_{1}, 0, x_{3}, 9\right)=c\left(x_{1}^{-1}\right)^{-1} e\left(x_{3}\right) \\
& \left(x_{1}, x_{2}, x_{3}, 15+i\right)=a\left(i x_{2}\right)^{i} b\left(i x_{1}^{-1} x_{2}^{i}\right)^{-1} e\left(i x_{1}^{-1} x_{2}^{i}+x_{3}\right) \text { if } x_{2} \neq 0 \\
& \left(x_{1}, 0, x_{3}, 15+i\right)=a_{0}^{i} b\left(x_{1}^{-1}\right)^{-1} e\left(x_{1}^{-1}+x_{3}\right) \\
& \left(x_{1}, x_{2}, x_{3}, 15\right)=b\left(x_{1}^{-1}\right)^{-1} d\left(x_{2}\right) e\left(x_{1}^{-1}+x_{3}\right) \text { if } x_{2} \neq 0 \\
& \left(x_{1}, 0, x_{3}, 15\right)=b\left(x_{1}^{-1}\right)^{-1} e\left(x_{1}^{-1}+x_{3}\right) \\
& \left(x_{1}, x_{2}, x_{3}, 17\right)=a\left(x_{1}^{-1}\right)^{-1} d\left(x_{1}^{-1}+x_{2}\right) e\left(x_{3}\right) \text { if } x_{2} \neq-x_{1}^{-1} \\
& \left(x_{1},-x_{1}^{-1}, x_{3}, 17\right)=a\left(x_{1}^{-1}\right)^{-1} e\left(x_{3}\right)
\end{aligned}
$$

We showed that any element $\left(x_{1}, x_{2}, x_{3}, s\right)$ where $x_{1} \in F^{*}, x_{2}, x_{3} \in F^{+}$and $0 \leq s \leq 18$ can be obtained as a product of at most 3 generators of X. Since X is closed under taking inverses, elements $\left(x_{1}, x_{2}, x_{3},-s\right)$ can be expressed similarly. It is easy to see that it is not possible to express any element of G with the last coordinate $9+i+3 j$ as a product of fewer than 3 generators of X, therefore the diameter of $C(G, X)$ is exactly 3 .

It would be desirable to have a similar result for cyclic Cayley graphs of diameter 3 . Unfortunately we have not been able to obtain a construction of cyclic Cayley graphs of diameter 3 and order close to $\frac{9}{128} d^{3}$ for an infinite set of degrees d, hence this remains an open problem for future research.

References

[1] R. Dougherty and V. Faber, The degree-diameter problem for several varieties of Cayley graphs I: The Abelian case, SIAM J. Discrete Math. 17, No. 3 (2004) 478-519.
[2] C. Garcia and C. Peyrat, Large Cayley graphs on an abelian group, Discrete Appl. Math. 75, No. 2 (1997) 125-133.
[3] H. Macbeth, J. Šiagiová and J. Širáň, Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups, Discrete Math. 312, No. 1 (2012) 94-99.
[4] H. Macbeth, J. Šiagiová, J. Širáň and T. Vetrík, Large Cayley graphs and vertex-transitive non-Cayley graphs of given degree and diameter, J. Graph Theory 64, No. 2 (2010) 87-98.
[5] J. Šiagiová and J. Širáň, Approaching the Moore bound for diameter two by Cayley graphs, J. Comb. Theory, Ser. B 102, No. 2 (2012) 470-473.
[6] J. Šiagiová, J. Širáň and M. Ždímalová, Large graphs of diameter two and given degree, Proceedings of the 3rd International Workshop on Optimal Network Topologies IWONT 2010, Barcelona (2011) 347-359.
[7] R. Stanton and D. Cowan, Note on a "square" functional equation, SIAM Rev. 12 (1970) 277-279.

