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ABSTRACT

In this paper a variant of the Sequential
Specification Method has been used together witlvwiig
Simulation Method as the numerical method to salvénverse
problem associated with the determination of that leapacity.
It has been developed a software application fomesion the
temperature dependence of heat capacity using thaorm
and programming language Visual C++.

A set of temperatures measured at different padfitthe
medium (obtained by means the numerical soluticthefdirect
problem) and a random error affected by a normstriution
are used for evaluation of the classical functidhat compares
these temperatures with the temperatures obtainetkncally
at each step , and so an iterative least-squapesagh function
is obtained (heat capacity) by straight sectiongc@wise
function).

No prior information is used for the functional fies of the
unknown specific heat, because this problem isidensd a
function estimation problem. A special device thaberates a
piecewise temperature-dependent function is reduiie
conjunction with a programming routine.

The Network Simulation Method is the numerical noeth
used, with a design of the network model easy asdviery few
electric devices. The software developed is useduto the
network so that no mathematical manipulations acuired.
The effect of different parameters over the nunatrsolution
has been studied. The results confirm that it issje to
estimate the heat capacity (or specific heat whendensity is
known) using experimental temperature history apdogedure
inverse based in an iterative process.

INTRODUCTION

The heat transport in solid media is controlled thg
thermophysical properties thermal conductivity argat
capacity or specific heat. When the thermal conditgtis
constant, the two coefficients, along with the dgnsan be
grouped into a single feature called thermal diffitng These
properties have a determining influence on the tgatpre
distribution and heat flux densities during transigrocesses of
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heating or cooling, which must be known distribatian
numerous applications, for example, to design atimab
control of these processes. In most practical emging
problems, the thermophysical properties are tentpera
dependent, and therefore, the conduction equasiam partial
differential equation whose solution is not lineiargeneral, is
obtained through numerical techniques [1]. The liggeheat
conduction problem is concerned with the deternonatf the
thermal conductivity, the volumetric heat capacitye initial
condition, the boundary conditions and the heatcasuusing
known temperature or heat flux. The inverse proklame more
difficult than their corresponding direct probleimscause they
are usually ill-posed. The estimation of the hegtacity which
is a function of temperature is being considerethiis study.
The estimate, therefore, of any of the thermoplaysic
properties of a solid medium is a nonlinear invgreeblem of
enormous complexity, in any case much more diffithéin the
estimation of constant properties, or even thateftanation of
time or space dependent properties. Needless to thay
interesting problem of simultaneous estimation bérmal
properties from both of the measures taken in alein
experiment, recently studied by some authors gvien more
complex, requiring finer adjustments (for througtpmperly
defined functional) to achieve a converged soluéind valid.

In the scientific literature there are numerouslisakions,
using different numerical techniques, estimate thermal
properties dependent on the temperature in the tdrimverse
problem. So [3] estimated the thermal conductitétyperature
dependent; investigates the use of different loaatifor the
measurement point temperatures and the influenceufber
of measures. Both elections significantly influetice estimate.
Furthermore, [4] and [5] obtain estimates of thertmal
property space. They determined the thermal condiycin 1-
D half with internal heat generation. Using two hoets of
solution based on finite differences in the firsars from a
continuous set of temperature measurements whales¢icond
uses a discrete set. Both methods can be appliédetar and
nonlinear problems, without a priori knowledge bé ttype of



dependence of the conductivity. Show three apmtinat

conductivity constant, conductivity and positiorpdadent
temperature-dependent conductivity. [6] using agionate

analytical techniques based on the Laplace tramsféo

estimate the thermal diffusivity of materials agtintemperature
in half dimensional. It contrasts the processescobling

method for three materials, nickel, niobium andgzilim, and
studied the effect of error in measurements. [7ihgisan

approximate method of direct integration
simultaneous estimation of the thermal conductidbhd heat
capacity, both properties linear functions of terapgre.

[8], using various measuring points, estimate
temperature dependency of conductivity and heaaaspin
half 2-D orthotropic, using the iterative procedurased on
Levenberg-Marquardt  minimization of a
characteristic. [9] estimated thermophysical propsr by
function estimation procedure, using the conjugatadient
method, and studying the effects on the estimatmbgifying
the position sensor measurements. [10] solved atifim
estimation problem of predicting temperature-depend
thermal conductivity without internal measuremerjtkl]
determined the temperature-dependent thermal ctimiydn
a stationary problem. [12] obtained a piecewise tgeneous
function to estimate the thermal conductivity ofndactors
subjected to a heat flow test. [13] estimated #vaperature-
dependent thermal conductivity and heat capacitynahner
simultaneous. [14] solved the inverse problem
simultaneously measurement temperature-dependeammah
conductivity and heat capacity.

The purpose of this paper is to propose a numesadalvare
for determination of the heat capacity in orderdatain a
response in temperature-stretches of the dependeiticethe
temperature of the specific heat. Such a problembeatreated
as one kind of the inverse heat conduction protiema solid
material. Transient temperature measurements didbhedary,
from the solution of the direct problem, servedtassimulated
experimental data needed as input for the invanagysis. Both
direct and inverse heat conduction problems areedgolising
the network simulation method. The solution is otetd step-
by-step by minimising the classical functional tltaimpares
the above input data with those obtained from tlat®n of
the inverse problem. A straight line of variableps and length
is used for each one of the stretches of the dksokition.

Numerical tool employed has been the Network Sitrara
Method (NSM). This method rests on the electrofttadr
analogy (loosely called the resistance-capacitaradogy or
the RC analogy) that exists between
unidirectional conduction of heat and the unstefidw of
electric current. Once the electric network moded heen set
up for the heat conduction equation, the numetieatment of
the analogy electric circuit equation can be eatilye with the
computer code Pspice.

NOMENCLATURE
Co [J/kgK] Specific heat
C [3/m*K] Heat capacity

1697

performed

the

functional

n

the unsteady,

C [F]

E [-]
fc [-]
F [-]

I [A]
k [W/mK]
L [m]
n [-]
N [-]
R [Q]
r [-]

t [s]
T [°C]
\% [V]
X [m]
z [-]

z [-]
z [-]
A [-]
0 [-]
AC [3/m*K]
Ax [m]
AT [°C]
Ae [-]
p [kg/m’]
£ [-]
Subscripts
DHCP

end

f

ini

i

IHCP

i£AX

j

L

max

min

new

opt

p

z

0

Capacitor and capacitance

Voltage-control voltage-source
Mathematical function

Functional defined in eq. (10)
Current

Thermal conductivity

Length

First value of temperature within the
functional

Number of cells

Resistor

Number of terms of the functional
Time

Temperature

Voltage

Cartesian axis direction

Number maximum of stretch
Particular number of stretch

Summation

Increment

Differential

Deviation of the capacity heat in
relation to the mean value

Thickness of the control volume
Temperature interval associated to
the functional

Error percentage interval

Density

Random error value

Direct problem

End

Particular location at the slab

Initial

Associated to the volume element i,
1<i<N; also the centre of the volume
element

Inverse problem

Right and left ends of the cell
elemental

1,2,....p

Half a thickness of the slab mean
value

Maximum

Minimum

Refers to the first temperature with
the stretch

New

Optimum

Natural number (total number of
temperature measurements)

Number of stretch 1,2, ...Z,

Initial condition



MATHEMATICAL FORMULATION

The formulation of inverse heat conduction problem
originates from the direct heat conduction formolat For
simplicity we assumed a medium one-dimensional and
cartesian coordinate system. Thus, for one-dimeasio
unsteady state heat conduction equation in a oothelg
coordinate, the direct formulations are as follows:

C(T) a—T = i ka—T , atOx<L,t>0 (1)
ot  ox\| 0Jx
ka—T =0 atx=0,t >0 )
ot
k[;[ =q, atx=L,t>0 (3)
T=T, att=0, O<x<L (4)
C(T) = f(T) (5)

The direct problem, Equation (1) is concerned wiitle
determination of temperature distributiongt) in the interior
region of the solid material as a function of tiared position.

In eq. (5) £ defines an arbitrary continuous functionTof

The inverse problem arises if any of the pararsei®r
not known especiallyC=pc, and Kk, but the transient
temperature, boundary and initial conditions arevkm.  The
formulation of the IHCP involves Egs. (1-4) and tbet of
temperaturesT yce(X.tj,&) from the temperature measurement
(or they can be obtained of the numerical solutibthe direct
problem DHCP and submitted to a random egprWith this
information, the aim is to obtained a approach tsmhuof the
dependenc€(T) by means of a piece-wise function in the form

C(T) =C,(1=z<2) (6)

This solution is defined b¥ straight stretches of variable slope
and size.

INVERSE DETERMINATION:
RESOLUTION

ALGORITHM  OF

Discretizing equation (1) by method of finite diéace [15].
Ci (dTi/dt) =k (Tia - 27T - Tiua)/ A @
This expression can be expressed:

Ci (dTi/dt) = [K (Tia - T)AX] - [K (T; - Tiea)/ ] (8)

At this moment the electrical analogy is applied a
network electrical circuit is designed. In this kgg: heat flux
(q) and temperaturely are connected to the electric variables
current () and voltageY), respectively. A number of volume
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elements ®50, in 1-D geometry, ensures that the errors in the
temperature and heat flux fields are around 0.5%oim-linear
problems. The whole network, transformed into &exfile, is
solved by the computer code Pspice [16,17] usiR€a

Defining the currents:

lic = AX G; (T) (dTi/dt (9a)
li.ax = K (Tiax - T/(AX/2) (9b)
livax = K (Ti - Tiea)/(AX/2) (9¢)

Eq. (8) may be written as Kirchhoff's law for thelléwing
currentsilic - lia + lisax = 0. The network model for the cell is
now designed, Fig. 2a. Eq. (9a) defines a capaciorof
variable capacitance (an auxiliary circuitcEprovides the
values ofC;(T)) and eqgs. (9b) and (9c) define two resistors of
resistance RAx/2k. As regards the initial condition, a voltage
T, is applied to the capacitors.

NUMERICAL METHOD

Broadly speaking, the inverse problem, to knowwhleie
of the parameters to be estimated in an instant,nyast have
calculated these parameters in the instant bei®ee continual
and iterative process composed of two loops, loop
approximation (loop internal) and loop stretch @oubop).
The "loop of stretch” is in charge of taking the olh
temperature range and divided it into small sestido go after
scrolling progressively. The data required for tlosp are:
initial T(Tin), final T(Teng and number of stretcix),
Loop approximation is responsible for running Pepjio with
the different values of C, and obtain the optir@4C,,). For
each approximation are performed three simulati(@&),
C(2+AC, C(2-AC) and take the new value of C that gives
smallest error to assign it @,y. In each new approximation is
assigned taC(z) its new value C,,), as well as reduces the
value ofACe,=AC/2.

The functional to be optimised in each itematihas the
classical form
Fiy = Z=n, net, .. nef TinvXet) = Tincp(Xe, €)1 (10)
where z = 1, 2, ..., Z identifies the stretch, élnlg the total
number of stretches of the piece-wise functionvhliich may
vary from one stretch to another, is the numbeeohs of the
functional (number of temperature measurementsinvithe
actual stretch) and n and n+r are the first and ldst
temperature index within the stretch, respectiv@ly,(x:, t) is
the temperature solution of the inverse problerthatposition

X and time jt The temperatures,ike(X:, t.€) were defined in
the section mathematical model.



C_opt(0)=Cy

z=1
Loop stretches
A
Aprox=1
AC=Increase Loop
C(z)=C_opt approximation
\
Direct
problem
Approx++
C(z)=C_opt
AC=AC/2
A

7+t

C_opt=C(z)

No
Aprox=N_Approx —_—

Yes

No

SOLUTION

Figure 1 Inverse algorithm of resolution

Software developed

The program consists of three main windows on tte, f
“Initialization”, we enter the material data. Inethsecond,
“Setup” is where you define the type of problem aildthe
data required for execution. Finally, the third damv,
"Solution” is showing results.

In the first we met (Figure 2) is the screen chaodethe
definition of material as well as various propestie

1) Length of body to be treated, measured in meters

2) Density of the body to be treated, measuredjimk

3) Initial temperature before of the experiment .

4) Boundary conditions at the left and right sidi¢he body.

a. Heat flux measured in W/m
b. Temperature measured in °C.
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c. Forced convection: Ambient temperature (°C) and
convection coefficient (W/fPC).

5) Numbers of sensors.

6) Sensor location from the left end in meters.

1 ESTIMACION DE PROPIEDADES TERMOFISICAS =)
INCIALZACION | CONFIGURACION | _SoLuicion
MATERIAL o e
Longitud (m) 0.250 |2 Densidad (kg/m3) ~ 7961.00 %
° [P -] Temperatura Inical (°C) 0 z ° [Furo v
Potenda  100.00 2 kwim2 Potenda  0.00 3 kw2
. . . .
Sensorl Sensor2 Sensor3 Sensord
Node sensores Posiden 1 Posidon zopmm 3 Posions
4 2 0.000 T 0.050 0.100 % 0.150 |2
ARGHIVO
Texttabel
Archivo Tamario
Selecciona el archivo de entrada l
archvo - @
Diectario Y e =
[ Novegar.. scar

Figure 2 Points of measurement, boundary conditions,‘

Other data (File): It's necessary only fosesain which
wants to solve the inverse problem or the probldnnidial
value.

7) Name of data file. You must be a plain text,fitentaining
as many columns as the number of sensors for thetiine,
although it doesn’t affect in the process, its gals purely
explanatory. Have no blank line, the first line redes with
the first measurement. You can use asterisks acavils.

8) Bar directory where the browser will look forettfile
specified in paragraph previous.

9) Button to begin your search.

10) Window showing all files in the directory spfesil and that
match the name given in the sections previous. @ismayed,
double click on the file to be opened to check vabdity of

same after verification is already closed and setec

The “Setup” windows (Figure 3) consists of a senédvoxes
and buttons that are activated according to thHergifit options
we have selected. We can choose between directepmolthe
initial value problem and inverse problem. So wa eatimate
both the thermal conductivity and the specific heatboth at
once. To define the known variables, the programesgius a
choice between two options, linear, where we ghe initial

and final values of the known variables, or streg;twhere we
can define up to nine stages.



£ ESTIACION DE ngl(mnzsé‘rzmcgslcf am s

INICIALIZACION | CONFIGURACION | SOLUCION
TIPO DE PROBLEMA

PROBLEMAINVERSO | |Tramos v‘

© Conocer Ce Conocer k Simutaneo

Nomero de tramos | 1= .

PARAMETROS DE SIMULACION

TEO o000 2 2500 [ so00 [2 7500 2

KwmK) 6200 [3 6100 [3] 6000 [5] sas0 [2

Unidad de tempo 5.00 (2

TemperaturaInical 0,00 (3] °C Numero de apr

Ce1(gK) T1(C)  Incemento
s [2] o000 [5] sooo [2

10000 2| 12500 [2] 15000 [3] 7m0 2 .
5900 5] s9.50 3] 6000 (3 6100 5

vvvvvvv deceldes 40 2

roximaciones 5 |+

Temperatura Fnal  200.00 3] °C NedetamosdeTemp 8 | Numero datos obtenidos 1

2/

Figure 3 Simulation parameters, stretches, ....

1) Initial value ofC(T).

2) ACy (initial increment heat capacity).

3) Numbers of sections selector to define the fipdudat.

4) Table to define the specific heat as a funatibtfemperature.

5) Initial T(T;,) and finalT(Teng.

6) Simulation step, must be the same as the input.

7) Numbers of stretcheg)

PROCESSING OF RESULTS

EXPERIMENT 1

First experiment is to know how it affects the erro
measuring the position of the sensors in the calicul of the
functional. To do this we modeled by a block MESURgsten
steelL = 250 mm, which is applied at one end a known flow
MeasuredT(t) at four different points located along the Ioc
Measured were realized from where the flow is auplio the
other extreme, so the sensors are placed at0s % = 50 mm,
X3= 100 mm and x= 150 mm.

Table 1 Results of the experiment 1for a position sensor 1
(x=0)

Position | Position | Position | Position
Sensor 1 Sensor 4 Sensor 3 Sensor 4 Functional
(mm) (mm) (mm) (mm)

0.05 0.1 0.15 [78.233
0.05 0.1 0.152| 346.296
0.05 0.1 0.148| 412.98

0.05 0.102 0.15| 657.986

0.05 0.102 0.152 926.759

0.05 0.102 0.148| 992.773

0.05 0.098 0.15( 710.948

0.05 0.098 0.152| 979.642

0.05 0.098 0.148| 1045.685

In "Solution" window (see Fig. 4), is running theoplem
chosen and at the end, we show the different siionkg
Placing the mouse over the graph, automaticallyeapp

0.052

0.1

0.15

1116.061

0.052

0.1

0.152

1383.784

calculates parameter values.

%] ESTIMACION DE PROPIEDADES TERMOFISICAS

[EE=A

[ TICIALZAGION | CONFIGURACION | SOLUCION |

‘ EJECUTAR ‘

Ce

Temperature (°C)

0.052 0.1 0.148[ 1450.678

0.052 0.102 0.15| 1693.904

0.052 0.102 0.152] 1961.588

0.052 0.102 0.148] 2028.501

0.052 0.098 0.15] 1742.781

0.052 0.098 0.152| 2018.882

0.052 0.098 0.148( 2077.527

0.048 0.1 0.15| 1149.81

0.048 0.1 0.152] 1450.03

0.048 0.1 0.148[ 1483.231

0.048 0.102 0.15| 1746.595

0.048 0.102 0.152| 2046.414

Figure 1 Numerical solution
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0.048 0.102 0.148[ 2081.046

0.048 0.098 0.15| 1780.965

0.048 0.098 0.152] 2081.434

O O |O JO |O O O O O |©O O |0 O |0 |0 0 |0 |0 o |0 |0 |o |o|o o |o o

0.048 0.098 0.148] 2115.326




For discretization we have used 125 cells, so ttatsize
of each cell isAx =2 mm (/N). Then calculate functional (we
can say that is an error of the estimation), whk warious
algorithms explained above, modifying the positioh the
sensors in £22mm (equivalent to a cell). The reslitsined are
shown in the tables 1 and 2.

Table 2 Results of the experiment 1 for a position serdsor

(#0)

Position | Position | Position | Position

Sensor 1 Sensor 4 Sensor J Sensor 4 Functional

(mm) (mm) (mm) (mm)
0.002 0.05 0.1 0.15| 5409.444
0.002 0.05 0.1 0.152] 5080.507
0.002 0.05 0.1 0.148 5769.201
0.002 0.05 0.102 0.15( 4807.38
0.002 0.05 0.102 0.157 4478.442
0.002 0.05 0.102 0.148 5167.136
0.002 0.05 0.098 0.15| 6075.718]
0.002 0.05 0.098 0.153 5746.78]
0.002 0.05 0.098 0.148 6435.475
0.002 0.052 0.1 0.15| 4437.754
0.002 0.052 0.1 0.152] 4108.816
0.002 0.052 0.1 0.148 4797.51
0.002 0.052 0.102 0.15| 3835.69
0.002 0.052 0.102 0.153 3506.752
0.002 0.052 0.102 0.148 4195.446
0.002 0.052 0.098 0.15| 5104.028
0.002 0.052 0.098 0.153 4775.09
0.002 0.052 0.098 0.144 5463.784
0.002 0.048 0.1 0.15| 6536.22
0.002 0.048 0.1 0.152] 6207.283
0.002 0.048 0.1 0.148 6895.977
0.002 0.048 0.102 0.15| 5934.156
0.002 0.048 0.102 0.153 5605.219
0.002 0.048 0.102 0.148 6293.913
0.002 0.048 0.098 0.15| 7202.495
0.002 0.048 0.098 0.153 6873.557
0.002 0.048 0.098 0.14 7562.251

In the first row is shown the original position tfe
sensors, so for this case there is not error iptsition of the
sensors, so the value of the functional is minimum.
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If we compare the first data table with the secome,can
see that in the second table the value of the iumaitis much
greater than the first. The error is significaritigreased in the
second table even though the only difference isrttreduction
of error in the sensor. Likewise if we take the functional
groups of five (5 th column, row 1, 2, 3 ...), weesin both
tables, the error in the third row is always gre#tan the error
in the second. From these data it appears thahtine sensitive
functional greater the proximity to the end of tee (3 rd row).
In conclusion we can say that the error in the tposiof the
sensors, affecting directly proportional to the diional, the
closer you are the sensors of the constant heatafplied at
x=0.

EXPERIMENT 2

For the next experiment, we take as reference ekhbid
copper cylinder 200mm long and 10mm in diameterepwtthe
mathematical model is the same that for the cantesi
coordinate system, due to the problem is one-diforah,
with a density of 1833 kg/fnand four k-type thermocouples
placed at the positions =0 mm,x =10 mm,x =20 mm and
x=30 mm. It's applied a constant heat flux of 12/t atx=0
where a sensor is located.

Simulating the experiment and obtaining the output
temperature sensors, we apply our algorithm of lotiso
modifying two parameters. On the one hand the nunabe
stretches Z= 10, 20 and 30. To maintain the samgeraf
application of the algorithm, this parameter has affect
inversely proportional t&AC, (see the sensibility equations 11a
and 11b)

C+AC
C
C-AC
AT
C+AC/2
C
C-AC/2
«—>l—>
AT AT

Figure 5 Clarification of the use oAC andAT

AC
Sen= (ZnOApfox j Z (11a)
! z7'=27
Sen'= (WJ Z'= @cfp/zj 2Z  (11b)



On the other hand it has been changing the valugGaf
following what has been said.

Functional (F}

Figure 6 Numerical solution for various values &C andZ
(experiment 2)

The value of the functional is an appreciatiortha error
obtained in the estimation of the specific heat {wat
capacity). This value is shown in figure 6 for diffnt values of
Z (in the range 5-35) antiC, (in the range 2.5-30). Minimum
value of the functional is obtained f@r10 andACy=10J/kgK.
Figure 7 shows the optimal inverse solution (lowesue of
the functional) for the cases, re@=8 and Z=16. We can
observed that the better estimation isZeB and an instability
occurs forz=16.

610

¢ (J/kgK) .
600 -
590
580
570
560
550

p=1833 kg/m3
540 : :
0 50 100 150 200 250

T(20)

Figure 7 IHCP solution for of AC, o= 10 J/kgK,
for Z=8 and 16 (experiment 2)
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CONCLUSIONS

This paper provides an efficient numerical softwaased in
the Network Simulation Method already checked amgnnon-
lineal problems) as the numerical tool, for estingtthe heat
capacity of solid metallic, as a function of thenfrature,
starting from temperature measurements in a hegtiogess.
The proposed procedure is a modification of the wkno
function estimation technique, typical of the irsemproblem
field. Estimations require various points of measuent in the
material.
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