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ABSTRACT 

In this paper a variant of the Sequential Function 
Specification Method has been used together with Network 
Simulation Method as the numerical method to solve an inverse 
problem associated with the determination of the heat capacity. 
It has been developed a software application for estimation the 
temperature dependence of heat capacity using the Qt platform 
and programming language Visual C++.  

A set of temperatures measured at different points of the 
medium (obtained by means the numerical solution of the direct 
problem) and a random error affected by a normal distribution 
are used for evaluation of the classical functional that compares 
these temperatures with the temperatures obtained numerically 
at each step , and so an iterative least-squares approach function 
is obtained (heat capacity) by straight sections (piecewise 
function).  

No prior information is used for the functional forms of the 
unknown specific heat, because this problem is considered a 
function estimation problem. A special device that generates a 
piecewise temperature-dependent function is required in 
conjunction with a programming routine. 

The Network Simulation Method is the numerical method 
used, with a design of the network model easy and has very few 
electric devices. The software developed is used to run the 
network so that no mathematical manipulations are required. 
The effect of different parameters over the numerical solution 
has been studied. The results confirm that it is possible to 
estimate the heat capacity (or specific heat when the density is 
known) using experimental temperature history and a procedure 
inverse based in an iterative process. 

 
INTRODUCTION 

The heat transport in solid media is controlled by the 
thermophysical properties thermal conductivity and heat 
capacity or specific heat. When the thermal conductivity is 
constant, the two coefficients, along with the density, can be 
grouped into a single feature called thermal diffusivity. These 
properties have a determining influence on the temperature 
distribution and heat flux densities during transient processes of 

heating or cooling, which must be known distribution in 
numerous applications, for example, to design an optimal 
control of these processes. In most practical engineering 
problems, the thermophysical properties are temperature 
dependent, and therefore, the conduction equation is a partial 
differential equation whose solution is not linear, in general, is 
obtained through numerical techniques [1]. The inverse heat 
conduction problem is concerned with the determination of the 
thermal conductivity, the volumetric heat capacity, the initial 
condition, the boundary conditions and the heat sources using 
known temperature or heat flux. The inverse problems are more 
difficult than their corresponding direct problems because they 
are usually ill-posed. The estimation of the heat capacity  which 
is a function of temperature is being considered in this study. 

The estimate, therefore, of any of the thermophysical 
properties of a solid medium is a nonlinear inverse problem of 
enormous complexity, in any case much more difficult than the 
estimation of constant properties, or even that the estimation of 
time or space dependent properties. Needless to say, the 
interesting problem of simultaneous estimation of thermal 
properties from both of the measures taken in a single 
experiment, recently studied by some authors [2], is even more 
complex, requiring finer adjustments (for through a properly 
defined functional) to achieve a converged solution and valid. 

 
In the scientific literature there are numerous publications, 

using different numerical techniques, estimate the thermal 
properties dependent on the temperature in the form of inverse 
problem. So [3] estimated the thermal conductivity temperature 
dependent; investigates the use of different locations for the 
measurement point temperatures and the influence of number 
of measures. Both elections significantly influence the estimate. 
Furthermore, [4] and [5] obtain estimates of the thermal 
property space. They determined the thermal conductivity in 1-
D half with internal heat generation. Using two methods of 
solution based on finite differences in the first start from a 
continuous set of temperature measurements while the second 
uses a discrete set. Both methods can be applied to linear and 
nonlinear problems, without a priori knowledge of the type of 
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dependence of the conductivity. Show three applications: 
conductivity constant, conductivity and position-dependent 
temperature-dependent conductivity. [6] using approximate 
analytical techniques based on the Laplace transform to 
estimate the thermal diffusivity of materials at high temperature 
in half dimensional. It contrasts the processes of cooling 
method for three materials, nickel, niobium and palladium, and 
studied the effect of error in measurements. [7] using an 
approximate method of direct integration performed 
simultaneous estimation of the thermal conductivity and heat 
capacity, both properties linear functions of temperature. 

[8], using various measuring points, estimate the 
temperature dependency of conductivity and heat capacity in 
half 2-D orthotropic, using the iterative procedure based on 
Levenberg-Marquardt minimization of a functional 
characteristic. [9] estimated thermophysical properties by 
function estimation procedure, using the conjugate gradient 
method, and studying the effects on the estimate by modifying 
the position sensor measurements. [10] solved a function 
estimation problem of predicting temperature-dependent 
thermal conductivity without internal measurements [11] 
determined the temperature-dependent thermal conductivity in 
a stationary problem. [12] obtained a piecewise homogeneous 
function to estimate the thermal conductivity of conductors 
subjected to a heat flow test. [13] estimated the temperature-
dependent thermal conductivity and heat capacity of manner 
simultaneous. [14] solved the inverse problem in 
simultaneously measurement temperature-dependent thermal 
conductivity and heat capacity.  

The purpose of this paper is to propose a numerical software 
for determination of the heat capacity in order to obtain a 
response in temperature-stretches of the dependence with the 
temperature of the specific heat. Such a problem can be treated 
as one kind of the inverse heat conduction problem for a solid 
material. Transient temperature measurements at the boundary, 
from the solution of the direct problem, served as the simulated 
experimental data needed as input for the inverse analysis. Both 
direct and inverse heat conduction problems are solved using 
the network simulation method. The solution is obtained step-
by-step by minimising the classical functional that compares 
the above input data with those obtained from the solution of 
the inverse problem. A straight line of variable slope and length 
is used for each one of the stretches of the desired solution.  

Numerical tool employed has been the Network Simulation 
Method (NSM). This method rests on the electro-thermal 
analogy (loosely called the resistance-capacitance analogy or 
the RC analogy) that exists between the unsteady, 
unidirectional conduction of heat and the unsteady flow of 
electric current. Once the electric network model has been set 
up for the heat conduction equation, the numerical treatment of 
the analogy electric circuit equation can be easily done with the 
computer code Pspice.  

 

NOMENCLATURE 
 

co [J/kgK] Specific heat 
C [J/m3K] Heat capacity 

C [F] Capacitor and capacitance 
   
E [-] Voltage-control voltage-source 
fC [-] Mathematical function 
F [-] Functional defined in eq. (10) 
I [A] Current 
k [W/mK] Thermal conductivity 
L [m] Length 
n [-] First value of temperature within the 

functional 
N [-] Number of cells 
R [Ω] Resistor 
r [-] Number of terms of the functional 
t [s] Time 
T [ºC] Temperature 
V [V] Voltage 
x [m] Cartesian axis direction  
Z [-] Number maximum of stretch 
z [-] Particular number of stretch 
   

Σ [-] Summation 

∆ [-] Increment 
∂ [-] Differential 
∆C [J/m3K] Deviation of the capacity heat in 

relation to the mean value 
∆x [m] Thickness of the control volume 
∆T [ºC] Temperature interval associated to 

the functional  
∆ε [-] Error percentage interval 
ρ [kg/m3] Density 
ε [-] Random error value  
 
Subscripts 
DHCP  Direct problem 
end  End 
f  Particular location at the slab 
ini  Initial 
i  Associated to the volume element i, 

1≤i≤N; also the centre of the volume 
element 

IHCP  Inverse problem 
i±∆x  Right and left ends of the cell 

elemental  
j  1, 2, ..., p 
L  Half a thickness of the slab mean 

value 
max  Maximum  
min  Minimum 
n  Refers to the first temperature with 

the stretch 
new  New 
opt  Optimum  
p  Natural number (total number of 

temperature measurements) 
z  Number of stretch 1,2, ....., Z 
0  Initial condition 
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MATHEMATICAL FORMULATION 
The formulation of inverse heat conduction problem 

originates from the direct heat conduction formulation. For 
simplicity we assumed a medium one-dimensional and a 
cartesian coordinate system. Thus, for one-dimensional 
unsteady state heat conduction equation in a orthogonal 
coordinate, the direct formulations are as follows: 
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C(T) = fC(T)       (5) 

 
The direct problem, Equation (1) is concerned with the 

determination of temperature distribution T(x,t) in the interior 
region of the solid material as a function of time and position. 
In eq. (5) fC defines an arbitrary continuous function of T. 

 The inverse problem arises if any of the parameters is 
not known especially C=ρce and k, but the transient 
temperature, boundary and initial conditions are known.     The 
formulation of the IHCP involves Eqs. (1-4) and the set of 
temperatures TIHCP(xf,tj,εj) from the temperature measurement 
(or they can be obtained of the numerical solution of the direct 
problem DHCP and submitted to a random error εj). With this 
information, the aim is to obtained a approach solution of the 
dependence C(T) by means of a piece-wise function in the form  
 

C(Tz) = Cz (1≤ z ≤Z)     (6) 
 
This solution is defined by Z straight stretches of variable slope 
and size.  

 
INVERSE DETERMINATION: ALGORITHM OF 
RESOLUTION 
 
Discretizing equation (1) by method of finite difference [15].  
 

Ci (dTi/dt) = k (Ti-∆ - 2 Ti - Ti+∆)/∆x2   (7) 
 
This expression can be expressed: 
 
 Ci (dTi/dt) = [k (Ti-∆ - Ti)/∆x2] - [k (Ti - Ti+∆)/∆x2] (8) 
 
 At this moment the electrical analogy is applied and a 
network electrical circuit is designed. In this analogy: heat flux 
(q) and temperature (T) are connected to the electric variables 
current (I) and voltage (V), respectively. A number of volume 

elements N≥50, in 1-D geometry, ensures that the errors in the 
temperature and heat flux fields are around 0.5% in non-linear 
problems. The whole network, transformed into a lecture file, is 
solved by the computer code Pspice [16,17] using a PC. 
 

Defining the currents: 

 
Ii,c = ∆x Ci,(T) (dTi/dt             (9a) 
Ii-∆x = k (Ti-∆x - Ti)/(∆x/2)             (9b) 
Ii+∆x = k (Ti - Ti+∆x)/(∆x/2)    (9c) 

 
Eq. (8) may be written as Kirchhoff´s law for the following 
currents: Ii,c - Ii-∆x + Ii+∆x = 0. The network model for the cell is 
now designed, Fig. 2a. Eq. (9a) defines a capacitor, C, of 
variable capacitance (an auxiliary circuit Ei,c provides the 
values of Ci(T)) and eqs. (9b) and (9c) define two resistors of 
resistance Ri=∆x/2k. As regards the initial condition, a voltage 
To is applied to the capacitors. 

NUMERICAL METHOD 
Broadly speaking, the inverse problem, to know the value 

of the parameters to be estimated in an instant, you must have 
calculated these parameters in the instant before, is a continual 
and iterative process composed of two loops, loop 
approximation (loop internal) and loop stretch (outer loop).  
The "loop of stretch" is in charge of taking the whole 
temperature range and divided it into small sections, to go after 
scrolling progressively. The data required for this loop are: 
initial T(Tini), final T(Tend) and number of stretch (Z). 
Loop approximation is responsible for running Pspice go with 
the different values of C, and obtain the optimal C(Copt). For 
each approximation are performed three simulations (C(z), 
C(z)+∆C, C(z)-∆C) and take the new value of C that gives 
smallest error to assign it to Copt. In each new approximation is 
assigned to C(z) its new value (Copt), as well as reduces the 
value of ∆Cnew=∆C/2. 
 
     The functional to be optimised in each iteration has the 
classical form 
 
F(z) = Σ(j=n, n+1, ..., n+r)[T inv(xf,tj) - TIHCP(xf,tj,εj)]

2        (10) 
 
where z = 1, 2, ... , Z identifies the stretch, Z being the total 
number of stretches of the piece-wise function. r, which may 
vary from one stretch to another, is the number of terms of the 
functional (number of temperature measurements within the 
actual stretch) and n and n+r are the first and the last 
temperature index within the stretch, respectively. Tinv(xf, tj) is 
the temperature solution of the inverse problem at the position 
xf and time tj. The temperatures TIHCP(xf, tj,εj) were defined in 
the section mathematical model. 
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Figure 1 Inverse algorithm of resolution 
 
 
Software developed 

The program consists of three main windows on the first, 
“Initialization”, we enter the material data. In the second, 
“Setup” is where you define the type of problem and all the 
data required for execution. Finally, the third window, 
"Solution” is showing results. 
      
In the first we met (Figure 2) is the screen charge of the 
definition of material as well as various properties: 
 
1) Length of body to be treated, measured in meters. 
 
2) Density of the body to be treated, measured in kg/m3. 
 
3) Initial temperature before of the experiment in ° C. 
 
4) Boundary conditions at the left and right side of the body. 

a. Heat flux measured in W/m2. 
b. Temperature measured in °C. 

c. Forced convection: Ambient temperature (ºC) and 
    convection coefficient (W/m2 ºC). 

 
5) Numbers of sensors. 
 
6) Sensor location from the left end in meters. 

 

1 2

3

4

5

6

7

8

9

10

4

 
Figure 2 Points of measurement, boundary conditions, …. 
 

 
      Other data (File): It´s necessary only for cases in which 
wants to solve the inverse problem or the problem of initial 
value. 
 
7) Name of data file. You must be a plain text file, containing 
as many columns as the number of sensors for the first time, 
although it doesn´t affect in the process, its value is purely 
explanatory. Have no blank line, the first line coincides with 
the first measurement. You can use asterisks as wildcards. 
 
8) Bar directory where the browser will look for the file 
specified in paragraph previous. 
 
9) Button to begin your search. 
 
10) Window showing all files in the directory specified and that 
match the name given in the sections previous. Once displayed, 
double click on the file to be opened to check the validity of 
same after verification is already closed and selected. 
       
The “Setup” windows (Figure 3) consists of a series of boxes 
and buttons that are activated according to the different options 
we have selected. We can choose between direct problem, the 
initial value problem and inverse problem. So we can estimate 
both the thermal conductivity and the specific heat, or both at 
once. To define the known variables, the program gives us a 
choice between two options, linear, where we give the initial 
and final values of the known variables, or stretches, where we 
can define up to nine stages. 
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Figure 3 Simulation parameters, stretches,  …. 

 
1) Initial value of C(T). 
 
2) ∆C0 (initial increment heat capacity). 
 
3) Numbers of sections selector to define the specific heat. 
 
4) Table to define the specific heat as a function of temperature. 
 
5) Initial T(Tini) and final T(Tend). 
 
6) Simulation step, must be the same as the input. 
 
7) Numbers of stretches (Z). 
 
In "Solution" window (see Fig. 4), is running the problem 
chosen and at the end, we show the different simulations. 
Placing the mouse over the graph, automatically appear 
calculates parameter values. 
 
 

 
 

Figure 1 Numerical solution  
 

PROCESSING OF RESULTS 

EXPERIMENT 1 
First experiment is to know how it affects the error in 
measuring the position of the sensors in the calculation of the 
functional. To do this we modeled by a block MESIR tungsten 
steel L = 250 mm, which is applied at one end a known flow. 
Measured T(t) at four different points located along the block. 
Measured were realized from where the flow is applied to the 
other extreme, so the sensors are placed at x1 = 0, x2 = 50 mm, 
x3 = 100 mm and x4 = 150 mm.  

 
Table 1 Results of the experiment 1for a position sensor 1 

(x=0)  

Position 
Sensor 1 
(mm) 

Position 
Sensor 2 
(mm) 

Position 
Sensor 3 
(mm) 

Position 
Sensor 4 
(mm) 

Functional 

0 0.05 0.1 0.15 78.233 

0 0.05 0.1 0.152 346.296 

0 0.05 0.1 0.148 412.98 

0 0.05 0.102 0.15 657.986 

0 0.05 0.102 0.152 926.759 

0 0.05 0.102 0.148 992.773 

0 0.05 0.098 0.15 710.948 

0 0.05 0.098 0.152 979.642 

0 0.05 0.098 0.148 1045.685 

0 0.052 0.1 0.15 1116.061 

0 0.052 0.1 0.152 1383.784 

0 0.052 0.1 0.148 1450.678 

0 0.052 0.102 0.15 1693.904 

0 0.052 0.102 0.152 1961.588 

0 0.052 0.102 0.148 2028.501 

0 0.052 0.098 0.15 1742.781 

0 0.052 0.098 0.152 2018.882 

0 0.052 0.098 0.148 2077.527 

0 0.048 0.1 0.15 1149.81 

0 0.048 0.1 0.152 1450.03 

0 0.048 0.1 0.148 1483.231 

0 0.048 0.102 0.15 1746.595 

0 0.048 0.102 0.152 2046.414 

0 0.048 0.102 0.148 2081.046 

0 0.048 0.098 0.15 1780.965 

0 0.048 0.098 0.152 2081.434 

0 0.048 0.098 0.148 2115.326 
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For discretization we have used 125 cells, so that the size 
of each cell is ∆x =2 mm (L/N). Then calculate functional (we 
can say that is an error of the estimation), with the various 
algorithms explained above, modifying the position of the 
sensors in ±2mm (equivalent to a cell). The results obtained are 
shown in the tables 1 and 2.  

 
Table 2 Results of the experiment 1 for a position sensor 1 

(x≠0)  

Position 
Sensor 1 
(mm) 

Position 
Sensor 2 
(mm) 

Position 
Sensor 3 
(mm) 

Position 
Sensor 4 
(mm) 

Functional 

0.002 0.05 0.1 0.15 5409.444 

0.002 0.05 0.1 0.152 5080.507 

0.002 0.05 0.1 0.148 5769.201 

0.002 0.05 0.102 0.15 4807.38 

0.002 0.05 0.102 0.152 4478.442 

0.002 0.05 0.102 0.148 5167.136 

0.002 0.05 0.098 0.15 6075.718 

0.002 0.05 0.098 0.152 5746.781 

0.002 0.05 0.098 0.148 6435.475 

0.002 0.052 0.1 0.15 4437.754 

0.002 0.052 0.1 0.152 4108.816 

0.002 0.052 0.1 0.148 4797.51 

0.002 0.052 0.102 0.15 3835.69 

0.002 0.052 0.102 0.152 3506.752 

0.002 0.052 0.102 0.148 4195.446 

0.002 0.052 0.098 0.15 5104.028 

0.002 0.052 0.098 0.152 4775.09 

0.002 0.052 0.098 0.148 5463.784 

0.002 0.048 0.1 0.15 6536.22 

0.002 0.048 0.1 0.152 6207.283 

0.002 0.048 0.1 0.148 6895.977 

0.002 0.048 0.102 0.15 5934.156 

0.002 0.048 0.102 0.152 5605.219 

0.002 0.048 0.102 0.148 6293.913 

0.002 0.048 0.098 0.15 7202.495 

0.002 0.048 0.098 0.152 6873.557 

0.002 0.048 0.098 0.148 7562.251 
 
 
In the first row is shown the original position of the 

sensors, so for this case there is not error in the position of the 
sensors, so the value of the functional is minimum.  

If we compare the first data table with the second, we can 
see that in the second table the value of the functional is much 
greater than the first. The error is significantly increased in the 
second table even though the only difference is the introduction 
of error in the sensor 1. Likewise if we take the functional 
groups of five (5 th column, row 1, 2, 3 ...), we see in both 
tables, the error in the third row is always greater than the error 
in the second. From these data it appears that the more sensitive 
functional greater the proximity to the end of the bar (3 rd row). 
In conclusion we can say that the error in the position of the 
sensors, affecting directly proportional to the functional, the 
closer you are the sensors of the constant heat flux applied at 
x=0. 

EXPERIMENT 2 
 
For the next experiment, we take as reference a block of 

copper cylinder 200mm long and 10mm in diameter (where the 
mathematical model is the same that for the cartesian 
coordinate system, due to the problem is one-dimensional), 
with a density of 1833 kg/m3 and four k-type thermocouples 
placed at the positions x =0 mm, x =10 mm, x =20 mm and 
x=30 mm. It´s applied a constant heat flux of 12.7 W/cm2 at x=0 
where a sensor is located. 

 Simulating the experiment and obtaining the output 
temperature sensors, we apply our algorithm of resolution 
modifying two parameters. On the one hand the number of 
stretches Z= 10, 20 and 30. To maintain the same range of 
application of the algorithm, this parameter has to affect 
inversely proportional to ∆C0 (see the sensibility equations 11a 
and 11b)  
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Figure 5 Clarification of the use of  ∆C and ∆T 
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On the other hand it has been changing the value of ∆C0 
following what has been said.  

 

 
 

Figure 6 Numerical solution for various values of  ∆C and Z 
(experiment 2) 

 
The value of the functional  is an appreciation of the error 

obtained in the estimation of the specific heat (or heat 
capacity). This value is shown in figure 6 for different values of 
Z (in the range 5-35) and ∆C0 (in the range 2.5-30). Minimum 
value of the functional is obtained for Z=10 and ∆C0=10J/kgK. 
Figure 7 shows the optimal inverse solution (lowest value of 
the functional) for the cases, real, Z=8 and Z=16. We can 
observed that the better estimation is for Z=8 and an instability 
occurs for Z=16.  
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Figure 7 IHCP solution for of  ∆Ce,0 = 10 J/kgK,  

for Z=8 and 16 (experiment 2) 

CONCLUSIONS 
 

This paper provides an efficient numerical software based in 
the Network Simulation Method  already checked in many non-
lineal problems) as the numerical tool, for estimating the heat 
capacity of solid metallic, as a function of the temperature, 
starting from temperature measurements in a heating process. 
The proposed procedure is a modification of the known 
function estimation technique, typical of the inverse problem 
field. Estimations require various points of measurement in the 
material. 
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