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ABSTRACT 
The deformation and breakup of a conducting water drop 

immersed in hexadecane in the presence of an electric field is 
investigated using a numerical tool for a range of field strengths 
and ion concentrations. At low electric field strengths, the drop 
deformation is a linear function of the electric capillary 
number. For high electric field strengths, the dependence is no 
longer linear, and significant drop deformation occurs. The 
drop deformation increases with increasing ion concentration, 
due to a separation of ions within the drop, leading to a 
redistribution of charge at either end of the drop. 

 
INTRODUCTION 

Detailed understanding of the physics of drops in the 
presence of an electric field is vital for developing more 
efficient technologies for applications such as ink-jet printing, 
drug delivery, and sample analysis [1-4].  In particular, the field 
of microfluidics requires precise control over the formation, 
motion, coalescence and breakup of drops [5-7]. An efficient 
method of controlling these phenomena is to exploit the 
electrical properties of the fluids in question with the 
application of an external electric field. When one or more 
liquids present in the device is an electrolyte, the presence of 
ions in the flow further complicates the physics involved [8].  

There are numerous theoretical descriptions of small drop 
deformation in the presence of a small external electric field.  
The field of electrohydrostatics considers two distinct limits: a 
perfect dielectric drop immersed in a perfect dielectric medium, 
with no free charges present, or a highly conducting drop 
immersed in a perfect dielectric medium, again with no free 
charges present [9].  In both cases, the electrical stress acts 
normal to the interface, and can therefore be balanced by 
interfacial tension. In such cases the drop can only deform 
prolately (in the direction of the electric field). Because the 
electric force only acts normal to the interface, there is no 

tangential electric stress present at equilibrium to drive fluid 
flow.  

In the leaky dielectric model, drops of small but finite 
conductivity are considered, giving rise to an accumulation of 
electrical charge at the interface [10]. The presence of 
interfacial charge permits tangential electrical stresses, leading 
to fluid flow at equilibrium. The drop is able to deform both 
prolately and oblately. The deformation of electrolytic drops in 
an electrolytic medium has also been considered, with free 
charges present in the fluid bulk [11].  This analytical study 
provides the basis for comparison to the numerical results 
presented in this paper. 

These types of analyses are restricted to small drop 
deformation and low electric-field strength. This study uses a 
numerical model to characterise the deformation  of a drop for 
arbitrary field strengths and ion concentrations within the drop. 
In particular a water drop containing free ions, suspended in 
non-conducting hexadecane, will be analysed. This case is 
typical of common water-in-oil systems [12,13]. 

NOMENCLATURE 
a  Drop axis normal to electric field 
b  Drop axis parallel to electric field 
CaV  Capillary number (ratio of viscous to interfacial tension 

forces) 
CaE  Electric capillary number (ratio of electric to interfacial 

tension forces) 
D  Taylor deformation parameter (Eq. 7) 
e  Elementary charge 
E  Electric field vector 
Eref  Electric field scale 
fE  Electric body force 
fs  Interfacial tension force 
h  Computational cell width 
I  Identity matrix 
k  Boltzmann constant 
K  Dimensionless inverse Debye length 
M  Viscosity ratio µd/ µc 
n+  Positive ion concentration 
n-  Negative ion concentration 
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n0  Reference ion concentration 
P  Pressure 
Pe  Peclet number 
R  Initial drop radius 
Re  Reynolds number 
S  Permittivity ratio εd/ εc 
t  Time 
T  Temperature 
u  Velocity vector 
V  Velocity scale 
We  Weber number 
z  Ion valence 
 
Special characters 
α  Ion diffusivity 
γ  Surface tension 
δs  Dirac delta function at fluid interface 
ε  Fluid permittivity   
ε0  Permittivity of free space 
µ  Fluid viscosity 
ρ  Fluid density 
φ  Disperse-phase volume fraction 
 
Subscripts 
c  Continuous phase 
d  Disperse phase 
0  Ambient or reference 

NUMERICAL METHOD 
The equations governing the fluid flow, the electric field, 

and the ion transport are non-dimensionalised with velocity 
scale V, length scale R, time scale R/V, ion number density 
scale n0, and electric field scale Eref = kT/zeR. The 
dimensionless equations are  

 ∂φ
∂t

+∇ ⋅φu = 0,  (1) 

 ∇ ⋅u = 0,  (2) 

 

∂ρu
∂t

+∇⋅(ρuu) = −∇P + 1
Re

∇⋅µ ∇u+ (∇u)T⎡⎣ ⎤⎦

+ 1
We

δ s fs +
CaE
We

fE ,
 (3) 

 ∇⋅εE = 1
2
K 2S n+ − n−( ),  (4) 

 
 

∂φn±
∂t

+∇ ⋅ (uφn± ) =
1
Pe

∇ ⋅ φ∇n±  φn±E[ ],  (5) 

where (1) is the disperse-phase volume fraction transport 
equation; (2) is the continuity equation; (3) is the momentum 
equation; (4) is the Poisson equation for the electric field; and 
(5) is the ion transport equation for both anions and cations, 
formulated to give zero ion flux at the interface. The 
dimensionless groups governing the flow are 

 

Re = ρcVR
µc

,  We = ρcV
2R

γ
,  CaE  = 

ε0εcEref
2R

γ
,

 K = 2z2e2n0R
2

ε0εdkT
⎡

⎣
⎢

⎤

⎦
⎥

1
2

, and Pe = VR
α

.

 (6) 

 
Here, the electric capillary number CaE represents the 

relative importance of electric forces to interfacial tension 

forces. This is analogous to the viscous capillary number CaV = 
µCV/R, which measures the relative importance of viscous 
forces to interfacial tension forces. The velocity scale V is 
chosen such that the Reynolds number Re=0.1. The 
dimensionless density ρ, viscosity µ, and permittivity ε are 
scaled by the continuous phase values. At interface cells, these 
quantities are calculated using averaging weighted by the 
volume fraction value in the interface cell [15-17]. The 
dimensionless inverse Debye length K is scaled using the 
discrete fluid permittivity εd. 

The transient, multiphase finite volume method of Rudman 
[14] has been adapted to include electrokinetic effects. The 
single-phase implementation is given in Davidson and Harvie 
[15], and the combined level-set, volume of fluid adaptation is 
given in Harvie et al. [16]. Details of the ion transport 
algorithm for multiphase electrokinetic flows are given in Berry 
et al. [17].  

Calculations are performed on a uniform grid with cell-
spacing h/R = 1/16. When the dimensionless inverse Debye 
length K is finite, the water drop contains cations and anions of 
equal diffusivities α+ = α- = α and equal valencies z+ = -z- = z. 
Initially, the drop is spherical, and the dimensionless ion 
concentrations in the drop are set to n+ = n- = 1, and zero 
outside. The Reynolds number and Weber number are set to 
Re=0.1 and We=0.1 (giving a capillary number CaV = 1). The 
Peclet number is Pe = 1. A uniform electric field E =1 is then 
imposed on the domain (Fig. 1).   

 
Figure 1  Schematic of water drop immersed in hexadecane. 

 
The uniform electric field acts to deform the drop, until steady-
state is reached, or drop breakup occurs. The steady-state drop 
deformation is quantified using the Taylor deformation 
parameter D, defined as 

 D =
b − a
b + a

 (7) 

Increasing the mesh-resolution by a factor of two yields a 
difference in Taylor deformation parameter of less than 3%. 
For numerical convenience, the governing equations are solved 
in terms of an electric potential U, instead of the electric-field 
vector E. The electric potential is defined by 

 
 E = −∇U.  (8) 
 

b 

a 
E 

εd, µd , ρd 
εc, µc , ρc 
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RESULTS AND DISCUSSION 
Results are presented here for a water drop immersed in 

hexadecane with viscosity ratio M = 0.1 and permittivity ratio S 
= 40. The electric capillary number (representing field strength) 
range investigated is 0.01 ≤  CaE ≤ 0.25. The dimensionless 
inverse Debye length K, representing ion concentration in the 
drop, is varied between 0 and 5, giving diffuse regions of 
charge in the drop at steady state.  

 

 

 
Figure 2 Contours of charge density magnitude |n+-n-| within 
the steady-state drop and electric potential for dimensionless 
inverse Debye lengh K = 4, and electric capillary number a) 

CaE = 0.01 (|n+-n-|MAX. = 0.037), b) CaE = 0.10 (|n+-n-| MAX.  = 
0.039), and c) CaE = 0.20 (|n+-n-| MAX.  = 0.051). The electric 

potential contour line spacing is 0.2. 

 
 
Fig. 2 shows the steady-state deformation of the drop for 

dimensionless inverse Debye length K = 4, and three increasing 
electric capillary numbers. Also depicted are the contours of 
charge-density magnitude (defined as |n+-n-|), and contours of 
electric potential U.  Because the permittivity ratio S is large, 
the electric field magnitude inside the drop is much smaller 
than the electric field magnitude outside the drop. As a 
consequence the electric potential contours are not shown 
inside the drop. 

As the field strength increases, the drop elongates in the 
direction of the field. This behaviour is consistent with the 
behaviour of drops without ions: the electric force acting on the 
bound polarized electric charges at the interface, due to the 
permittivity difference between the two phases, deforms the 
drop until the interfacial tension force is able to arrest the 
deformation.   

The electric force in that case is given by 

 fE = −
1
2
E ⋅ E ∇ε.   (9) 

The drop deforms because the electric-field magnitude varies 
along the interface. However the electric force only acts normal 
to the interface, and as a consequence no flow is present at 
equilibrium when no ions are present. 

When ions are present in the drop, as is the case in Fig.2, 
there is an extra electric force component and the total electric 
force is given by 

        fE = − 1
2
E ⋅E ∇ε + 1

2
K 2S(n+ − n− )E.       (10) 

Regions of net charge n+-n- are able to form, and the electric 
field acts on both the induced charge and the bound polarized 
charges at the interface.  The electric force due to induced 
charge is in the direction of the local electric field, and is 
therefore not in general normal to the interface.  Hence, 
tangential electric stress may be present at equilibrium, leading 
to steady-state fluid flow. 

The presence of the electric field causes the cations inside 
the drop to move to one side of the drop, and the anions to the 
other (Fig. 2). A consequence of the charge separation is a 
buildup of charge at either end of the elongated drop. The 
electric field acts on this induced charge to deform the drop 
further. As the electric field strength increases, the ions become 
more concentrated at either end of the drop, leading to larger 
charge accumulation and hence larger deformation.   

Interestingly the contours of electric potential run parallel 
to the drop interface, meaning that the direction of the electric 
field, and hence the electric force, is normal to the interface. 
Thus there is no steady-state flow for this particular system. For 
the cases shown in Fig. 2, the maximum velocity magnitude is 
O(10-2), indicating that no flow is present.  

When the electric capillary number is large enough, the 
drop deformation accelerates with time and drop breakup 
occurs. Fig. 3 shows a drop with dimensionless inverse Debye 
length K = 4 and electric capillary number CaE = 0.25 at time t 
= 15. The electric field and the charge density magnitude at the 
drop tip is extremely large relative to the steady-state values 

a)  

b)  

c)  
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shown in Fig. 3. The electric force will continue to elongate the 
drop in the direction of the electric field until fragmentation 
occurs. 

 
Figure 3 Contours of charge density magnitude |n+-n-| within 

the drop and electric potential for dimensionless inverse Debye 
lengh K = 4, and electric capillary number CaE = 0.25 at time 
t=15 (|n+-n-|MAX. = 0.12). The electric potential contour line 

spacing is 0.2. 
 

 
Figure 4  Variation of deformation parameter D with electric 

capillary number CaE.  
 
The analysis of Zholkovskij et al. [11] demonstrated that 

for low field strengths, the drop deformation is linearly 
proportional to the electric capillary number. The analytical 

solution is plotted in Fig. 4, along with the numerical results for 
dimensionless inverse Debye lengths K = 0, and K = 5.  

At low values of electric capillary number, the numerical 
results show good agreement with the analytical solution. As 
the electric capillary number becomes significant, the 
dependence of the drop deformation parameter on the electric 
capillary number is no longer linear. For significant values of 
electric capillary number, the drop deformation is much higher 
than predicted from the theory. When there are no ions present 
in the drop (the K = 0 case), the drop deformation is less than 
that for the case where ions are present (K = 5). The highest 
deformation resulting from the simulation is ~100% larger than 
the analytical prediction, formulated for small CaE. The 
increased deformation for the finite K case is due to the buildup 
of charge at each end of the drop, thereby increasing the 
electrical force acting to deform the drop along the direction of 
the electric field. 

The full parameter space investigated is shown in Fig. 5. 
Here, the Taylor deformation parameter has been normalized 
by the electric capillary number and plotted as a function of 
dimensionless inverse Debye length. For small values of 
electric capillary number, the normalized drop deformation 
parameter D/CaE becomes independent of CaE and approaches 
the analytical solution of Zholkovskij et al. [11]. The 
deformation of the drop increases with increasing 
dimensionless inverse Debye length K, due to the accumulation 
of charge inside the drop. This effect becomes more 
pronounced as the electric capillary number increases. 
 

 
Figure 5  Variation of normalised deformation parameter 

D/CaE with dimensionless inverse Debye length, K. 

CONCLUSIONS 
The deformation and breakup of a water drop containing 

ions immersed in hexadecane in the presence of an electric field 
has been studied with a computational fluid dynamics 
algorithm for a range of electric-field strengths and ion 
concentrations.  

For low electric-field strengths, the drop deformation is a 
linear function of the electric capillary number CaE, consistent 
with the theory of Zholkovskij et al. [11]. For high field 
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strengths, the dependence is no longer linear, and significant 
drop deformation occurs over and above the small field strength 
theory.  When ions are present in the drop, separation of anions 
and cations occurs at either end of the drop. The subsequent 
charge accumulation causes the drop to deform significantly 
more than if no ions are present, due to the extra electrical force 
present acting on the accumulated charge.  
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