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ABSTRACT
The Transient Hot Wire method is well established as the

most accurate, reliable and robust technique for evaluating the
thermal conductivity of fluids and solids. Unfortunately its
direct application to dual-phase systems such as solid
suspensions in fluids or porous media cannot be supported by
the very principles and methodology underlying this method.
The derivation of possible ways of rendering the transient hot
wire method to dual-phase applications including the
development of validity criteria for such applications is
proposed and discussed.

INTRODUCTION
The application of the Transient Hot Wire (THW)

experimental method for the measurement of thermal
conductivity of materials is presently limited to homogeneous
and single phase materials because its simple and elegant
theoretical expression on which it is based cannot be extended
without associated corrections to dual-phase and heterogeneous
systems. This is a first preliminary attempt at addressing the
latter limitations by developing simple expressions for porting
the THW method of experimental determination of thermal
conductivity to dual-phase applications. Corrections to the
THW method in the form presented by Vadasz (2006) are not
sufficiently simple because they are expressed in terms of a
ratio of infinite power series rather than a simple expression as
in the single-phase case. The Dual-Phase systems that benefit
from these results are nanofluid suspensions, metal foams
(porous media), insulating foams (porous media), two
immiscible liquids, composite solids (not a two-phase system
but the method will nevertheless be applicable to such systems
too).

A contextual notation is being introduced here to distinguish
between dimensional and dimensionless variables and
parameters. It implies that an asterisk subscript identifies
dimensional values only when ambiguity arises when the
asterisk is omitted. For example x*  is the dimensional

horizontal coordinate, while x  is its corresponding
dimensionless counterpart. However ks  is the effective solid
phase thermal conductivity, a dimensional parameter that
appears without an asterisk subscript without causing
ambiguity.

CONCEPTS AND METHODS
Inherent assumptions for the existence of an effective

thermal conductivity for dual-phase systems such as nanofluid-
suspensions (Eastman et al. 2001, Lee et al. 1999, Choi et al.
2001, Xuan & Li 2000) or porous insulating foams (Coquard &
Baillis 2006, Coquard et al. 2006) having properties that are
similar to homogeneous materials are being made even without
mentioning them. The practice of using the terminology
“effective thermal conductivity” over the years yielded a
“tradition” of not even challenging its existence – a natural
internalization but rather incorrect. A direct result of this
practice is the obvious application of single-phase
measurements methods to dual-phase systems.

Measuring temperature in a dual-phase system via the
Transient Hot Wire method
Homogeneous Fluids and Solids

The THW method is well established as the most accurate,
reliable and robust technique (Hammerschmidt & Sabuga,
2000) for evaluating the thermal conductivity of fluids (De
Groot, Kestin & Sookiazian 1974, Healy, De Groot & Kestin
1976, Kestin & Wakeham 1978) and solids (Assael et al.,
2002). It replaced the steady state methods primarily because of
the difficulty to determine that steady state conditions haven
indeed been established and for fluids the difficulty in
preventing the occurrence of natural convection and
consequently the difficulty in eliminating the effects of natural
convection on the heat flux. The THW method consists in
principle of determining the thermal conductivity of a selected
material/fluid by observing the rate at which the temperature of



a very thin platinum (or alternatively tantalum) wire (5 µm -
80 µm  in diameter) increases with time after a step change in
voltage has been applied to it. The platinum (tantalum) wire is
embedded vertically in the selected material/fluid (see Figure 1)
and serves as a heat source as well as a thermometer. The
temperature of the wire is established by measuring its
electrical resistance, the latter being related to the temperature
via a relationship of the form (Bentley, 1984)

 Rw = Ro 1+ β T −To( )[ ] (1)
A quadratic term is usually included too in eq. (1) but the linear
part is already very accurate and the quadratic term ads only
0.4% to the resistance value over a wide temperature change of

100 oC  and 0.004 % over a temperature change of 10 oC
(Bentley, 1984). The requirement for a very thin (5 µm -
80 µm  in diameter) platinum/tantalum wire is due to the need
to obtain a uniform temperature across the cross section of the
wire in a time scale that is substantially shorter than the time
scale of thermal diffusion to the neighboring fluid. For

platinum having a thermal diffusivity of  α Pt = 2.6×10−5 m2 s
(Martinsos et al. 2001) and a micrometer size wire radius

( 4.81×10
−5 m ) the transient within the wire will disappear

within ~0.1 ms, and therefore the readings that are being taken
at times that are much longer than 0.1 ms ( t >> 0.1 ms )
correspond to a uniform temperature over the wire’s cross
section. A Wheatstone bridge is used to measure the electrical
resistance Rw  of the wire (see Figure 1). The electrical
resistance of a potentiometer R3  is adjusted until the reading of
the galvanometer G  shows zero current. When the bridge is
balanced as indicated by a zero current reading on the
galvanometer G , the value of Rw  can be established from the
known electrical resistances R1 , R2  and R3  by using the
balanced Wheatstone bridge relationship Rw = R1R2 R3 . While
the application of the method to solids and gases is
straightforward its corresponding application to electrically
conducting liquids needs further attention. The experiments
conducted in nano-fluid suspensions listed above (Eastman et
al. 2001, Lee et al. 1999, Choi et al. 2001, Xuan & Li 2000)
used a thin electrical insulation coating layer to cover the
platinum wire instead of using the bare metallic wire, a
technique developed by Nagasaka & Nagashima (1981). The
latter is aimed at preventing problems such as electrical current
flow through the liquid causing ambiguity of the heat
generation in the wire. Alternatively, Assael et al. (2004) used
tantalum wires, which were anodized in situ to form a coating
layer of tantalum pentoxide (Ta2O5), which is an electrical
insulator. Because of the very small diameter (micrometer size)
and high thermal conductivity of the platinum wire the latter
can be regarded as a line source in an otherwise infinite
cylindrical medium (Figure 2). The rate of heat generated per
unit length ( l* ) of platinum wire is therefore

 
ql * = iV l* W⋅m-1 , where i  is the electric current flowing

through the wire and V  is the voltage drop across the wire.

Figure 1 Typical schematic setup for a Transient Hot Wire
experiment in a pure fluid.

Figure 2 The line heat source analytical problem underlying
the Transient Hot Wire method.

Solving for the radial heat conduction due to this line heat
source leads to a temperature solution in the following closed
form that can be expanded in an infinite series as follows
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where 
 
Ei i( )  represents the exponential integral function, and

γ Eu = ln σ Eu( ) = 0.5772156649  is Euler’s constant. For a line
heat source embedded in a cylindrical cell of infinite radial
extent and filled with the test fluid one can use the

approximation r*
2 4α t* << 1  in equation (2) to truncate the

infinite series and yield
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Equation (3) reveals a linear relationship, on a logarithmic time
scale, between the temperature and time. Therefore, one way of
evaluating the thermal conductivity is from the slope of this
relationship evaluated at r* = rw* , for example, rw*  being the
radius of the platinum wire. However the latter needs the
knowledge of the thermal diffusivity, α , of the fluid.



Alternatively one may evaluate k  by using any two readings of
temperature T1  and T2  recorded at times t1*  and t2*
respectively. The temperature difference T2 − T1( )  can then be
approximated by using equation (3), in the form
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where we replaced the heat source with its explicit dependence
on i,V  and l* , i.e. 

 
ql * = iV l* . From equation (4) one can

express the thermal conductivity k  explicitly in the form
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For r* = rw*  the condition for the series truncation

rw*
2 4α t* << 1  can be expressed in the following equivalent

form that provides the validity condition of the approximation
in the form

t* >> to* =
rw*
2

4α
(6)

The value of to* = rw*
2 4α  provides a validity condition of the

experimental readings, i.e. t* >> to* .
Equation (5) is a very accurate way of estimating the

thermal conductivity as long as the validity conditions for
appropriateness of the problem derivations used above are
fulfilled. A finite length of the platinum (tantalum) wire, the
finite size of the cylindrical container, the heat capacity of the
platinum (tantalum) wire, and possibly natural convection
effects are examples of possible deviations of any realistic
system from the one used in deriving equation (5). De Groot et
al. (1974), Healy et al. (1976), and Kestin & Wakeham (1978)
introduce an assessment of these deviations and possible
corrections to the THW readings to improve the accuracy of the
results. In general all the deviations indicated above could be
eliminated via the proposed corrections provided the validity
condition listed in equation (6) is enforced as well as an
additional condition that ensures that natural convection is
absent. The validity condition (6) implies the application of
equation (5) for long times only. Nevertheless, when evaluating
this condition (6) to data used in the nano-fluid suspensions
experiments one obtains explicitly the following values. For a
76.2 µm  diameter of platinum wire used by Eastman et al.
(2001), Lee et al. (1999), Choi et al. (2001) and an electrical
insulation coating thickness of 10 µ m, the wire radius is

rw* = 4.81 × 10
−5 m  leading to to* = rw*

2 4α = 13.7ms for

ethylene glycol and to* = rw*
2 4α = 7.2ms for oil, leading to

the validity condition t* >> 13.7 ms for ethylene glycol and
t* >> 7.2 ms for oil. The long times beyond which the solution
(5) can be used reliably are therefore of the order of hundreds
of milliseconds, not so long in the actual practical sense. These
values also correspond to the ones needed for the assumption of
a wire temperature that is uniform over the wire’s cross section

a condition that developed following eq.(1) above. On the other
hand the experimental time range is limited from above as well
in order to ensure the lack of natural convection that develops
at longer time scales. Xuan & Li (2000) estimate this upper
limit for the time that an experiment may last before natural
convection develops as about 5s. They indicate that “An
experiment lasts about 5s. If the time is longer, the temperature
difference between the hot-wire and the sample fluid increases
and free convection takes place, which may result in errors” .
Lee et al. (1999) while using the THW method and providing
experimental data in the time range of 1s to 10s, indicate in
their figure 3 the “valid range of data reduction” to be between
3s to 6s. Our estimations evaluated above confirm these lower
limits as a very safe constraint and we assume that the upper
limits listed by Xuan & Li (2000) and Lee et al. (1999) are also
good estimates. Within this time range the experimental results
should produce a linear relationship, on a logarithmic time
scale, between the temperature and time.
Fluid-Saturated Porous Media

The first major problem when attempting to apply the THW
method to porous media is focused in the question “What
temperature precisely does the wire is exposed to?”. Obviously,
the wire is exposed partly to the solid-phase and partly to the
fluid phase that constitutes the porous medium. There is no
justification to assume that local thermal equilibrium between
the solid and fluid phases occurs generally (especially when a
heat flux boundary condition is applied, as in the THW case).
On the contrary, it is sensible to assume that the average
temperature of the fluid differs from that of the solid. Then the
wire being in contact with both phases will “feel” the fluid
temperature on parts of its surface and the solid temperature on
other parts of its surface. How to integrate these two effects in
terms of its overall lumped effect on the total electrical
resistance of the wire is not a simple averaging procedure. The
following derivations demonstrate the direction we adopted in
an attempt at resolving this problem. Obviously we need to
separate between two extreme cases. One is related to the one
extreme possibility when the pores near the wire form complete
rings around the wire, i.e. at any point along the wire’s length,
the complete circumference of the wire is exposed either
completely to the fluid or completely to the solid. In such a case
one may look to this configuration as small electrical resistors
connected in series along the wire’s length. A macroscopic
experimental testing of this concept is presented in Figure 3
where a two-phase system consisting of two different
immiscible liquids is being used with the Transient Hot Wire
system to check the following derivations.

Consider the two immiscible stationary liquids, a lighter one
on top of a heavier one as presented in Figure 3. The total
height of the container H  is occupied partly, Hd , by the heavy
liquid on the down-section and partly, Hu , by the lighter liquid
on the upper section. We define the relative height of the
interface between the two fluids as φ = Hd H . Obviously, the
following relationship holds  1−φ( ) = 1− Hd H = Hu H .
Neglecting the tiny region in the neighborhood of the interface
where sharp temperature gradients are being expected we can



assume far away from the interface radial temperatures of the
form that were presented for a single fluid in eq. (2)
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leading to relationships of the form presented in eq.(5), i.e. the
thermal conductivities of each liquid is approximately given by

kd ≈
iV

4π Td 2 − Td1( )H ln
t2*
t1*

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

ku ≈
iV

4π Tu 2 − Tu1( )H ln
t2*
t1*

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

(8)

Figure 3 Schematic setup for a Transient Hot Wire
experiment in two immiscible Fluids.

However, we do not measure separately the temperatures Td
and Tu  but rather the wire’s electrical resistance due to the
lumped effect of both Td  and Tu . The resistance of the wire is
directly proportional to the wire’s length and therefore the
contribution of the lower and upper sections can be expressed
in the form

 Rw = φRwd + 1−φ( )Rwu (9)
where

 Rwd = Ro 1+ β Td −To( )[ ]  and  Rwu = Ro 1+ β Tu −To( )[ ] (10)
Combining (10) with (9) yields

 

Rw = Ro 1+ β φTd + 1−φ( )Tu −To[ ]{ } =

          Ro 1+ β Teff −To( )[ ]
(11)

where an effective temperature in the form

 Teff = φTd + 1−φ( )Tu  (12)
appears and represents the average temperature “felt” by the
wire in the sense of its impact on the wire’s electrical
resistance. Now, however we can express this effective

temperature by using the individual temperatures (7) into (12)
leading to
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Evaluating eq.(13) at two instances of time t1*  and t2*  and
evaluating the difference yields
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where an effective thermal conductivity emerged (not
necessarily the typical “effective” value), in the form of thermal
resistances ( 1 ki   ∀ i = d,u ) connected in series
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=

φ
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This result is still not satisfactory because our aim is to measure
ku  and kd  separately and not their lumped effect on the wire.
To overcome this problem we need to run the experiment twice,
with different values of the interface location, i.e. φ1  and φ2 .
Then, from the known effective values of keff ,1  and keff , 2
obtained by the method presented above one may solve the
system of two equations

 φ1Rd + 1−φ1( )Ru = Reff ,1  ;   φ2Rd + 1−φ2( )Ru = Reff , 2 (16)

where  Rd = 1 kd ,  Ru = 1 ku  and  Reff , i = 1 keff , j   ∀ j = 1, 2
leading to

 
kd =

φ1 −φ2( )
1−φ1( )Reff ,1 − 1−φ2( )Reff , 2[ ]

;
 
ku =

φ1 −φ2( )
φ1Reff , 2 −φ2Reff ,1[ ]

(17)

Alternatively, one may use a second wire located far away (in
the sense of the thermal impact of the heating from the wire,
approximately  >> 100µm  apart) from the first one and
embedded only in the upper liquid, hence evaluating ku
independently and then substituting it into (15) to obtain the
value of kd . More difficult is the other extreme when we
assume that the wire is exposed partly to the fluid and partly to
the solid but this separation is along the wire, i.e. part of
circumference of any cross section, say  0 < θ* < θ1 , is exposed
to one fluid and the other part,  θ1 < θ* < 2π , is exposed to the
other fluid where two partitions located at  θ* = 0  and  θ* = θ1
separate the two fluids. In this case the cross section will not
have a uniform temperature and while this configuration
represents electrical resistances connected in parallel the very
dependence of the temperature solution within the wire on r*
and θ*  makes the application of the electrical resistance –
temperature relationship questionable. The realistic porous
media outcome is expected to be in between these two limits
and will depend on the areal-porosity of the porous medium
and its distribution around and along the wire. More work will
be needed to find precisely how to characterize a porous
medium in a way that these parameters will be established



independently and could then be used with confidence with the
Transient Hot Wire method.
Fluid-Suspensions

The corresponding problem applied to fluid suspensions
focusing primarily on nanofluids can be dealt with as a
particluar case of the porous medium problem by removing the
macroscopic level conduction mechanism representing the heat
transfer within the solid phase because the solid particles
represent the dispersed phase in the fluid suspension and
therefore the solid particles can conduct heat between
themselves only via the neighboring fluid. Substituting ks = 0
in the system of governing equations accomplishes this goal.
The distinction between the porous medium and a fluid
suspension is that in a porous medium both phases (solid and
fluid) are interconnected, while in fluid suspensions only the
fluid phase is interconnected while the solid suspended
particles represent the dispersed phase. While the problems
raised for the porous medium apply equally well for
suspensions, the latter are expected to impact substantially less
the measurement outcome because the typical solid fraction
used in nanofluids is about a few percents, compared to over
70%-90% solid fraction (10%-30% porosity) in typical porous
media.

Interface heat transfer coefficient in porous media and fluid
suspensions

In addition to the important question raised above, and to
compensate for the possibility that such an accurate
representation of the “effective thermal conductivity” has its
limitations, the averaging concept can be applied (in porous
media the latter is common practice) by defining a
Representative Elementary Volume (REV) and averaging the
dependent variables over this REV. The resulting effect in
addition to the heat transferred within each phase is the heat
conduction over the interface separating the two phases (inter-
phase heat transfer). Evaluating this heat transfer is possible for
regular geometries, like the spherical one used by Maxwell
(1891), however it becomes increasingly more difficult as the
geometry becomes more complicated. Heat conduction in
porous media subject to Lack of Local Thermal Equilibrium
(LaLotheq) is governed at the macro-level by the following
equations that represent averages over each phase within an
REV (Representative Elementary Volume)

γ s

∂Ts

∂ t*
= ks∇*

2Ts − Qsf  (a)  γ f

∂Tf

∂ t*
= k f∇*

2Tf + Qsf  (b) (18)

where Qsf  represents the rate of heat generation in the fluid
phase within the REV due to the heat transferred over the fluid-
solid interface, and where γ s = 1 − φ( )ρscs  and γ f = φ ρ f cp , f
are the solid phase and fluid phase effective heat capacities,
respectively, φ is the porosity, 

 
ks = 1 − φ( ) ks  and 

 
k f = φ k f

are the effective thermal conductivities of the solid and fluid
phases, respectively. The traditional formulation of the rate of
heat generation in the fluid phase within the REV due to the
heat transferred over the fluid-solid interface uses a linear

relationship between Qsf  and the average temperature

difference between the phases in the form Qsf = h (Ts − Tf ) .
The coefficient h > 0 , carrying units of W m-3 K-1, is a
macro-level integral heat transfer coefficient for the heat
conduction at the fluid-solid interface (averaged over the REV)
that is assumed independent of the phases’ temperatures and
independent of time. Note that this coefficient is conceptually
distinct from the convection heat transfer coefficient and is
anticipated to depend on the thermal conductivities of both
phases as well as on the surface area to volume ratio (specific
area) of the medium (Vadasz, 2006).

The lack of macroscopic level conduction mechanism in
fluid suspensions (with  ε = 1−φ( ) ) i.e. the heat transfer
within the solid phase which is expressed by the fact that the
solid particles represent the dispersed phase in the fluid
suspension and therefore the solid particles can conduct heat
between themselves only via the neighboring fluid, leads to
setting  ks = 0  in eq.(18a). The latter yields from (18a,b) the
averaged equations applicable to fluid suspensions. When
steady state is accomplished in fluid suspensions
∂Ts ∂t* = ∂Tf ∂t* = 0  leading to local thermal equilibrium

between the solid and fluid phases, i.e. Ts r( ) = Tf r( ) , a
condition that does not necessarily apply in porous media.
Equations (18a,b) are linearly coupled and represent the
traditional form of expressing the process of heat conduction in
porous media subject to LaLotheq (Nield and Bejan 2006,
Nield 1998, 2002, Nield, Kuznetsov & Xiong 2002, Lage 1999,
Minkowycz, Haji-Shiekh & Vafai 1999). By using (18a,b) for a
line heat source according to the THW method and introducing

the dimensionless variables  t = t*h γ f ,   r
2 = r*

2h k f ,

  θ s = Ts −To( ) ql * 2πk f( ) ,  θ f =
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these equations into their corresponding dimensionless form
1

χ

∂θ s

∂ t
=
1

σr

∂

∂ r
r
∂θ s

∂ r

⎛
⎝⎜

⎞
⎠⎟
− θ s − θ f( )  ; (a)

∂θ f

∂ t
=
1

r

∂

∂ r
r
∂θ f

∂ r

⎛
⎝⎜

⎞
⎠⎟
+ θ s − θ f( )      (b) (19)

where  χ = γ f γ s ,  σ = k f ks , and  κ = α f α s = σ χ
represent the heat capacities, thermal conductivities and
thermal diffusivities ratios, respectively. Introducing a
Boltzmann transformation in the form
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transforms eqs. (19 a,b) into the following equivalent, but not
self-similar, form
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The corresponding single-phase equation is self-similar, a result
of utmost importance because it is this self-similarity that
produces the simple solution expressed by eq. (2) and makes
the application of the THW method possible. Nevertheless,
equations (21) produce interesting self-similar solutions for
short times  t << 1 , (and we will see that these are precisely the
times that the THW method is focused on), by using the

following short times expansion  θ i = θ i

( 0 ) + tθ i

(1) + t 2 θ i
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hence restoring at leading order the single-phase self-similarity
at short times despite the dual-phase nature of the problem. The
solution to (22a,b) subject to the hot wire boundary conditions
is presented below after converting it back to dimensional form
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These solutions can be used to evaluate the effective thermal
conductivity of the solid and fluid phases respectively for any

pairs of two temperature readings  Tf 1

(0 ) , Ts1

(0 )( )  and  Tf 2

(0 ) , Ts 2

(0 )( )
taken at subsequent times t*1  and t*2 , respectively, in the form

 

ks ≈
ql *

4π Ts 2

0( ) − Ts1

(0 )( ) ln
t2*
t1*

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

;

 

k f ≈
ql *

4π Tf 2

0( ) − Tf 1

(0 )( ) ln
t2*
t1*

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

(25)

These results are quite promising because they indicate that the
THW method may be applied with some higher order
corrections in porous media too, however we need to check the
conditions under which the latter applies. Clearly a condition
similar to eq.(6) which is applicable to single-phase applies
here too as the truncation of (23) and (24) requires  t* >> to ,

where 
 
to = max rw*

2 4α f( ), rw*2 4α s( )⎡
⎣

⎤
⎦ . In addition, the

leading order solutions (23) and (24) apply for dimensionless
short times only, i.e. for  t = t*h γ f << 1 . Note also that an
inherent, but reasonable, assumption was included in the
derivation of the leading order equations (23) and (24),
implying that  χ = γ f γ s = O 1( ) , i.e. 

 
γ f  γ s  at least in their

order of magnitude. Therefore the condition  t = t*h γ f << 1

implies  t* << γ f h  or similarly  t* << γ s h . These
conditions specify the range of short times that are needed for

the approximated solutions (23) and (24) leading to (25) to be
valid. Combining the two conditions above produces

 to << t* << tm (26)
where

 
to = max rw*

2 4α f( ), rw*2 4α s( )⎡
⎣

⎤
⎦  ;  tm = min γ f h( ), γ s h( )[ ] .

The following requirement is necessary and sufficient for such
a time interval to exist and makes the THW experimental
method applicable to dual-phase systems, in the form:

 tm >> to . This requirement implies  γ f h >> rw*
2 4α f

(assuming  χ = γ f γ s = O 1( ) ), leading to

 
h <<

4k f

rw*
2

(27)

This condition is the requirement for the existence of a time
interval over which the THW method may produce reliable
results in Dual-Phase applications. It reveals the significant
impact that the interface heat transfer coefficient h  has on the
applicability of the THW method to dual-phase systems.

In fluid suspensions like in porous media, the parameter h ,

carrying units of W⋅m−3 ⋅K −1 , represents an integral heat
transfer coefficient for the heat conduction at the solid-fluid
interface within an REV. Its general relationship to the surface-
area-to-volume ratio (specific area) was derived by Vadasz
(2006) by using relationships that are available for the
respective coefficient in fluid saturated porous media (Quintard
& Whitaker 1995, Alazmi & Vafai 2002, Amiri & Vafai 1994,
Wakao, Kaguei & Funazkri 1979, Wakao & Kaguei 1982,
Kuwahara, Shirota & Nakayama 2001). Most of the reported
evaluations of h  in porous media listed above were derived
with a particular focus on convection rather than conduction
heat transfer. Their applicability and accuracy for conduction
are therefore questionable. The implication of the derived
relationship presented by Vadasz (2006) is that the heat transfer
coefficient is related to the particle size by the inversely

quadratic relationship h = [k f dp

2 ] s ε, k f ks( ) . While the

particular form of the function s ε, k f ks( )  and its possible
further dependence on the particle size as well, especially as the
particle size is reduced to nano-scale levels, is not established
for the case of suspensions, the general dependence of the heat
transfer coefficient on the particle size is evident. This
dependence of the heat transfer coefficient on the particle size
introduces the effect of the surface-area-to-volume ratio
(specific area) that was claimed by Eastman et al. (2001) to be
missing in the classical models of evaluating the effective
thermal conductivity of the suspension. One should however
bear in mind that further dependence on particle size is
anticipated as the particle size is reduced to the nano-scale level
predominantly when the ballistic rather than diffusive nature of
heat transfer becomes dominant (Chen 1996, 2000, 2001) and
hence reducing the rate of heat transfer, implying a
consequential reduction of the value of h  to somewhat
compensate for the otherwise substantial increase of h  as the
particle size is reduced. In addition one may anticipate an
increase of h  due to Brownian motion induced nanoconvection



Jang and Choi (2004), Prasher, Bhattacharya and Phelan,
(2005) or a decrease due to the exceptionally small interface
thermal conductance Huxtable et al. (2003).

CONCLUSIONS
An attempt to render the Transient Hot Wire Experimental

method to dual-phase applications has been presented.
Substantial more work is however necessary to complete this
process and produce clear validity criteria for such applications.
The latter criteria will then be used to develop reliable
experimental procedures within these validity limits.
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