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ABSTRACT 
In this paper, we investigate the classic Graetz problem 

which is concerned with the thermal development length of a 
fluid flowing in a pipe or channel. In our particular study, we 
are interested in the thermal development length associated 
with a rarefied gas in a 2D channel. When the gas is in a 
rarefied state, the boundary conditions have to be modified to 
account for velocity-slip and temperature-jump. Although a 
number of previous studies have considered rarefaction effects, 
they have usually taken the form of modifying the boundary 
conditions of the Navier-Stokes equations. Our study has 
involved using the Method of Moments, which represents a 
higher-order set of equations involving transport of stress and 
heat flux. The results show that the moment method captures 
the non-equilibrium flow features and is in good agreement 
with kinetic data. 

 
INTRODUCTION 

Over the past two decades, there has been an on-going 
acceleration of technological developments associated with 
micro- and nano-technology. In particular, the emergence of 
MEMS (Micro-Electro-Mechanical Systems), where the 
characteristic length scale ranges from 0.1 mμ  (10-7 m) 
through to millimetres, has enabled many novel ideas and 
concepts to be explored. It is widely accepted that major 
beneficiaries will be in the fields of medicine, in point-of-care 
medical diagnostics, biology, with the reduction and removal of 
animal testing, chemistry, through improving chemical yields 
and safe manipulation of volatile or exothermic reactions, and 
advanced sensors, with greatly improved sensitivity. However, 
there remains a general lack of progress in modelling and 
simulation of micro- and nano-systems. As the length scales 
diminish, properties often ignored at the macro-scale become 
critically important. For example, surface tension becomes a 
powerful force easily capable of blocking a fluid in a channel. 

In addition, boundaries can be readily modified to be either 
hydrophobic or hydrophilic. A crucially important factor for 
gaseous transport is the small characteristic length scale implies 
that rarefaction effects have to be taken into consideration. 

Rarefied flow is characterised by the Knudsen number, Kn, 
which is determined from the ratio of the molecular mean free 
path over the width of some characteristic dimension, such as 
the diameter of a pipe or height of a channel. If the Knudsen 
number is very small (Kn<0.001), continuum theory is 
considered to be valid. However, over the last two decades, 
fabrication of micro- and nano-technology systems has made 
significant progress and today, many micro-electro-mechanical 
systems operate where the Knudsen number is above 0.001. In 
general, flows tend to be in the slip regime ( 0.001 0.1Kn≤ < ) 
or transition regime ( 0.1 10Kn≤ < ). Under these conditions, 
rarefaction effects need to be accounted for in the analysis and 
design of these devices. Any flow where  is described 
as a free-molecular flow and the stochastic/particle nature of 
the gas must be modelled through the Boltzmann equation or an 
equivalent approach, such as direct simulation Monte Carlo. 

10≥Kn

The thermal development characteristics of a gas flowing, 
or entering, a pipe or channel with a different temperature, was 
first analysed by Graetz [1, 2]. In his study, which described the 
development of a laminar flow without heat conduction and 
viscous dissipation, the Knudsen number was small (< 0.001) 
and the governing fluid dynamic equations provide an accurate 
description of the flow. However, with the introduction of 
MEMS, it is essential that the Navier-Stokes-Fourier (NSF) 
equations take into account velocity-slip and temperature-jump. 
These boundary conditions were introduced into the Graetz 
problem by Sparrow and Lin and other researchers [3-4] for the 
slip-flow regime. For flows beyond the slip-flow regime, which 
can be encountered in MEMS devices operating under SATP 
conditions when the characteristic length scale is 1.0 m,μ≤  the 
NSF equations are no longer a reliable method of predicting 
flow behaviour. Many rarefied or non-equilibrium phenomena 
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are not embedded in the NSF equations, such as the effect of 
the tangential heat flux on the velocity profile. Kinetic 
approaches are required to describe the hydrodynamics and 
thermal characteristics of the flow in the transition regime. 
However, the solution of the Boltzmann equation or the direct 
simulation Monte Carlo method is computationally expensive 
for practical engineering applications. The Method of Moments 
has been developing rapidly as an alternative approach to 
simulating rarefied gas flows [5-7]. It bridges continuum and 
kinetic theory and can be used as a practical tool for 
engineering analysis. In the moment method, in addition to the 
conservation laws for mass, momentum and energy, governing 
equations for the heat fluxes and stresses are derived from the 
Boltzmann equation. More non-equilibrium phenomena are 
embedded in the moment equations than in the NSF equations. 
In this paper, the moment method is used to study convective 
heat transfer in a micro-channel. The gas is in the slip and early 
transition regime and experiences a sudden change in the wall 
temperature. The computed flow field and temperature 
distribution around the thermal change are examined. In the 
early transition regime, the tangential heat flux alters the 
velocity field in the thermally developing area and the 
characteristics of the heat transfer, quantified by the Nusselt 
number, will be discussed. 

 
Nomenclature 
 

( )n
Aa   coefficients for Hermite polynomials in Eq. (8) 

ci [m/s] intrinsic or peculiar velocity 
c2 [(m/s)2] ckck 
C1,C2  collision term constants in Eq. (19) 
Dh [m] hydraulic diameter 
f  molecular distribution function 
fM  Maxwellian distribution function 

w
Mf   Maxwellian distribution function at Tw 

i,j,k  tensor index 
( )n
AH   Hermite polynomials in Eq.(8) 

h [W/(m2K)] heat  
Kn  Knudsen number (=λ/H) 
mijk [W/m2] defined in Eq.(10) 
ni  normal vector 
Nu  Nusselt number  
NuS  thermally fully developed Nusselt number 
p [Pa] pressure 
pγ [Pa] defined in Eq. (27)  
pij [Pa]  pressure tensor 
qi [W/m2] heat flux 
qy [W/m2] heat flux normal to wall 
R [J/kgK] specific gas constant 
Rij  defined in Eq. (10) 
S [K] Sutherland’s constant 
T [K] temperature 
Tw [K] wall temperature 
x, xi [m] Cartesian axis direction  
y [m] Cartesian axis direction  
Y1,Y2,Y3  collision constants in Eq. (20) 
   
   
   
Special 
characters 

  

 

α  accommodation coefficient 
Δ  defined in Eq. (10) 
δij [m] Kronecker delta 
φijkl  fourth moment defined in Eq. (10) 
λ [m] molecular mean free path 
μ [Pa⋅s] viscosity 
ρ [kg/m3] density 
ρε [J] thermal energy 

1 2... Ni i iρ   Nth moment defined in Eq.(3) 

σij [Pa] deviatoric stress tensor 
τi  tangential vector 
Ωi  high moment defined in Eq. (10) 
ξ, ξi [m/s] particle velocity 
ψijk   moment deviation defined in Eq. (10) 
η  normalised pressure gradient ( ) ( )inp p x H−∂ ∂  

Subscripts 

in  Inlet condition 
ex  Exit condition 
w  Wall condition 
o  Reference parameter  
   
   
 

MOMENT METHOD 
In Grad’s moment method, once the distribution function, f, 

is known, its moments with respect to the particle velocity ξ 
can be determined. For example, the density, ρ, and the 
momentum, ρui, can be obtained from 

and i if d uρ ρ= ∫ f dξ= ∫ξ ξ  (1)    
where ui represent the fluid velocity. It is convenient to 
introduce the intrinsic or peculiar velocity as  

i ic uiξ= −  (2)             
so that the moments with respect to ui can be conveniently 
calculated. A set of N moments are then used to describe the 
state of the gas through 

1 2 1 2........ ....... .
N Ni i i i i ic c c f dρ = ∫ ξ  (3) 

Any moment can be expressed by its trace and traceless part 
[8]. For example, the pressure tensor can be separated as 
follows: 

,ij i j ij ij ij ijp c c f d p p pδ δ σ< >= = + = +∫ ξ  (4) 

where δij is the Kronecker delta function, p = pkk/3 is the 
pressure, and σij = p<ij> is the deviatoric stress tensor. The 
angular brackets are used to denote the traceless part of a 
symmetric tensor. Furthermore, the thermal energy density, ε, 
is given by 

21 3 .
2 2

c f d RTρε ρ= =∫ ξ  (5) 

The temperature, T, is related to the pressure and density by the 
ideal gas law,  

,p RTρ=  (6) 
where R is the gas constant. The heat flux vector is 

21 .
2i iq c c f d= ∫ ξ  (7) 

The molecular distribution function, f, can be reconstructed 
from the values of its moments. Grad [9] expressed f in Hermite 
polynomials as: 
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( ) ( )

0

1lim ,
!

N n n
M AN n

f f a H
n→∞ =

= ∑ A  (8) 

where ( )n
AH  is the Hermite polynomials and ( )n

Aa are the 
coefficients. The Maxwellian distribution function, fM, is 
expressed as 

( )

2

3
exp .

22
M

cf
RTRT

ρ

π

⎛ ⎞
= −⎜⎜

⎝ ⎠
⎟⎟  (9) 

To accurately describe the state of a gas an infinite number 
of moments (N → ∞) is required to reconstruct the distribution 
function. However, for gases not too far from equilibrium, a 
finite number of moments should provide an adequate 
approximation. All the moments expressed in the truncated 
distribution function are regarded as the slow moment manifold 
[7]. The rest of the higher moments are determined by the 
values of the moments in the slow manifold. The truncated 
distribution function is often denoted as Grad’s distribution 
function, fG. 

For the convenience of modeling, the high moments are 
often decomposed into the values approximated with Grad’s 
distribution function, 

1 2........ ,
N Gi i i fρ  and the deviation from their 

true value. With Grad’s 26 moment distribution function, fG26, 
the following high moments used in the present study can be 
expressed by 

26

26

26

26

26

26

|

|

|

|

|

|

,  

7 ,

15 ,

,  

9 ,

28

G

G

G

G

G

G

ijk ijk ijk f ijk

ij rr ij ij rr f ij ij

rrss rrss f

ijkl ijkl ijkl f ijkl

rr ijk ijk rr ijk f ijk ijk

rrssi i rrssi f i

m

R R RT

pRT

RTm

ρ ρ ρ

ρ ρ σ

ρ ρ

ρ φ ρ ρ

ρ ψ ρ ψ

ρ ρ

< > < > < >

< > < >

< > < > < >

< > < >

= + =

= + = +

= Δ + = Δ +

= + =

= + = +

= Ω + = Ω + .iRTq

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

 

 (10) 

where mijk, Rij, Δ, ψijk, φijkl and Ωi represent the difference 
between the true value of the higher moments and their 
corresponding approximation with fG26. In Grad’s original 
method, such deviations were omitted, so that mijk=Rij=Δ=ψijk= 
φijkl=Ωi =0. 
 
Regularised 26 Moment Equations  

Combining Grad’s moment method [9] and regularisation 
procedure [5], a system of 26 moment equations for monatomic 
gas flow are developed by [7] 

0,i

i

u
t x

ρρ ∂∂
+ =

∂ ∂
 (11) 

,i j iji

j j i

u uu p
t x x

ρ σρ ∂ ∂∂ ∂
+ + = −

∂ ∂ ∂ ∂x
 (12) 

2 2 ,
3 3

ji i i
ij

i i i

uu T q uT p
t x R x R x x

ρρ σ
∂⎛ ⎞∂ ∂ ∂∂

+ + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

42
5

2 ,

iij k ij ijk i
ij

k k j

j
k i

k

qu m up p
t x x x x

u
x

σ σ
σ

μ

σ

j

<<

> >

>
<

∂∂ ∂ ∂ ∂
+ + = − − −

∂ ∂ ∂ ∂ ∂

∂
−

∂

(14) 

1 2 5
2 3 2

7 2 7
2 5 2

1 ,
6

j i iji
i

j j i

ik i k k
k k i

k k i k

ij jk jik
ijk

k j k i

u q Rq p Tq pR
t x x x

R u uT q q q
x x x x

upRT m
k

u

x x x x x

μ

σ

σ σσ
ρ

∂ ∂∂ ∂
+ + = − −

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂∂
− − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂∂ ∂ ∂Δ
− + + − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

(15) 

( )3 3
2

12 33 3
5 7

ijijk l ijk ijkl
ijk

l l k

ij j ijk l k
i l ij

l k l

m u m p m p
t x x x

u Ruq m
x x x x

,
k

σ ρφ
μ

σ σ
ρ

<

>

< <> >
< <

> >

∂∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ − − −

∂ ∂ ∂ ∂

(16) 

( )7 28
6 5

2 28 28
3 5 5

142 9
3

22 4
3

ij k ij ijk i
ij

k k j

k i j k j ki
i

j k

ijk ij k k
ijk kl

k k k l

jk k
ijkl k i k i ij

l j k

R u R qp R p
t x x x

qp RTq
x x

m q uRTRT m
x x x x

uu uRT k

k

u
x x x

ψ ρ
μ

σ σ σ
μ ρ ρ

σ
σ

ρ

φ σ σ σ

<

>

< > ><
<

>

>
< <

>

∂ ∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂

∂∂
− − +

∂ ∂

∂ ⎛ ⎞∂ ∂∂
− − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ∂∂ ∂
− − + −

∂ ∂ ∂⎝ x
∂
∂

14 22
15 5

6 4 2
7 5

ijk kl i i

k l j j

jk k
ij k i k i

k j k

m up
x x x x

uu uR R R
x x x

σ
ρ

< <

> >

>>
< < <

>

⎞
⎜ ⎟⎜ ⎟

⎠
⎛ ⎞∂ ∂ ∂Ω∂

+ + − Δ −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂∂ ∂
− + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

(17) 

and 
( )

( )

2 8
3

2 4 2 8
3

420 ,
3

ii i

i i i

ij ij iji i
ij ij

j j

i
i

i i

qu p p
t x x x

u qp RT R
x x

uRTq
x x

ρ
μ

σ σ σ
σ

μ ρ ρ

∂∂Δ ∂Ω∂Δ
+ + = − Δ −

∂ ∂ ∂ ∂

∂∂
− − + +

∂ ∂

∂∂
− − Δ

∂ ∂

 (18) 

where t and xi are temporal and spatial coordinates, 
respectively, and μ is the viscosity. Any suffix i, j, k represents 
the usual summation convention. In addition to the 
conservation laws (11)-(13) and the governing equations (14) 
and (15) for the deviatoric stress, σij, and heat flux, qi, the 
governing equations (16)-(18) for the higher moments mijk, Rij 
and Δ are included in the 26 moment system. The above 
equation set is closed by the following constitutive 
relationships [7]: 

i
 (13) 
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( )
1 1

2

1 1 1

4 4

12 12 ,
7

ijk l m
ijkl ijk

l m

ij ij klk k
ij

l l

m
m

C x C p x
Ru u C

C x C p x C

ρ σμ μφ
ρ

μ σμ σ
ρ

< >
<

>

< <
<

> >

∂ ∂
= − +

∂ ∂

∂ ∂
− − −

∂ ∂

σ
ρ

>

 (19) 

( )

( )
1

1

1 1

1

32

1 1 1

27
7

27 7
7

108 6
5

54 8 6
7

27
7

ij
ijk

k

ij ij
k

j ijk m m
i m

k m

m m
m ij ijk ijk

k m

ij li jkl i jkk m

m

R

Y x
RTR RT

Y p x
u m q u

q
Y x Y p x x

u u
m m m

Y x x

R m YY
Y p x Y Y

ρμψ

μ σ

μ μ σ
ρ ρ

μ
ρ

σ σσμ
ρ ρ

<
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<
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>
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∂
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∂
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∂
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∂

l
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m

m
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x

q
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⎝

⎞
⎟
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and 

( ) ( )

( )

7 4 8
3

56 14 2
5

56 4
3

5 147 22
3 15

ij j
i

i j

ji
j ij

j i j

j j ij jki
jk

j k k

ij ijk jk j ij

j i

R u
m

x x

uu RTq RT
x x p x

q u Rq
p x x p x

m qRT
p x x

ρρμ μμ
ρ

μ μ σ
ρ

σμ μσ
ρ ρ

σ σμ
ρ ρ

∂ ∂∂ Δ
Ω = − − −

∂ ∂ ∂

⎛ ⎞∂∂ ∂
− + − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ +⎛ ⎞∂
+ Δ − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠

,

ijk
k

ij

x

R

σ

(22) 

in which, C1=2.097, C2=-0.291, Y1=1.82, Y2=-1.203 and 
Y3=0.854 are collision term constants [7]. 

The regularisation of Grad’s moment equations allows the 
higher moments to approach the slow moment manifold with a 
fast but finite rate, a procedure which enhances the capability of 
the moment method significantly. 

 
Numerical Algorithm  

In the moment system, the higher moment provides the 
transport mechanism for the moment one order lower [7]. For a 
gas flow close to the equilibrium state, a sufficient number of 

molecular isotropic collisions cause the flow to behave as a 
continuum and the gradient transport mechanism prevails. As 
the value of Kn increases, a non-gradient transport mechanism 
occurs in addition to the conventional gradient transport 
mechanism familiar in continuum methods. In fact, both 
gradient and non-gradient mechanisms co-exist in the transition 
regime. This feature has been used to construct the numerical 
algorithm for low speed flow in confined geometries [6,7]. 

The regularised moment equations are a mixed set of first 
and second order partial differential equations. Traditionally, 
these equations are used to study hyperbolic flows [10]. In the 
case of low speed gas flow, the flow is parabolic or elliptic. 
Using a hyperbolic flow solver to solve elliptic flows is 
inefficient and expensive. To overcome this issue, the moments 
are decomposed into their gradient (hydrodynamic) and non-
gradient (non-hydrodynamic) transport parts. As a result, the 
moment equations can be recast in convection-diffusion form. 
These equations form a set of second order partial differential 
equations and the mathematical characteristics of the system 
will be determined by the flow conditions. They are of a 
hyperbolic nature for high speed flows and parabolic or elliptic 
when the flow velocity is low or the flow is re-circulating. In 
this way, traditional CFD techniques for low speed flows can 
be used. In the present study, the finite volume approach has 
been employed. The diffusion and source terms are discretised 
by a central difference scheme. For the convective terms, a 
range of upwind schemes are available. The SIMPLE algorithm 
is adopted to resolve the coupling of the velocity and pressure 
fields. A collocated grid arrangement is used and any non-
physical pressure oscillations are eliminated by the 
interpolation scheme of Rhie and Chow. 
 
Wall boundary conditions 

To apply the moment equations to flows in confined 
geometries, appropriate wall boundary conditions are required 
to determine a unique solution. One of the difficulties 
encountered in any investigation of wall boundary conditions is 
due to a limited understanding of the structure of surface layers 
of solid bodies and of the effective interaction potential of the 
gas molecules with the wall. A scattering kernel represents a 
fundamental concept in gas-surface interactions, by means of 
which other quantities should be defined [11]. 

Maxwell's kinetic boundary condition [12] is one of the 
simplest models and it states that a fraction, (1-α), of gas 
molecules will undergo specular reflection while the remaining 
fraction, α, will be diffusely reflected with a Maxwellian 
distribution, w

Mf , at the temperature of the wall, Tw. In a frame 
where the coordinates are attached to the wall, with ni the 
normal vector of the wall pointing towards the gas and τi the 
tangential vector of the wall, such that all molecules with ξini<0 
are incident upon the wall and molecules with ξini≥0 are 
emitted by the wall, Maxwell’s boundary condition can be 
expressed by [8]: 

( )1 ( ),
          ( )          , 0.

w
w M i i i

i i i i

f f n n
f

f n n
α α ξ ξ

ξ ξ

⎧ 0,i+ − − ≥⎪= ⎨
<⎪⎩

 (23) 
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By definition, the value of any moment at the wall can be 
obtained from 

1 2 1 2n
w

i i i i i ic c c f d c c c f d⌠⌠ ⎮⌡ ⌡=
n

ξ ξ  (24) 

However, Grad [9] considered the special case of α = 0 and 
concluded that only those moments that are odd functions of 
ξini can be used to construct the wall boundary conditions. The 
details of the construction procedure of the macroscopic wall 
boundary conditions for the moment equations are given in Ref. 
[6, 7]. The slip velocity parallel to the wall, uτ, and the 
temperature jump condition can be expressed as 

2
2

5 2 9 70
10 2520

n

nn nn

RTu
p

m q
p p

τ
τ

γ

RT
τ τ τ

γ γ

σα π
α

ψ

−
= −

+ Ω +
− + τ

 (25) 

  
and 

2

2
2 2

75 28
4 4 840 24

n
w

nn nn nnnn

qRTRT RT
p

RT u R
p p

γ

τ

pγ γ γ

α π
α

σ φ

−
− = −

+ Δ
− + − +

 (26) 

Where 
30 7

.
2 840 24
nn nn nnnnR

p p
RT RTγ

σ φ+ Δ
= + − −  (27) 

Here σnn=σijninj, σnτ=σijniτj, mnnτ=mijkninjτk, mnnn=mijkninjnk, 
qτ=qiτi, Rnn=Rijninj, Ωτ=Ωiτi, ψnnτ=ψijkninjτk, and φnnnn= φijklninjnknl 
are the tangential and normal components of σij, qi, mijk, Rij, ψijk, 
φijkl and Ωi relative to the wall, respectively. It should be noted 
that the normal velocity at the wall, un = 0, since there is no gas 
flow through the wall. Equations (25) and (26) are similar to 
the slip velocity and temperature jump conditions for the NSF 
equations [13, 14] with the underlined terms on the right hand 
side providing higher-order moment corrections. These 
underlined terms can be related to second- or higher-order 
velocity-slip and temperature-jump boundary conditions [15]. 
With a normalized slip velocity, ˆ ,u u RTτ τ=  and a 

normalised wall temperature, ˆ ,w wT T T=  the rest of the wall 
boundary conditions are:  
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5 22
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ˆˆ 1 ,
14 30 2
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m qRT
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RT RT RT

ττ
ττ

ττ τ
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α
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+ Δ

+ + − − − − τ

(28) 
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RESULTS AND DISCUSSIONS 
In the present study, the flow of a gas through a two-

dimensional channel with a width of H is considered. Pressure 
at the channel entrance pin and exit pex is assumed uniform with 
a small pressure gradient ( ) ( )inp p x Hη = −∂ ∂ . A gas with a 
temperature To enters the channel with a wall temperature at Tw. 
The Knudsen number is given by Kn=λ/H, where the mean free 
path, λ, is defined by [11,13] 
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The viscosity was obtained from Sutherland’s law [16]: 
1.5

,o
o

o

T ST
T T S

μ μ
⎛ ⎞ +

= ⎜ ⎟
+⎝ ⎠

 (37) 

where the reference viscosity and temperature are given by 
μo=21.25×10-6 Pa⋅s and To=273 K, respectively. The specific 
gas constant and Sutherland’s constant for argon are 
R=208J/kg⋅K and S=144 K. The accommodation coefficient, α, 
is assigned a value of unity i.e. fully diffuse reflection has been 
assumed for all the walls. The wall temperature Tw is 5 K above 
the initial gas temperature.  
 

 
    

Figure 1 Channel geometry 

 
The NSF equations and the R26 equations are solved for the 

flow with 150×50 equi-spaced grid points across a domain with 
25μm×5μm and the symmetry condition is employed at y = 0 
μm as shown in Figure 1. In the present study, the Brinkman 
number is set to equal to zero, i.e. the viscous dissipation terms 
in the energy equation (13) are switched off, to be consistent 
with theoretical analysis [1-4, 17]. Shown in Figure 2 are the 
velocity vectors imposed on the temperature field from the R26 
equation for the case Kn=0.1. The thermal field develops much 
slower than the hydrodynamic field.  
 

 
 

Figure 2 The computed velocity vectors and temperature field 
from the R26 equations for Kn=0.1, Tw=278 K and To=273 K. 

 
The normalised velocity u/uo at x/H=1 predicted by both the 

NSF with the second order slip boundary condition and the R26 
equations is presented in Figure 3, where 2o ou Rη= T . The 
NSF equations with second-order slip boundary condition 
predict a larger slip velocity than the R26 equation [7]. 
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Figure 3 The predicted velocity profile at x/H=1 for Kn=0.1. 
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Figure 4 The predicted temperature profile at x/H=1 for 
Kn=0.1. 
 

The computed temperature profile at x/H=1 is shown in 
Figure 4 for Kn=0.1. Again the NSF equations predict a higher 
temperature jump than the R26 equations.  
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Figure 5 The predicted development of the Nusselt number for 
different values of Kn.  

 
The heat transfer between the gas and the walls can be 

meaured by the heat transfer coeffcient, h, which is defined as, 
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Here, Tb is the bulk temperature defined by 
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The Nusselt number, the non-dimensional heat transfer 
coefficient, is defined by 

2 ,hD h HhNu
κ κ

= =  (40) 
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CONCLUSIONS 
The paper has investigated the classic Graetz thermal 

development length problem for the case of a rarefied gas 
entering a micro-channel. To capture the non-equilibrium flow 
phenomena, the Method of Moments has been employed. 
Results are compared to predictions from the Navier-Stokes-
Fourier equations and the regularized 26 moment equations. 
We show that the thermal field develops much slower than the 
hydrodynamic field and rarefaction effects are better captured 
by the moment method, particularly at higher Knudsen numbers 
where agreement with data from kinetic theory is very good. 
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