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ABSTRACT 
Tuned Liquid Dampers (TLDs) are passive damping 

devices used to damp vibration due to wind in tall buildings 
and due to sea waves in offshore platforms. This paper pre-
sents numerical results of wave breaking in TLDs obtained 
using a numerical model developed in-house. The model 
solves the full form of Navier-Stokes equations for viscous 
liquid sloshing and handles the moving free surface by using 
the volume of fluid method (VOF). Some of the previous 
numerical models invoke a two-phase flow model in con-
junction with the VOF method to simulate the wave trans-
formation and wave breaking in shallow water. However, 
these two-phase flow models give no account to the effect of 
body force on the free surface. The current model uses the 
continuum surface force model (CSF) which models the 
discontinuity accompanied with wave breaking as a con-
tinuous transition where fluid properties such as density 
vary smoothly from one fluid to another. Numerous experi-
mental studies reveal that the impulse pressure exerted on 
the tank walls varies in a similar nature as that of the applied 
excitation. Accordingly, the current numerical model sug-
gests new formulae for the pressure at the left and right TLD 
walls. The present numerical results are in good agreement 
with experimental data. The current model is able to accu-
rately detect surface wave breaking at various excitation 
frequencies. 
INTRODUCTION 
 

The use of tune liquid dampers outweighs the use of 
other passive damping devices from the reliability ,operating 
and maintenance costs [1,2] and ,of course ,the ability to 
damp both light scale vibration due to wind [3,4] and large 
excitation due to sea waves in offshore platforms. TLDs are 
also used in marine vessels stabilization against rocking and 
rolling motions [5]. However in due to the use of TLD the 
optimum damping without additional damping devices will 
be less than the optimal values. The TLD damping perform-
ance has been improved by using rough elements [6], sur-
face contaminants [7] and nets or screens [2, 8, 9]. The most 
recent application of TLDs in Canada is in the One King 
West building in Toronto. The 51 storey structure is the 
most slender structure in the world with an aspect ratio of 
11:1[7]. The first attempt towards an accurate prediction of 
the sloshing-induced dynamic pressures over the internal 
girders and walls of fuel tanks is due to [10].  Abramson has 
applied linear theories, based on the potential formulation of 
the velocity 

 
field, to the analysis of the liquid motion in cylindrical and 
spherical tanks and in ring and circular sector compart-

mented tanks [10] as a direct aerospace application. Without 
any doubt the analysis of [10, 11] postulate the corner stone 
of many successive numerical and experimental researches 
of TLDs. 
 
NOMENCLATURE 
 

A [m] Amplitude of external dynamic 
excitation 

C* [-] Courant  time Multiplier 
F [-] Liquid volume fraction 

TLDF  [N] Total sloshing force on TLD walls 

svF
r

 
[N/m3] The Volume force 

saF
r

 
[N/m2] The surface force upon an  interfa-

cial area 
n

bF
r

 
[N/m3] The  body force at the pervious time 

step 

f  [Hz] Excitation frequency on TLD 

xg  [m/s2] Horizontal   acceleration 

yg  [m/s2] Gravitational  acceleration 

h [m] Height of the initial flat free surface 
h* [m] The transition Region  thickness 
H [m] The TLD  tank  Height 
L [m] The TLD   tank length 

wm  [Kg] The liquid mass inside TLD 

p  [N/m2] pressure 

t [Sec.] time 
u  [m/s] The fluid flow velocity component in  

x-direction 
v  [m/s] The fluid flow velocity component in  

y-direction 
yx ,  [m] Cartesian  coordinates 

V
r

 
[m/s] The generalised  velocity vector 

W [m] The  TLD  tank width 
Greek symbols   

η  [m] Free surface elevation over the nom-
inal fluid height 

ρ  [kg/m3] Fluid density 

μ  [N.s/m2] Fluid dynamic viscosity 

τ  [N/m2] Fluid flow stress 
σ  [N/m] Surface tension 
ω  [rad. /s] Excitation angular frequency 
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LITERATURE REVIEW   
 

Numerous numerical models have been developed to 
investigate the sloshing behavior of the liquid inside the 
TLD. In the early studies [10,12,13] equivalent mechanical 
models were suggested for both the structure as well as the 
liquid storage tanks. On the other hand a different way of 
handling the liquid sloshing numerically was invoked based 
on the potential flow theory [14] as well as the shallow wa-
ter wave theory [15]. In fact the potential flow theory has no 
account for the effect of fluid properties on the sloshing liq-
uid motion. It also can not be used to investigate the fluid 
flow behavior around obstacles as the created vortices could 
not be modeled via the potential theory. The shallow water 
wave theory based on the small wave amplitude compared 
with the mean depth of the liquid layer was used in many 
research studies of the TLD [15]. Unfortunately the shallow 
water wave theory failed to model the flow field around the 
obstacles in the TLD. Many of numerical techniques use a 
linear form of the NSE ,which gained by neglecting the con-
vective acceleration terms used in the handling of the slosh-
ing fluid flow motion in case of the external excitation with 
small amplitudes or with excitation with a frequency away 
from the natural frequency of the TLD[16]. The linear the-
ory is inadequate in the case of high excitation amplitude as 
the convective acceleration terms have pronounced effect on 
the sloshing motion [17]. The numerical methods [11, 18, 
19, and 20 involve the solution of Navier–Stokes equations 
(NSE) for viscous liquid sloshing instead of the shallow 
water wave theory models provides more accurate results. 
 
THE CURRENT NUMERICAL MODEL  

The current numerical model involves prediction of 
wave breaking. Wave breaking has been studied using the 
shallow water wave theory employing a non-depressive, 
fully non-linear wave system [21, 22, 23, and 24]. Although 
the shallow water theory simulates wave breaking, however, 
numerical instabilities were noticed inherent in  

 
 

the rapid change of the breaking wave front [25]. The shal-
low water theory failed to predict wave breaking due to the 
treatment of wave breaking as a discontinuity of the free 
surface in contrast to the physical behavior of the wave 
breaking, which postulates a rapid transition involving tur-
bulence [25]. In addition, the pressure field is not exactly 
hydrostatic, especially near the breaking wave front [25]. 
The current numerical model solves the Navier–Stokes 
equations (NSE) for viscous liquid sloshing and handles the 
moving free surface by using the volume of fluid method 
(VOF) [26, 27, 28]. In contrast to other numerical models 
[16 and 17] that neglect the convection-acceleration terms, 
the current numerical model accurately handles the convec-
tion acceleration terms. It is noteworthy that the current nu-
merical method handles the jump in the pressure at the inter-
face. The current model carefully evaluates the pressure at 
the free surface as the pressure is greatly affected by the 
surface tension and the fluid flow stress gradients [29]. D. 
Liu and P. Lin [32] introduced for the concept of virtual 
body force (VBF).The concept of VBF was modified and 
used in the current numerical technique. The experimental 
study [31] reveals that the pressure exerted on the walls var-

ies in a similar nature as that of the applied excitation. Ac-
cording to [31], the direct comparison between surface 
waves and the deep inner waves reflect that the pressures at 
the walls show a considerable fluctuation near the free sur-
face of the liquid compared to the deeper surfaces in the 
tank. Moreover the study also shows that although the deep 
waves were blunt and less steep from the surface waves, but 
the value of pressure on the fluid element at the location of 
deep waves will be higher. Accordingly, the current numeri-
cal model will assign the pressure at the left and right wall 
boundaries according to the formulae: 

 

)(sin** tepp h
y

ωα
⎟
⎠
⎞

⎜
⎝
⎛ −

=                                     (1)  
The factor pα  was the parameter defined as the pressure 
maximum amplitude during the TLD excitation period. This 
 factor, pα , will be affected by the external excitation na-
ture.  
 
THE GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS  

The model problem is shown in Figure 1. The govern-
ing equations of the incompressible , Newtonian ,laminar 
flow in the Cartesian coordinate system are as follows:-.  
The Continuity Equation 
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                                                                (2) 

 
The Momentum Equation In X-  Direction 
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The Momentum Equation In Y- Direction  
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The Free Surface Time Evolution Equation 
 
The time evolution equation of the liquid free surface repre-
sented as : 

0=
∂
∂

+
∂
∂

+
∂
∂

y
Fv

x
Fu

t
F

                                              (5-a) 

After the velocity and pressure fields are calculated using an 
assumed liquid volume fraction, F, the liquid volume frac-
tion, F, is updated. The new F-field is calculated by solving 
equation (5-a), [28]. Combining this equation with the con-
tinuity equation gives the conservative form of the F – field, 

as:  
( ) ( ) 0=

∂
∂

+
∂

∂
+

∂
∂

y
vF

x
uF

t
F

                       (5-b) 

THE BOUNDARY CONDITIONS 
 
The no-slip and no-penetration boundary conditions are 

employed at the tanks walls:  left hand side wall, the bottom 
and the Right  wall, figure(1). 
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Where σ  is the fluid surface tension, is the unit force 

normal to the surface (into fluid 2), and 
in̂
( )xrκ is the local 

free surface curvature, taken positive if the center of curva-
ture points towards (fluid 2), Figure(2). The projection of 
the surface stress in tensor form, equation (7) along the unit 
normal and the unit tangent results in an equivalent set 
of scalar boundary conditions[29], as: 

n̂ t̂

 The normal stress boundary condition given by: 

    
n
unp k

ks ∂
∂

=− μσκ 2                                                 (8) 
 

 And the tangential boundary condition given by: 
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∂
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+
∂
∂ σμ                                          (9) Figure 1  The TLD Basic Dimensions, The Cartesian Coor-

dinate System and The Fluid Flow Velocities 
 

Where,  ∇=
∂
∂ .t̂
s

 is the surface derivative and 

∇=
∂
∂ .n̂
n

is the normal derivative. 

 
 
The pressure at the fluid cells in the vicinity of the ghost 

cells at the bottom wall, have a pressure which equals to the 
hydrostatic pressure of the fluid and according to the nomi-
nal fluid height. Moreover the viscous stress on the R.H.S of equation (9) 

will be neglected as the dominant part to assess the surface 
tension induces the pressure jump across the fluid interface. 
The surface tension coefficient σ  was assumed constant 
and accordingly equation (9) will be modified as: 

 
The pressure at the left and right TLD walls as stated 

earlier: 

)(sin** tepp h
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⎛ −

=

( )xr

 σκ=sp                                                                      (10)                                   (1) 
Instead of the direct evaluation of the surface pressure using 
the Laplace’s equation(10),  the current model use the CSF 
model to reformulate the surface tension by using the vol-
ume force svF

r
 and by using delta function introduced ,[29], 

as: 

According to the CSF model used in the current numerical 
model at the interface region between the water surface (flu-
id 1) and air adjacent (fluid 2), there were a transition region 
with finite depth within which the fluid properties as density 
vary smoothly from one fluid to another within the transition 
region [29].The two fluids are distinguished by some char-
acteristic function, c , which was characterized by:  ( ) ( SdxFxdxF S

S
sa

V
svh

)rrrs
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ΔΔ
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0
lim                           (11) 
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                         (6) 

 
The fluid density, for instance, of any point within the tran-
sition region is evaluated as, ( ) ρρ =xr . Then the CSF 
model consider replacement of the discontinuous character-
istic function  by a smoothed variation function, 

, of the fluid properties from  to . This variation 

will be demonstrated over a distance

( )xc r

( )xc r~
1c 2c
( )*hο  , where (h*) is 

the transition layer thickness and comparable to the resolu-
tion afforded by the calculation mesh size. Accordingly, we 
replace the boundary values at the interface by a continuous 
model where the values of ( c ) at grid points was specified 
and interpolation process takes place between grid points. 
The exact surface stress boundary condition at the free sur-
face can be written in tensor form [29], 

Where Sxr is a point on the interfacial area .  SΔ

Moreover the surface force  was expressed as: ( Ssa xF rr
)

 ( ) ( ) ( ) tFnFxF t
S

n
SSsa

ˆˆ +=
rr

                                           (12) 
( ) (n

SF and Where )  are the surface force components 

along the unit normal ( ) and the unit tangent ( ) respec-
tively, figure (2). In the current numerical work the viscous 
stresses at the free surface were neglected and the surface 
tension coefficient 

t
SF

n̂ t̂

σ  was assumed to be constant, therefore 

the surface force around on the interfacial area, saF
r

 was 

equal to the surface force along the unit normal ( ) , n̂ ( )n
SF
r

. 
Hence: 

( ) ( ) ( ) ( SSS
n

sSsa xnxxFxF rrr
)rrr ˆ)( κσ==                       (13) 

The surface tension force per unit interfacial area, 
( )S

n
s xF rr

)( , will be added to the body force in the momen-
tum equation: 
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Figure 2 the normal and tangential surface force compo-

nents at the free surface. 
 
 
THE NUMERICAL IMPLEMENTATION  
 
Two Step Projection Method 
 

The time discretization form of the momentum equation 
for incompressible fluid flow will be: 
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                                                                                       (15) 
As the pressure gradient was the key to solve the discretized 
momentum equation, the pressure term was the implicit term 
in equation (15), while the other terms as advection, body 
force, and viscous stresses will be evaluated from the previ-
ous time step, denoted by the superscript (n). 
It follows that two step projection method follow to divide 
the momentum equation (15) into: 
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                                              (17) 

The legacy of velocity field V
r~

 at the previous time step, 
according to the balance between the gravitational force, 
advection term, and the body forces, equation (16), was 
evaluated. That velocity field will be corrected by the pres-
sure gradient term at the new time step to extract the new 
velocity field vector at the new time step, { }, equation 
(17). The continuity equation applied for the new time step 
denoted by the superscript (n+1) will be: 

1+nV
r

 
0. 1 =∇ +nV

r
                                                                (18) 

 
Using equation (17) and combined it with equation (18) we 
extract well known Poisson’s equation, for evaluation of 
pressure gradient, as: 

t
Vpn

n δρ
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∇∇ +                                         (19) 

One of the important features of the PPE given by (19) is 
that the pressure gradient adapted by other forces affect the 
fluid element as the gravitational, body forces, the inertia 
forces, and the viscous stresses via the acceleration term 

t
V

δ

r~.∇
 will be the corner stone to evaluate the new velocity 

field at the new time step (n+1), . 1+nV
r

 
The Formulation of Wave Breaking 
 

The kinematic boundary of the free surface was given 
[34], on the assumption of equality of the vertical compo-
nent of velocity across the interface between water surface 
and the adjacent air, as well as there were no air cushions in 
the water side at the interface, and then the kinematic 
boundary will be: 

yd
dv
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ttd
dvv airliquid

ηηηη
++

∂
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===          (20) 

Where the hydrodynamic pressure of the excited liquid free 
surface was given by the use of Bernoulli's equation, assum-
ing the potential flow theory [34,35]: 
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                 (21) 

The former equation based on the potential flow theory and 
( )tyx ,,φ is the potential function. The current numerical 

model will replace equation (21) by another formula which 
gives accountant of the viscous stresses and body forces. 
The surface elevation over the nominal fluid height, {η }, 
was extracted using the potential theory,[41] as: 
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                                                       (22) 

It could be easily explain that the pressure gradient w.r.t. y-
direction at certain x- direction will be equal to the gradient 
of potential function with y-direction as follows: 
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Equation (23) will be used to detect the location of wave 
breaking and digitize numerically the onset of formation of 
wave crest and consequently will be useful in study the ef-
fect of wave breaking on the sloshing motion inside TLD 
tanks. 
 
It is worth noting that the current numerical work replace the 
use of Bernoulli’s equation to assess the dynamic pressure 
of the excited free surface , where the pressure value was 
extracted from the potential flow theory , which neglect the 
fluid viscous forces. Instead the pressure gradient appear in 
equation (23) which was extracted from direct solution of 

ds 

FS
(n) 

t̂ 

SΔ 

n) 

Aδ C 

FS
(t) 
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Poison’s equation (19) and carries , of course, all the legacy 

of viscous and body forces from the evaluation of V
r~.∇  

directly from equation (16): 
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The streamlines that localize the free surface has a stream 
function which was a direct function of (x, y, t) as 
( tyx ,, )ψ . The wave breaking surface was recognized by 

folding the wave on itself. The wave breaking is presented 
in three different events [36]: (I) wave breaking with alter-
nate breaking, (II) wave breaking with long-time randomise 
asymmetric behaviour, and (III) wave breaking with local 
splashing jets. All the events accompanied with wave break-
ing contain the folding wave on itself as a consequence of 
wave breaking. Therefore there was a point on the surface 
wave where the streamline of the free surface fold on itself, 
this point called the “reflection point”. For the reflection 
point the second order differential of the stream function 
w.r.t. the vertical y-direction will vanish as: 
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                                                                                          (24) 
And hence the second order differentiation of pressure will 
vanish at the location of reflection point: 
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                      (25) 

Equation (25) postulates the criterion of detection of the 
onset of wave breaking. The detection of wave breaking 
burden on the pressure gradient to be constant with respect 
to (y-direction). Consequently the pressure gradient which 
carries the legacy of the other stresses affects the flow field, 
as the viscous stresses and the body forces will be a sensi-
tive criterion for the correct detection of the location of the 
wave breaking. 
 
The Numerical Computation Time Step and The Stabil-
ity Criterion 
 

The momentum transport equation (15) and the free sur-
face time evolution equation (5) according to the VOF 
method were explicit equations in time. Hence the calcula-
tion time step must be criticized by the Courant time limit. 
The Courant time step limit in x-direction and y direction 
will be cycx tt δδ ,

C

 respectively. The Courant time step 

limit tδ should be taken as the minimum of cycx tt δδ , , 
consequently the computation time step should be evaluated 
as: 
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                                                                                       (26) 
The value of the Courant multiplier ( C* ) appear in equation 
(26) could be taken as 1.0 in theoretical basis, but in practi-
cal applications, where the flow field was highly non-linear , 
the multiplier ( C* ) should be taken a value which was in 

the vicinity of . On the current numerical work 
we select a value of {C*  = 0.3} to ensure stability [1, 20]. 

5.0* ≤C

Another important stability criterion was selected in due to 
the diffusion process, so as to avoid the negative diffusion 
and the computation time step must also satisfied this condi-
tion [20]: 

⎟⎟
⎠

⎞
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⎛ ΔΔ
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μ
ρ

μ
ρδ

6
,

6
min

22 yxt                                 (27) 

 
The current numerical time step was chosen to be 

 .10*62.6 4 Sect −=δ
 
The computer program flow chart will be fully illus-

trated in figure (3). 
 
The details of the current numerical model was fully il-

lustrated in [37]. 
 
 
MODEL VALIDATION 
 

The validation of the numerical model was invoked by 
the direct comparison between the numerical evaluation of 
free surface elevation and the experimental findings [8]. A 
prototype of a structure building of 1:10 scale was equipped 
with TLD tank constructed from 19mm thick acrylic with 
length of 966mm, width of 360mm, and the nominal water 
height inside was 119mm [8]. The excitation force was ap-
plied on the combined system of structure and TLD using a 
driving spring attached to a hydraulic actuator, the combined 
system of structure and TLD was tested by applying a sinu-
soidal excitation. The free surface elevation during the exci-
tation was measured by a wave probe. The other perform-
ance parameters as structural acceleration and structural 
displacement were also measured[8].The excitation imposed 
was sinusoidal according to the horizontal displacement 
according to ( )ϕω += tAx sin

Hzff 594.0,

, where (A) is the excita-
tion amplitude, (A = 25.9mm). The excitation frequency 
{ },f 2 == πω , and the phase shift an-

gle, . The wave probe was mounted to detect the 
excited free surface elevation at a distance 
{

04=ϕ

0483.0 mmx = } measured from the left hand side TLD 
tank wall. The direct comparison between the current nu-
merical time history of the wave surface elevation for 30 
seconds time span and the experimental findings, [8] exhibit 
a good agreement which validates the use of the computer 
program to detect the enhanced free surface elevation under 
the external excitation, figure (4). 
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Figure  3  Flow chart of the computer Code 
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Figure 4  Comparison between  the  numerical values   of  the  
free  surface elevation of liquid  inside TLD  and  the  experi-
mental findings [7] for excitation with sinusoidal wave  of am-
plitude ,A=0.259  cm and  with  a  frequency of  0.59 Hz., phase 
shift  angle = 40. 
 
 
 
 

 
THE NUMERICAL RESULTS AND DISCUSSION 
 
The Time History Of The Impulse Pressure And The 
Total Sloshing Force And The Non-Linear Behaviour Of 
Sloshing Motion  

 
 
The sloshing force on the TLD tank for the sinusoidal 

excitation applied on the tank walls [8] was predicted by the 
current numerical work. The time history of the normalized 

total sloshing force 
gm

F

w

TLD was presented for excitation am-

plitude, A = 25.9mm, excitation frequency, Hzf 594.0= , 

and the phase shift angle, , figure (5). Moreover the 
normalized sloshing force w.r.t. the excitation force was 
explained, figure (6). The direct examination of the time 
history of the normalized sloshing force, 

04=ϕ

( )tfF
FTLD

π2sin0

clear the non-uniform behavior of slosh-

ing motion as the damping force was dominant in the time 
window of {15 seconds}starting after (4)seconds from the 
onset of excitation. On the other hand the serious events of 
sloshing motion reside when the total sloshing force and the 
excitation force coexisted.  
 
Prediction of  Wave Breaking 
  

The formation of wave breaking near the wall side of 
TLD tank wall contains a liquid with shallow depth will be 
analyzed. The hydraulic jump was characterized by forma-
tion of nonlinear motion of the free surface followed by im-
pact at the side wall and finally wave runner up and splash-
ing occurs [38,39]. The current numerical investigate the 
free surface for TLD tank under excitation of amplitude 
{A=0.05m}, and of frequency of , where the 
sloshing motion impacts the side wall and then hits the tank 

top [38]. The water depth inside TLD was {

Hzf 14.1=

35.0=
L
h

}, a 

value little differ from the critical depth needed to initiate a 
wave breaking, which assigned by Faltinsen [40], 

{ 337.0=
L
h

}. The numerical prediction of free surface 

was illustrated on figure (7), where the numerical prediction 
of free surface superimposed on the snapshot of the excited 
free surface [39]. Figure (7) was represented for TLD sub-
jected to sinusoidal excitation of amplitude {A=0.05m}, a 
frequency of 1.14 Hz, and at a time instant of {t = 19.4 T}, 
where [T] is the excitation period, and the ratio between the 
oscillation period [T] and the linear sloshing natural period 

[T1] as{ 107.1
1

=
T
T

}. Moreover the current numerical 

work, figure (7) exhibit a good compatibility clears the veri-
fication of the use of the current numerical model to detect 
the free surface evolution of the sloshing liquid inside TLD 
in case of the hydraulic jump and wave breaking. 
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Figure 5 Time History of the Normalized Total Fluid Sloshing 

Force By the fluid weight, as   Normalized force=
gm

F

w

TLD ,  

for excitation with sinusoidal wave of amplitude,  
A=0.259 cm     with frequency of 0.59 Hz, and phase shift 
angle = 40 , [8]. 
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Figure 6 Time History of the Normalized Total Fluid Sloshing  
Force by the Sinusoidal Excitation Force, defined as: 

Normalized force=
( )tfF

FTLD

π2sin0

, for excitation with sinusoidal  

wave of amplitude, A=0.259 cm, with a frequency of 0.59 Hz, [8]. 
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Figure 7(b) 

Figure 7 The Numerical prediction of the free surface and 
the comparison with Snapshot at a time instant of t = 19.4 T 
of free surface, under the sinusoidal excitation with a frequency 
of 1.14 Hz and with amplitude, A= 0.05 m. 
a) The current numerical prediction of free surface. 
b) The numerical prediction of free surface superimposed 
           on the snapshot of free surface and a direct  
           comparison with SPH particles {white circles}, 
           according to the work of A. Colagrossi [39]. 
 
SUMMARY AND CONCLUSIONS 

The use of TLD in damping of the light scale vibration 
in due to wind excitation and the large scale excitation of the 
offshore platforms exhibits an effective dynamic absorber 
outweighs the other passive damping devices. A numerical 
model has been developed to predict the two-dimensional 
sloshing motion inside TLDs with an external sinusoidal 
excitation having different excitation frequencies. The cur-
rent numerical model handles the free surface evolution by 
using the VOF method and the CSF model to handle the 
volume fluid force caused by surface tension.  

The current numerical model proposes a new model for 
calculating pressure at the tank side walls. The onset of hy-
draulic jumps and wave breaking has been predicted. The 
current numerical model has been validated by direct com-
parison with experimental date reported in [8]. The pre-
dicted evolution of the free surface inside the TLD is in 
good agreement with the experimental data as compared to 
the experimental findings for the accurate detection of hy-
draulic jump [39]. 
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