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ABSTRACT 

The influence of a magnetic field on heat transfer is studied 

by using the lattice Boltzmann method for a magnetic fluid 

(ferrofluid) flowing through a two-dimensional micro channel; 

to analyse the effect of the sidewalls upon the flow and heat 

transfer, the three-dimensional version of the micro channel is 

also studied. This problem is of considerable interest when 

dealing with cooling of micro-electronic devices. The 

magnitude of the magnetic force is controlled by changing the 

electrical current through a dipole. The results indicate that the 

flow is relatively uninfluenced by the magnetic field until its 

strength is large enough for the Kelvin body force to overcome 

the viscous force. It was observed that the magnetic force was 

able to change the flow field and increase the heat transfer in 

the channel. 

 

INTRODUCTION 

Thermomagnetic convection has been identified as a viable 

approach for augmenting and controlling the convective heat 

transfer. To this purpose, colloidal suspensions containing 

magnetic nano-particles, known as ferrofluids, are required, and 

their motion is controlled through external magnetic fields 

[1,2].  

In the absence of an external magnetic field, these particles 

are oriented randomly in the carrying fluid; however, once an 

external magnetic field is applied to the suspension, the nano-

particles align with it. These suspensions, in general, exhibit 

normal liquid behaviour coupled with super paramagnetic 

properties. This leads to the possibility of controlling the 

properties and the flow of these liquids with relatively moderate 

magnetic field strengths. This magnetic control has enabled 

numerous developments dealing with electrical, mechanical, 

biomedical and thermal engineering applications, and these 

suspensions are already being considered as the next-generation 

heat transfer fluids as they offer the possibility of achieving 

heat transfer rates much higher than those of conventional 

fluids and fluids containing micro-sized non-magnetic metallic 

particles [1-5]. The force generated between the magnetic field 

and the homogeneously distributed magnetic particles enables 

the manipulation of the ferrofluid. The direction and intensity 

of the interaction force are dependent on the orientation and 

strength of the magnetic field.  

The present work aims to study the enhancement of laminar 

ferrohydrodynamic convection due to an imposed magnetic 

field to two- and three-dimensional channel flows using the 

lattice Boltzmann method (LBM) on D2Q9 and D3Q19 lattice 

[6], respectively.  

Finlayson [7] in 1970 explained how an external magnetic 

field imposed on a ferrofluid with varying magnetic 

susceptibility, e.g., due to a temperature gradient, results in a 

non-uniform magnetic body force, which leads to 

thermomagnetic convection. This leads to the possibility of 

controlling the magnetic properties and the flow of these liquids 

with magnetic fields of moderate intensity. 

The numerical studies of heat transfer with magnetic fluids 

reported in the literature are relatively scarce and invariably use 

as governing equations the Navier-Stokes and energy equations. 

The majority of the studies available in the literature have 

considered uniform magnetic fields- an assumption which does 

not correspond to reality, when heat transfer applications are 

concerned [8,9]. In this work a non-uniform magnetic field will 

be considered and the variation of the magnetic susceptibility 

with temperature will be taken into account in the simulation. 

Ganguly et al. [10] did a comprehensive study on 

thermomagnetic convection in two-dimensional channels using 

Navier-Stokes equations.  

In the present study, the study starts with the simulation of 

2-D thermomagnetic convection in a small scale channel using 

LBM; then, the methodology is extended to a 3-D small scale 

channel with the purpose of further validating the approach 

used and also to investigate the effect of the sidewalls upon the 

fluid flow and heat transfer. 

The geometric configurations for two- and three 

dimensional cases are shown in Figures 1(a,b). The channel-

flows are influenced by a magnetic field that can be described 

by the Maxwell's equations. For the two-dimensional case, 
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Figure 1a, a heated ferrofluid flows through a small channel, in 

which, for simulation purposes, the third dimension is infinite. 

The lower channel wall is considered to be an isothermal heat 

sink and the upper wall is adiabatic.  For the three dimensional 

case, Figure 1b, a simulation of a hot ferrofluid flowing through 

a square channel is conducted. The bottom channel wall is 

considered to be an isothermal heat sink while the other walls 

are adiabatic. Line dipoles are placed adjacent to the isothermal 

walls of the two- and three-dimensional channels, H/2 from the 

lower wall, providing the external magnetic fields.  

 

 
a) Two-dimensional configuration 

 

 
b) Three-dimensional configuration 

 

Figures 1. Schematic of two- and three-dimensional 

channels, a) and b) respectively, and position of the line dipole 

magnet. 

 

 NUMERICAL METHOD 

The magnetic field is governed by the Maxwell’s relations 

in static form [10], namely: 

 

0. =∇ B  ,  0=×∇ H                 (1) 

 

where B is the magnetic field inside the ferrofluid due to the 

line dipole, which can be expressed as follows [10]:  
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where µ0 is the magnetic permeability of the free space, m 

denotes the magnetic dipole moment of the electromagnet coil 

per unit length, and χ is the susceptibility of the magnetic fluid. 

H and B are related by the following relation: 
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The magnetic fluid susceptibility, χ, varies with the 

temperature according to the function:  
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where T0  is the reference temperature and χ0 is the 

magnetic field susceptibility for T0 .  

The ferrofluid becomes polarized in the presence of the 

external magnetic field by a magnetization process.  Forces are 

generated on each particle in the ferrofluid due to the 

interaction of the fluid polarization and the external magnetic 

field.  These forces can be modeled as a body force acting on 

the homogeneous ferrofluid: F = (M.∇)B. The Kelvin body 

force is simplified to the format proposed in [11] by defining an 

effective pressure, 200*

2
HPP
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This body force is added to the single relaxation time lattice 

Boltzmann equation (LBE) D2Q9, for 2-D case, and D3Q19, 

for 3-D case, which can be written, when the LBGK collision 

operator [12] is used, as follows: 
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where τ and τg are the momentum and energy relaxation 

times, respectively; δt is the lattice time step, related to the 

lattice length scale, δx, as c=δx/δt; fi and gi are the density and 

energy density distribution functions, respectively, which have 

direction-wise components on each lattice site and represents 

the probability of finding a fluid particle at position x at time t 

with direction ei [6]. The discrete velocity is ci=c ei , where i=9 

for D2Q9 and i=19 for D3Q19. 

The macroscopic density (ρ), velocity (u), and temperature, 

(T) on each lattice site are calculated as follow: 
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The kinematic viscosity and the thermal diffusivity are 

given by: 

2

2

1
scτυ 








−=       (8) 

2

2

1
sg cτα 








−=      (9) 

1383



    

RESULTS AND DISCUSSIONS 

The density and dynamic viscosity of the ferrofluid at the 

reference temperature of 300 K are set equal to 1180 kg/m
3
 and 

1.0×10
−3

 kg/ms, respectively. The Prandtl number, Pr, and fluid 

compressibility, β, are taken as 5.5 and 5.6×10
-4

 K
-1

, 

respectively. The inlet fluid temperature is 350 K whereas the 

cold lower wall is maintained at 300 K and the other walls are 

adiabatic. The flow is assumed to be thermally and 

hydrodynamically fully developed at the end of the channel. 

The size of the two-dimensional channel is 0.2 mm × 2 mm and 

the three-dimensional channel is a square channel with the size 

of 0.2 mm × 0.2 mm × 2 mm. The numerical solution should be 

independent of the lattice size, and to this purpose, a 51×501 

and a 51×51×501 lattice density were found to be adequate to 

establish lattice-independent solutions for the range of the 

parameters used in the present study for two-dimensional and 

three-dimensional channels, respectively.  

The presence of the magnetic dipole will disturb the flow 

motion in the channel and, as a consequence, the temperature 

distribution in the channel along with the heat transfer rate at its 

bottom wall. For m= 0.001 A.m a very small change in the fluid 

flow can be observed, and when this value is exceeded, the 

Kelvin body force was able to overcome the viscous force.  

The simulated flow field and temperature profile in the two-

dimensional channel are shown in Figures 2(a-c) for three 

different dipole strengths of m = 0.0, 0.005, and 0.010 A.m, 

respectively. The dimensionless velocity and temperature are 

calculated as: 

inu

u
u =*  and 

ch

c

TT

TT
T

−

−
=* , respectively. The inlet 

dimensionless velocity is equal to one, 0.1
* =inu . 

 

 
a) m = 0.0 A.m 

b) m = 0.005 A.m 

 
c) m = 0.010 A.m 

Figures 2. Dimensionless velocity and temperature profiles for 

different electromagnet dipole strengths for two-dimensional 

channel, a) m = 0.0, b) m = 0.005, c) m = 0.010 A.m. 

For the three-dimensional channel, the changes in the flow 

and the temperature for the planes in the streamwise direction 

and halfway the sidewalls (y/H) and the top and bottom walls 

(z/H) of the channel are shown in Figures 3(a-c) for m=0.0, 

0.005, 0.01A.m.  

 

 

y
/H

 

 
x/H 

z/
H

 

  

x/H 

               a) m = 0.0 A.m 
y

/H
 

 
x/H 

z/
H

 

  

x/H 

            b) m = 0.005 A.m 

y
/H

 

 
x/H 

z/
H

 

  

x/H 

     c) m = 0.010 A.m 

Figures 3. Dimensionless velocity and temperature profiles for 

different electromagnet dipole strengths for three-dimensional 

channel, a) m = 0.0, b) m = 0.005, c) m = 0.010 A.m. 
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   Since the susceptibility of the colder fluid is larger than 

that in the warmer regions and the thermal boundary layer is 

not symmetric about the dipole location, a circulation zone is 

formed. This alters the advection of the energy, which causes 

the change of the temperature distribution in the fluid and 

enhances the heat transfer. Effects on the flow and temperature 

profile increase with increasing values of the dipole strength. 

The predicted values of the local Nusselt number on the 

cold walls of the 2-D and 3-D cases for a range 0≤m≤0.015 

A.m are shown in Figures 4(a,b). The local Nusselt number was 

calculated based on the following equation: 

0

1
=

−
= y

ch

h
dy

dT

TT
DNu   

(10) 

where hD is the hydraulic diameter. For the three 

dimensional channel, the local Nusselt number is the local 

average Nusselt number in the z direction of the cold wall.  

 

 
a) Two-dimensional channel 

 
b) Three-dimensional channel 

Figures 4. Variation of the local Nusselt numbers for different 

magnetic fields.  

 

The magnetic effects on the flow are localized, because the 

field intensity and its gradients diminish away from the 

magnetic dipole. Observation of Figures 4(a,b) indicates the 

local value of Nusselt number rises sharply in the region before 

the dipole. Downstream of the dipole, the formation of a vortex 

of colder fluid causes the decrease of heat transfer and, 

consequently, the reduction in Nusselt number. 

The maximum and minimum peaks in the local Nusselt 

number distribution, Figure 4b, are closer together compared to 

those values for the two dimensional case (Figure 4a). This 

effect is explained by presence of the sidewalls. Specifically, 

the averaging of the local Nusselt number in the direction 

normal to the sidewalls reflects the effect – in the vicinity of the 

sidewalls, the reduction in velocity leads to decreasing heat 

transfer rates, which are not compensated by the acceleration of 

the core flow in the three dimensional case. 

As a concluding remark, the numerical results clearly 

indicate significant changes of the temperature and velocity 

fields when an external magnetic field is applied to the 

ferrofluid flow.  Of particular relevance is the finding that even 

relatively weak magnetic fields can yield a substantial increase 

in heat transfer for small scale devices. 
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