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ABSTRACT 

Fluid flow in porous media is found in numerous processes 

and applications of vital engineering interest, e.g., storage of 

nuclear waste, heat exchangers, ground water pollution and 

chemical reactors.  Often, the porous medium is confined by 

solid boundaries for containment.  These impermeable 

boundaries give rise to shear stress and boundary layers.  The 

Brinkman-extended Darcy equation governs the momentum 

transport due to Newtonian fluid flow in such porous-media 

flow situations.  Metal foam, especially aluminum-based, has 

gained a lot of academic and industrial interest over the past 

few years. The significance of metal foam is due to its low 

density (or, high porosity: 75 % to 95 %.), high thermal 

conductivity, interconnectivity of its solid ligaments and large 

surface area density. Metal foam applications include heat 

exchange system and chemical reactors.  In these systems, the 

foam is usually cylindrical in shape and is contained in a 

cylindrical tube.   The fluid flow in such systems is needed for 

further engineering and performance analysis of such systems.  

The flow field may be described by the Brinkman-extended 

Darcy equation.  This equation is solved analytically in a 

cylindrical system, employing an existing fully-developed 

boundary-layer concept particular to porous media flows.  As 

expected, the volume-averaged velocity is found to increase as 

the distance from the boundary increases reaching a maximum 

at the center. The friction factor is defined based on the mean 

velocity and is found to be inversely proportional to the 

Reynolds number, the Darcy number and the mean velocity.  In 

order to check the validity of the Brinkman-extended Darcy 

flow model for the high-porosity metal foam, experiments were 

conducted on commercially-produced 20-ppi (pores per inch), 

i.e., 8 pores per centimeter using an-open loop wind tunnel.  In 

the Darcy flow regime, reasonably good agreement is found 

between the analytical and the experimental friction factors.   

The implication of the results of this paper is that they can be 

applied in further engineering analysis that require knowledge 

of the velocity field and pressure drop, i.e., convection heat 

transfer and chemical reactors. 

 

INTRODUCTION 

Open-cell metal foam is a class of modern porous media 

that possesses large accessible surface area per unit volume and 

high porosities (often greater than 90%).  These properties 

make the foam attractive for certain devices such as catalytic 

systems, heat exchanges and chemical reactors.  The internal 

structure of the foam is web-like formed by connected 

ligaments.  Flow fields in such structure are rather complex and 

include flow reversal and vigorous mixing.  The penalty is an 

increase in pressure drop. However, this increase can be mild 

and the foam can compete with the most existing cores.   

NOMENCLATURE 

 
Da [-] Darcy number 

f [-] Friction factor 

I [-] Modified Bessel function 

K [m3] Permeability 

r [m] Radial coordinate 

ro [m] Radius of cylindrical porous medium 

R [m] Non-dimensional radial coordinate 

Re [-] Reynolds number 

p [Pa] Static pressure 

w [m/s] Volume-averaged velocity 

W [-] Non-dimensional velocity 

z [m] Axial coordinate along the flow direction 

Z [-] Non-dimensional axial coordinate 

 

Special characters 

β [-] Ratio of dynamic viscosity to effective viscosity 

δ [-] Uncertainty  

∆ [-] Change 

ε [-] Porosity   

µ [N.s/m2] Fluid dynamic viscosity and the heat-generating medium 

ρ [kg/m3] Density of fluid 

ω [-] Non-dimensional parameter 
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Among the important characteristics of porous media flows 

are the velocity profile and pressure drop.  For example, the 

velocity profile directly influences convection heat transfer in 

heat exchangers, the reaction rate in chemical reactors and the 

rate of deposit materials in filters.  The pressure drop dictates 

the required pumping power needed for these operations.   

Because of the internal geometry and the complex flow 

filed, exact solutions of the complete transport equations inside 

porous media including the foam are scarce.  Researchers have 

relied heavily on numerical solutions and to some extend on 

analytical solutions of simplified forms of the governing 

equations, e.g., Poulikakos and Renken [1], Amiri and Vafai 

[2], Calmidi and Mahajan [3] and Angirasa [4]. 

When the porous medium is bounded by a solid surface, the 

wall shear stress is included in the well-known Darcy equation.  

The inclusion of the wall shear stress in the momentum 

equation is attributed to Brinkman, and the name of the 

momentum equation changes to Darcy-Brinkman [5, 6].   

Vafai and Tien [7] analyzed the flow and heat transfer in a 

porous medium next to a solid boundary; they showed that 

neglecting the boundary effects could lead to significant errors 

in heat transfer calculations.   Poulikakos and Kazmierczak [8] 

analytically studied forced convection and fluid flow in a duct 

partially filled with a porous medium.  Two geometries were 

investigated parallel plates and a circular pipe.  In both cases, 

the porous medium was attached to the solid wall.  The Darcy-

Brinkman model was used inside the porous medium. 

Haji-Sheikh and Vafai [9] provided analysis of heat transfer 

in porous media imbedded inside ducts formed by circular tube 

or parallel plates.  As part of the heat transfer analysis, they 

briefly presented the solution to the Darcy-Brinkman equation. 

The same hydrodynamic analysis was used by Minkowycz and 

Haji-Sheikh [10].   

The present paper presents analysis for Newtonian fluid 

flow in confined cylindrical porous media.  The cylindrical 

geometry is widely used in some actual porous media designs, 

e.g., heat exchange systems and chemical reactors.  The 

solution was verified by experiments on a sample of metal 

foam.   

ANALYSIS 

A porous-media-filled circular tube of radius or is shown 

schematically in Fig. 1.  There is fully-developed one-

dimensional flow of a Newtonian fluid in the z-direction with a 

volume-averaged velocity component w . A boundary layer 

employed in the current analysis is a special kind of boundary 

layers unique to porous media flows, and was conceived first 

by Vafai and Tien [7]. Unlike the traditional boundary layers 

for open pipe flow, this boundary layer is fully-developed and 

does not grow in the flow direction due to the internal structure 

of porous media.   The Brinkman-extended Darcy momentum 

equation inside the boundary layer is 

 









+−=

dr

dw
r

dr

d

r
w

Kdz

dp eµµ
 (1) 

where  µ is the fluid viscosity and K is the permeability of the 

porous medium. The effective viscosity eµ  is a function of the 

dynamic viscosity of the fluid and the geometry of the porous 

medium.  The ratio eµµ  has been set equal to 1 [5, 6]. Nield 

and Bejan [5] pointed out that this was not true in general, and 

they stated that eµµ has been set eµµ equal to 0.13 for 

high-porosity rigid foam.  Kaviany [6] gave a range for from 

0.28 to 1 according to ( )[ ]εβ −+= 15.211 , where ε is the 

porosity. 

 

 

 

 

 

 

 

 

Figure 1  

 

 

Figure 1 Schematic of the confined cylindrical porous-media 

system 

 

Outside the boundary layer, the momentum equation 

simplifies to 

 

           ∞−= w
Kdz

dp µ
 (2) 

 

where ∞w is the volume-averaged free-stream velocity outside 

the boundary layer.   The boundary conditions are 

 

       0    0  ==
dr

dw
rat  (3) 

        0      == urrat o  (4) 

 
Combining the two momentum equations in a non-dimensional 

form, and rearranging 
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with the boundary conditions 
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       0    1  == WRat  (7) 
 

r 

z 

   w  

1256



    

where orrR = , 
2

orKDa = (the Darcy number), 

eµµβ = and ∞= wwW .   The permeability, and hence 

the Darcy number, can be determined from reliable models or 

experimental data provided in the literature. Models for metal 

foam’s permeability include those of Du Plassis et al. [11], 

Fourie and Du Plassis [12], Bhattacharya et al. [13].  

Experimental values of the permeability of metal foam can be 

found in studies such as those of Calmidi and Mahajan [3], 

Antohe et al. [14] and Lage, et al. [15]. 

The solution to Eqs. (5) through (7) is obtained by comparing 

the differential equation to the general form of Bessel equation 

[16], and applying the two boundary conditions: 

 

                   
( )
( )ω

ω

o

o

I

RI
W −= 1  (8) 

 

where Daβω =  and oI is the modified Bessel function 

of order zero. 

The non-dimensional mean velocity is obtained by 

integrating the velocity over the cross-sectional area according 

to: 
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where ∞= wwW mm and the integral 

( ) ( )xxIdxxIx o 1=∫ was employed.  As ω  increases the 

mean velocity approaches unity, meaning the physical mean 

velocity is approximately equal to the free stream velocity.  

This is expected, since the boundary layer is rather thin for 

large ω  and the free stream velocity prevails over most of the 

cross section. As an engineering approximation, one may set 

the free-stream velocity equal to the mean velocity for large 

values of omega. This has a practical advantage since the mean 

velocity through confined porous media can be measured. 

The friction factor can be defined and obtained as 

 

( )
DaReWw

Dzp
f

mm

8

22
=

∂∂−
≡

ρ
 (10) 

 

where µρ DwRe m≡ .  The pressure drop of Eq. (2) was 

employed.  The expression of the non-dimensional mean 

velocity of Eq. (9) can be substituted into Eq. (10), which gives 

a relationship between the friction factor, ω , Da and Re .   

 

EXPERIMENT  

A sample of open-cell aluminium foam commercially 

available (ERG Materials and Aerospace) was used to verify 

the analytical results.  The sample was made from aluminium 

alloy 6101-T6, and had 10 pores per linear inch (ppi).  

Properties of the samples used in this experiment are given in 

Table 1. A photograph of the sample in the test sections is 

shown as Fig. 2 The sample was cylindrical in shape and had a 

diameter of 8.89 cm and a length of 15.24 cm (6.0 in) in the 

flow direction.  For this length the entrance/exit effects are 

negligible [17].  

 

Table 1 Foam parameters 

 

Porosity 

εεεε % 

Permeability,  

K X 10
7
,  m

2
 

Parameter 

ω  

Darcy Number, 

Da X 10
4
 

89.5 3.65 65.45 1.84 

 

 
 

Figure 2 Photograph of the foam sample in its test section 

 

Experiments were performed in an open-loop wind tunnel 

shown schematically in Fig. 3. A suction unit which could 

produce air flow rates up to 17 m
3
/min (600 ft

3
/min) was used 

to induct room air into the tunnel and through the foam sample.  

A variable flow controller provided adjustment of the airflow 

through the tunnel.  

 

 
 

Figure 3 Schematic of the experimental set-up 

 

The test section of the tunnel was fabricated from thin 

Plexiglas tubes with internal diameter that matched the 

sample’s diameter with a tight tolerance, Fig. 2.  The test 

section was placed securely and sealed between two circular 

ducts having the same inner diameter.  The upstream duct had a 

length greater than ten times the diameter of the test section to 

reduce the duct’s entrance effect at the test section.  The tunnel 

entrance had a plastic screen having a fine mesh (with a screen 

open-area ratio = 0.53) to minimize any large structures in the 

room air. 

Two holes were drilled at the top of the test section, one 

before and one after the test section at a distance of 2.54 cm (1 

inch).  The holes hosted pressure measurement tubing.  The 

pressure drop was measured using an Omega differential 

pressure transmitter with a range 0 to746 Pa (0 to 3 in H2O).  
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For velocity measurement, an Extech gas flow meter that could 

measure speeds up to 35 m/s (29 ft/min) was used.  The 

pressure transducer and the flow meter were connected to a 

data acquisition system (DAQ by Omega Engineering) which 

delivered the readings to a computer. 

The flow rate was varied to realize different velocities in the 

test section.  For each velocity, the steady-state static pressure 

drop was measured using the pressure taps and the differential 

pressure transducer. 

For gas flow in porous media, the pressure drop is usually 

significant such that compressibility effects may become 

important. Thus in order to account for variations in gas 

density, the pressure drop was computed using the following  

 

           
i

oi

p

pp
p

2

22 −
=∆  (11) 

 

where ip  and op are the inlet and exit pressures, see for 

example Bonnet et al. [18]. 

 

Uncertainty Analysis 

The uncertainty in the velocity measurement had a 

contribution from a fixed error, fe = 2% (provided by the 

manufacturer) and a random estimated error, re = 10% in each 

reading.  For the pressure transducer fe was 5% and re was 

7% (these were provided in a calibration certificate).  The total 

uncertainties in the pressure and velocity were calculated by the 

root-sum-squares method according to Figliola and Beasley 

[19], which resulted in a total uncertainty in the pressure drop 

p∆δ  of  ±  8.6%, and in the air velocity 
muδ of ± 10.2%.  The 

length and diameter of each sample were measured using a 

calibre.  The uncertainties in these readings were Lδ = Dδ = 

0.5 mm. 

Further uncertainty analysis was performed in order to 

assess how the uncertainties in the measured variables 

propagate into the uncertainty in each computed variable, i.e., 

the uncertainties in the calculated values of friction factor, f, 

and the Reynolds number, Re.  The following uncertainties in f 

and Re are 

obtained ( ) %7.14±=ffδ and %4.10±=ReReδ . 

COMPARISON TO EXPERIMENTAL RESULTS 

The experimental results are compared to the prediction of 

the analytical solution given by Eq. (10) in the form of friction 

factors.  For each sample, the experimentally obtained friction 

factor was calculated form experimental values according to its 

definition ( ) 22

muDzpf ρ∂∂−≡ . The Reynolds number 

for each sample was calculated using the measured mean 

velocity and the sample’s diameter.   

The parameter ω  was then calculated according to its 

definition Daβω = , which allowed the non-dimensional 

velocity to be computed according to Eq. (9).  The ration β was 

obtained from [6].  Usingω , the Darcy number and the 

experimental values of Reynolds number, the analytical value 

of the friction factor was obtained according to Eq. (10).   

Figure 4 shows a comparison of the analytical and 

experimental friction factors at the same Reynolds number.   

The experimental friction factor seems to divert from the 

analytical prediction for values of Reynolds number greater 

than about 2800.  It is very likely that this value of Reynolds 

number marks the end of the Darcy flow regime, and the 

beginning of a transition towards the Forchheimer regime. 

1

10

100

1000 10000

f

Re

Experimental

Analytical

 
Figure 4 Analytical and experimental friction factor versus 

Reynolds number  

CONCLUSION  

The Brinkman-Darcy equation was solved for the velocity 

as a function of the radial distance from the centre of a 

cylindrical porous tube.  For low Darcy number (small diameter 

and/or high permeability), the velocity was constant over most 

of the cross section.  Hence, the average velocity can be taken 

to be approximately equal to the free-stream velocity.  These 

trends are the result of the fact that the thickness of the 

boundary layer is rather small when the Darcy number is small.   

The friction factor depended on the Reynolds number to the 

power -1. According to the analytical results, at a given 

Reynolds number, the friction factor increased with the ratio of 

actual to effective viscosity and decreases with Darcy number. 

These two parameters are governed by the porosity and 

diameter of a cylindrical porous medium. The analytical results 

were verified by experiments utilizing aluminium foam.  

Reasonably good agreement between the analytical and 

experimental friction factor, strictly in the Darcy regime, was 

obtained.  The current solution can be useful in further flow, 

heat transfer and reactor analyses that deal with Darcy flow in 

porous media.  
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