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ABSTRACT The solidification of a pure liquid phase-
change material in the presence of natural convection is a
commonly recurring problem in natural science and tech-
nology. The numerical solution of this Stefan problem
is made difficult by the fact that there is initially no solid
phase; hence, the classical 1D Neumann similarity solution
is often used for the purposes of initiating a computation.
However, if the solid and liquid phases have different den-
sities at the solidification temperature, this solution is not
valid. This paper considers the limit of the coupled heat
and momentum equations for small times, and finds that
it is not possible to solve the corresponding problem, when
the densities are different, without introducing a singular-
ity into the liquid velocity and pressure. The solution to
a non-classical Stefan problem, where cooling is due to a
constant heat flux, is also considered, and is found to be
free from such singularities.

INTRODUCTION
Buoyancy-driven flows with coupled solid–liquid phase

change occur in a broad range of scientific and engineering
fields; often cited examples are those in the solidification
and melting phenomena encountered in metallurgical pro-
cesses, latent heat thermal energy storage, oceanography,
food processing and nuclear reactor safety. Consequently,
there is also a focus on the development of numerical meth-
ods to solve such problems.
A particular difficulty is the fact that initially only one

phase is present; in this paper, we will only consider solid-
ification, so that it is only the liquid phase that is initially
present. Often, when applying a front-tracking numer-
ical method, a small amount of solid phase of uniform
thickness is assumed to be present in order to initiate a
numerical computation [1-3]; in tandem, it is necessary
to prescribe appropriate initial velocity and temperature
fields. For the velocity field, it is convenient just to as-

sume that the liquid is stationary. For the temperature,
the simplest approach is, having already assumed a solid
layer of uniform thickness, to use the Neumann solution
to the classical 1D Stefan problem. This approach is ad-
equate if, at the melting temperature, the density of the
liquid phase is equal to the density of the solid phase.
Otherwise, the density difference will induce a velocity in
the liquid, rendering the assumptions on the initial veloc-
ity and temperature fields incompatible with each other;
indeed, it is only very recently that any progress has been
made with this scenario [4], although in the context of heat
transfer alone. The purpose of this paper is to derive ap-
propriate starting conditions for a computation in which
solid and liquid densities are different. The idea is similar
to that used in several recent solidification problems [5,6],
albeit now with the added complexity of a non-zero veloc-
ity field in the liquid phase. It is also worth noting that
although using another numerical method, such as the en-
thalpy formulation on a fixed grid, would not require such
attention to detail as regards the start of solidification, it
is also likely that such methods would not have the ac-
curacy required to resolve the motion of the solidification
front correctly, and to reproduce the interfacial patterns
that are observed experimentally [7-9].
The layout of the paper is as follows. First, model equa-

tions are formulated, and then nondimensionalized. Their
behaviour is then considered in the limit of small time; this
leads to a system of similarity ordinary equations that are
solved semi-analytically. The mathematical singularities
associated with these solutions are discussed, and an al-
ternative formulation is proposed, which is then shown to
remove these singularities.
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NOMENCLATURE

Bi [-] Biot number, h0h/kl
cpl [J/kgK] liquid specific heat capacity
cps [J/kgK] solid specific heat capacity
f [-] function defined in equation (64)
Fl [-] function given by equation (62)
Fs [-] function given by equation (58)
g [m/s2] gravitational acceleration
h [m] location of the liquid surface
h0 [m] initial liquid height
H [-] dimensionless liquid height
kl [W/mK] liquid thermal conductivity
ks [W/mK] solid thermal conductivity
nh [-] unit vector normal to y = h (x, t)
ns [-] unit vector normal to y = s (x, t)
p [Pa] pressure
[p] [Pa] pressure scale, µkl/h

2
0ρl0cpl

P [-] dimensionless pressure
Pr [-] Prandtl number
Ra [-] Rayleigh number
s [m] location of the solidification front
S [-] dimensionless location of the

solidification front
St [-] Stefan number
t [s] time
[t] [s] time scale, ρl0cplh

2
0/kl

th [-] unit vector tangential to
y = h (x, t)

ts [-] unit vector tangential to
y = s (x, t)

Tl [K] liquid temperature
Ts [K] solid temperature
Tcold [K] cooling temperature
Thot [K] initial liquid temperature
Tmelt [K] solidification temperature
T0 [K] reference temperature
u [m/s] velocity in x-direction
[u] [m/s] velocity scale, kl/h0ρl0cpl
v [m/s] velocity in y-direction
U [-] dimensionless velocity in

X-direction
V [-] dimensionless velocity in

Y -direction
V0 [-] dimensionless constant given in

equation (57)
x [m] horizontal coordinate
X [-] dimensionless horizontal coordinate
y [m] vertical coordinate
Y [-] dimensionless vertical coordinate

Special characters
h [W/m2K] heat transfer coefficient
α [1/K] thermal expansion coefficient
∆Hf [J/kg] latent heat of fusion
η [-] dimensionless similarity variable
θ [-] dimensionless temperature

θcold [-] dimensionless cooling temperature
κ [-] dimensionless constant, κl/κs

κl [m2/s] liquid thermal diffusivity,
kl/cplρl (Tmelt)

κs [m2/s] solid thermal diffusivity,
ks/cpsρs (Tmelt)

λ [-] dimensionless variable in
equation (64)

µ [kg/ms] liquid dynamic viscosity
ν [-] dimensionless constant given in

equation (57)
Π [-] dimensionless function of η and τ
ρ [-] ρs (Tmelt) /ρl (Tmelt)
ρl [kg/m3] density of liquid phase
ρl0 [kg/m3] reference liquid density
ρs [kg/m3] density of solid phase
τ [-] dimensionless time
τm [-] dimensionless time until the

start of solidification

MATHEMATICAL FORMULATION
To fix ideas, this paper considers the freezing from below

of a fluid with freezing temperature Tmelt, initial height h0

and initial temperature Thot, where Thot > Tmelt. Fig. 1
shows the model geometry.

n
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h0
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y

SOLID
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y=s(x,t)

y=h(x,t)

ts

n
h

th

Figure 1: Schematic illustration of the solidification of a
fluid from below

Governing equations
For the solid region, we have

ρscps
∂T

∂t
= ks

(

∂2T

∂x2
+

∂2T

∂y2

)

, (1)
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i.e. the equation for transient heat conduction, where
ρs, cps, ks are the density, specific heat capacity and ther-
mal conductivity of the solid phase, respectively. For the
liquid phase, we have

∂ρl
∂t

+
∂

∂x
(ρlu) +

∂

∂y
(ρlv) = 0, (2)

ρl

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −
∂p

∂x
+ µ

(

∂2u

∂x2
+

∂2u

∂y2

)

,

(3)

ρl

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

=

−
∂p

∂y
+ µ

(

∂2v

∂x2
+

∂2v

∂y2

)

− ρlg, (4)

ρlcpl

(

∂Tl

∂t
+ u

∂Tl

∂x
+ v

∂Tl

∂y

)

= kl

(

∂2Tl

∂x2
+

∂2Tl

∂y2

)

. (5)

For the liquid density, we use

ρl = ρl0 (1− α (T − T0)) ;

In addition, µ, cpl, kl, α are the viscosity, specific heat ca-
pacity, thermal conductivity and thermal expansion coef-
ficient of the liquid phase, respectively.

Boundary and initial conditions
At y = 0,

T = Tcold; (6)

at y = h (x, t) ,

∇T · nh = 0, (7)

∂h

∂t
= (u, v) · nh, (8)

th ·

(

∂u

∂y
+

∂v

∂x

)

· nh = 0, (9)

p = 0, (10)

where nh and th are, respectively, the unit vectors normal
and perpendicular to the curves y = h (x, t) and are given
by

nh = (−hx, 1) /
(

1 + h2
x

)1/2
, th = (1, hx) /

(

1 + h2
x

)1/2
.

At y = s (x, t) ,

T = Tmelt, (11)

ks∇T · ns − kl∇T · ns = ρs (∆Hf )
∂s

∂t
, (12)

(u, v) · ts = 0, (13)

ρl

(

∂s

∂t
− (u, v) · ns

)

= ρs
∂s

∂t
, (14)

where

ns = (−sx, 1) /
(

1 + s2x
)1/2

, ts = (1, sx) /
(

1 + s2x
)1/2

,

Tmelt is the melting/freezing temperature and ∆Hf is the
latent heat of fusion.
The initial conditions at t = 0 are, for 0 ≤ y ≤ h0,

T = Thot, u = 0, v = 0, (15)

and

s (x, 0) = 0, (16)

h (x, 0) = h0. (17)

NONDIMENSIONALIZATION
To nondimensionalize, we set

X =
x

h0
, Y =

y

h0
, S =

s

h0
, H =

h

h0
, τ =

t

[t]
,

θ =
T − Tmelt

Thot − Tmelt

, U =
u

[u]
, V =

v

[u]
, P =

p

[p]
.

Suitable choices for the time, velocity and pressure scales
- [t] , [u] and [p] respectively - are

[t] =
ρl0cplh

2
0

kl
, [u] =

kl
h0ρl0cpl

, [p] =
µkl

h2
0ρl0cpl

.

Governing equations
Equations (1)-(5) become, on applying the Boussinesq

approximation,

κ
∂θ

∂τ
=

∂2θ

∂X2
+

∂2θ

∂Y 2
, (18)

∂U

∂X
+

∂V

∂Y
= 0, (19)

1

Pr

(

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y

)

= −
∂P

∂X
+

∂2U

∂X2
+
∂2U

∂Y 2
, (20)

1

Pr

(

∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y

)

=

−
∂P

∂Y
+

∂2V

∂X2
+

∂2V

∂Y 2
+Raθ, (21)

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+

∂2θ

∂Y 2
, (22)

where the Rayleigh number, Ra, and the Prandtl number,
Pr, are given, respectively, by

Ra =
ρ2l0αcplg (Thot − Tmelt)h

3
0

µkl
, P r =

µcpl
kl

,

and κ = κl/κs, with

κl =
kl

cplρl0
, κs =

ks
cpsρs

.
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Boundary and initial conditions
At Y = 0,

θ = θcold, (23)

where θcold = (Tcold − Tmelt) / (Thot − Tmelt) ; at Y =
H (X, τ) ,

∇θ · nh = 0, (24)

∂H

∂t
= (U, V ) · nh, (25)

th ·

(

∂U

∂Y
+

∂V

∂X

)

· nh = 0, (26)

P = 0. (27)

At Y = S (X, τ) ,

θ = 0, (28)

(∇θ · ns)+ −Kls (∇θ · ns)− =
κ

St

∂S

∂τ
, (29)

(U, V ) · ts = 0, (30)

(1− ρ)
∂S

∂τ
= (U, V ) · ns, (31)

where the Stefan number, St, is given by

St =
cps (Thot − Tmelt)

∆Hf
,

Kls = kl/ks and ρ = ρs (Tmelt) /ρl (Tmelt) .
The initial conditions at τ = 0 are, for 0 ≤ Y ≤ 1,

θ = 1, U = 0, V = 0, (32)

and

S(X, 0) = 0, (33)

H (X, 0) = 1. (34)

THE LIMIT AS τ → 0
If ρ = 1, there will be an analytical (similarity) solution

as τ → 0 :

U = 0, V = 0, S = λτ1/2, H = 1,

θ =







θcold

(

1−
erf(κ1/2η/2)
erf(λκ1/2/2)

)

if Y < S (τ)

1− erfc(η/2)
erfc(λ/2) if Y > S (τ)

(35)

where η = Y/τ1/2 and λ is a positive constant that is the
solution to

−κ1/2θcold
exp

(

−κλ2/4
)

erf
(

λκ1/2/2
) −Kls

exp
(

−λ2/4
)

erfc (λ/2)
=

κλπ1/2

2St
;

(36)
equations (35) and (36) consitute the classical Neumann
solution to the Stefan problem [10]. On the other hand, if
ρ 6= 1, then (31), which becomes

(1− ρ)
∂S

∂τ
= V (37)

in the limit as τ → 0, indicates that V 6= 0. Now, if
S ∼ τ1/2, we would need V ∼ τ−1/2. Note that (19) then
leads to ∂V/∂Y = 0, giving at V = V0τ

−1/2, where V0 is
a constant to be determined. Setting

U = 0, P = P (Y, τ) ,

equations (18)-(22) give

κ
∂θ

∂τ
=

∂2θ

∂Y 2
, (38)

1

Pr

(

∂V

∂τ
+ V

∂V

∂Y

)

= −
∂P

∂Y
+

∂2V

∂Y 2
+Raθ, (39)

∂θ

∂τ
+ V

∂θ

∂Y
=

∂2θ

∂Y 2
; (40)

note that equation (20) drops out, since the assumptions
on U and P mean that it is satisfied exactly. The remain-
ing boundary conditions are

θ = θcold at Y = 0, (41)

θ = 0 at Y = S (τ) , (42)
(

∂θ

∂Y

)

−

−Kls

(

∂θ

∂Y

)

+

=
κ

St

∂S

∂τ
at Y = S (τ) , (43)

V = (1− ρ)
∂S

∂τ
at Y = S (τ) ,

(44)

∂θ

∂Y
= 0 at Y = H (τ) , (45)

V =
∂H

∂τ
at Y = S (τ) ; (46)

the initial conditions are

θ = 1, V = 0, 0 < Y < 1, (47)

S (0) = 0, (48)

H (0) = 1. (49)

Now, we try

θ = Fs,l (η, τ) , V = V0τ
−1/2, P = τ−1Π(η, τ) ,

S = λτ1/2, H = 1 + ντ1/2, η = Y/τ1/2.

So, (38)-(40) become, in the limit as τ → 0,

−
κ

2
η
dFs

dη
=

d2Fs

dη2
, (50)

−
V0

2Pr
= −

dΠ

dη
, (51)

(

V0 −
1

2
η

)

dFl

dη
=

d2Fl

dη2
, (52)

subject to

Fs = θcold at η = 0, (53)

Fl = 0 at η = λ, (54)

∂Fs

∂η
−Kls

∂Fl

∂η
=

λ

2

( κ

St

)

at η = λ, (55)

Fl → 1 as η → ∞; (56)
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Parameter Value
cpl 4180 J kg−1 K−1

cps 2217 J kg−1 K−1

kl 0.578 W m−1K−1

ks 1.918 W m−1K−1

Tmelt 273 K
∆Hf 3.33×105 J kg−1

ρl,0 1000 kg m−3

ρs 918 kg m−3

Table 1: Parameters for water

note that equations (44) and (46) give

ν = λ (1− ρ) , V0 =
1

2
λ (1− ρ) . (57)

There is an analytical solution to Fs,

Fs = θcold

(

1−
erf
(

ηκ1/2/2
)

erf
(

λκ1/2/2
)

)

; (58)

hence, Fl satisfies (52), subject to

Fl = 0 at η = λ, (59)

Kls
dFl

dη
= −

θcoldκ
1/2 exp

(

−κλ2/4
)

π1/2 erf
(

λκ1/2/2
) −

λκ

2St
at η = λ,

(60)

Fl → 1 as η → ∞. (61)

So, we arrive at

Fl =
erf
(

1
2η − V0

)

− erf
(

1
2λ− V0

)

erfc
(

1
2λ− V0

) ; (62)

on using equation (60), we obtain a transcendental equa-
tion for λ,

−
κ1/2θcold exp

(

−κλ2/4
)

erf
(

λκ1/2/2
) −

Kls exp
(

−λ2ρ2/4
)

erfc
(

1
2λρ

) =
λκπ1/2

2St
.

(63)
Once λ has been determined, dΠ/dη will also be fully de-
termined.
There are several observations to make here. First of all,

Fl, Fs, λ depend neither onRa, nor on Pr, although Π does
depend on Pr; furthermore, since the buoyancy term has
dropped out of the system of equations, it means that the
same equations will apply even for the case of freezing from
above. Most alarmingly, we have found that P ∼ τ−3/2.

RESULTS
We demonstrate these ideas for water and copper, for

which ρ < 1 and ρ > 1, respectively. Defining

f (λ) :=

−
κ1/2θcold exp

(

−κλ2/4
)

π1/2 erf
(

λκ1/2/2
) −

Kls exp
(

−λ2ρ2/4
)

π1/2erfc
(

1
2λρ

) −
λκ

2St
,

(64)

Parameter Value
cpl 495 J kg−1 K−1

cps 485 J kg−1 K−1

kl 165 W m−1K−1

ks 334 W m−1K−1

Tmelt 1356 K
∆Hf 2.05×105 J kg−1

ρl,0 8000 kg m−3

ρs 8900 kg m−3

Table 2: Parameters for copper

λ

f(λ)

ρ = 0.912
ρ = 1

0 1 2 3 4 5
-4

-2

0
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Figure 2: f(λ) vs. λ for water
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θcold = −1/3
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Figure 3: λ vs. St for water (θcold = −2/3,−1/3)

Fig. 2 shows f (λ) vs. λ using the parameters for ice and
water, as given in Table 1; a comparison is made between
ρ = 1 and the true value of ρ = 0.912. For this plot, we
take θcold = −1/3 and St = 0.4; in both cases, we would
expect a unique positive solution for λ. Fig. 3 shows λ as
a function of St for θcold = −2/3,−1/3 and the two values
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of ρ; this indicates that neglecting the density difference at
T = Tmelt would underestimate the location of the front,
although by considerably less than the 10% difference that
there actually is in the densities.
Fig. 4 shows f (λ) vs. λ using the parameters for solid

and molten copper, as given in Table 2; a comparison is
made between ρ = 1 and the true value of ρ = 1.113. For
this plot, we also take θcold = −1/3 and St = 0.4. Fig. 5
shows λ as a function of St for θcold = −2/3,−1/3 and the
two values of ρ; this indicates that neglecting the density
difference at T = Tmelt would overestimate the location of
the front, although once again by considerably less than
the 10% difference that there actually is in the densities.

λ

f(λ)

ρ = 1
ρ = 1.113

0 1 2 3 4 5
-4

-2

0

2

4

Figure 4: f(λ) vs. λ for copper
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ρ = 1.113

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Figure 5: λ vs. St for copper (θcold = −2/3,−1/3)

DISCUSSION
In addition to the singularity in the pressure as τ → 0,

a further difficulty with the solution given above is that
the solution obtained for V does not satisfy the initial
condition (47). Consequently, the above analysis suggests

that, inspite of the fact that Figs. 3 and 5 indicate that
accounting for the solid/liquid density difference does not
result in a particularly great difference in the prediction for
the location of the solidification front, there are neverthe-
less considerable difficulties in obtaining a self-consistent
description for initial heat and momentum transfer when
considering cooling by means of an imposed temperature.
An alternative approach would then be to consider cool-

ing by means of a different type of boundary condition. An
obvious candidate is a heat-flux boundary condition; from
an experimental point of view, this is also more realistic
than a constant temperature condition. With this type of
boundary condition, solidification will not begin immedi-
ately; instead, there will be a delay before phase change
occurs. Some details of this case were given in [6], although
the initial liquid region was assumed to be semi-infinite in
extent and only a Neumann boundary condition was con-
sidered; here, the analysis is extended to a liquid of finite
height and with cooling by means of a Robin boundary
condition.
We replace (6) by

kl
∂T

∂y
= h (T − Tcold) , (65)

where h is a heat transfer coefficient and Tcold is a cool-
ing temperature; for simplicity, both are assumed to be
constant. Nondimensionalizing as before gives

∂θ

∂Y
= Bi (θ − θcold) , (66)

where Bi (= h0h/kl) denotes the Biot number. Assuming
the effects of natural convection to be weak to begin with,
so that U, V ≈ 0, we reduce (22) to

∂θ

∂τ
=

∂2θ

∂Y 2
, (67)

which we solve subject to (24), (32) and (66); this gives

θ (Y, τ) = θ̂ (Y, τ) + θcold, (68)

where

θ̂ =

∞
∑

n=1

Bn

(χn

Bi
cosχnY + sinχnY

)

exp
(

−χ2
nτ
)

, (69)

with, for n = 1, 2, ...,

χn tanχn = Bi (70)

and

Bn =
2θcold

(

χ2
n

Bi2 + 1
)

χn −
(

χ2
n

Bi2 − χn

Bi − 1
)

(1− cos 2χn)
.

(71)
Equation (68) solution holds until solidification starts; this
will occur when θ = 0 at Y = 0, i.e. when τ = τm, where
τm satisfies

Biθcold +
∞
∑

n=1

Bnχn exp
(

−χ2
nτm

)

= 0. (72)
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Now, we use the corresponding result from [6], which in-
dicates that, when solidification starts,

S (τ) ∼ λ (τ − τm)
3/2

, (73)

where λ = 4StθY Y (0, τm) /3π1/2; hence, (68) gives

λ = −
8Stθcold
3Biπ1/2

×

×

∞
∑

n=1

Bnχ
3
n cosχnY exp

(

−χ2
nτ
)

(

χ2
n

Bi2 + 1
)

χn −
(

χ2
n

Bi2 − χn

Bi − 1
)

(1− cos 2χn)
.

(74)
An interesting point here is that λ will not depend on ρ;
as for V (τ) , we will now have, from equation (44),

V (τ) ∼
3

2
(1− ρ)λ (τ − τm)1/2 . (75)

Furthermore, setting P = Π(η, τ) , where η =

Y/ (τ − τm)
1/2

, we obtain, from (51),

dΠ

dη
= −

3

4
(1− ρ)λ; (76)

hence, the key points are that there is now no singularity
in V, nor in P, when solidification starts, and equation
(75) is consistent with the assumption that the liquid is
initially stagnant.
It remains to speculate on what will happen if U, V are

not negligible by the time solidification starts. In this case,
it is unlikely that θ will be a function of Y alone, which
suggests a particular point on Y = 0 will reach the freez-
ing temperature before any other point. Consequently, it
would be necessary to perform a two-dimensional analysis
in order to determine the growth of the solidification front
just after phase change begins; this is beyond the scope
here, as it is a significantly more difficult task than the
derivation of the one-dimensional analysis presented here.

CONCLUSIONS
This paper has considered the initial stages of solidifi-

cation in the presence of natural convection when there is
a difference in the solid and liquid densities at the freezing
temperature. It was found the classical one-dimensional
Stefan solution for the temperature fields in the solid
and liquid phases results in a singularity in both the liq-
uid pressure and velocity fields; this singularity is not
present when the two densities are equal. Singularities can
be avoided by not using a constant cooling-temperature
boundary condition, but rather a heat flux condition. In
this case, solidification does not begin instantaneously, but
only after some finite time interval, tm; thereafter, the so-

lidification front moves as (t− tm)3/2 , and the normal ve-
locity of the liquid phase at the solidification front behaves

as (t− tm)
1/2

. Although this appears to be an appealing
resolution of the problem, a further difficulty will occur
if convection has become significant before solidification

starts; in this case, the advancing front will not be planar,
but must originate from a point at the cooled boundary.
Although this paper has considered only the case of

cooling and solidification from below, the analysis may
also be of use in a corresponding analysis for solidification
from above, as well as for problems involving melting.
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