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Abstract 
To study the efficiency of genetic algorithms (GAs) in the 
optimization of aerodynamic shapes, the shape of an airfoil 
was optimized by a genetic algorithm to obtain maximum lift 
to drag ratio and maximum lift. The flow field is assumed to 
be two dimensional, Invicsid, transonic and is analyzed 
numerically. The camber line and thickness distribution of the 
airfoil were modeled by a fourth order polynomial. The airfoil 
chord length was assumed constant. Also, proper boundary 
conditions were applied. A finite volume method using the 
first order Roe’s flux approximation and time marching 
(explicit) method was used for the flow analysis. The simple 
genetic algorithm (SGA) was used for optimization. This 
algorithm could find the optimum point of this problem in an 
acceptable time frame. Results show that the GA could find 
the optimum point by examining only less than 0.1% of the 
total possible cases. Meanwhile, effects of parameters of GA 
such as population size in each generation, mutation 
probability and crossover probability on accuracy and speed of 
convergence of this SGA were studied. These parameters have 
very small effects on the accuracy of the genetic algorithm, 
but they have a sensible effect on speed of convergence. The 
parameters of this genetic algorithm were improved to obtain 
the minimum run time of optimization procedure and to 
maximize the speed of convergence of this genetic algorithm. 
Robustness and efficiency of this algorithm in optimizing the 
shape of the airfoils were shown. Also, by finding the 
optimum values of its parameters, maximum speed and 
minimum run time was obtained. It is shown that for 
engineering purposes, the speed of GAs is incredibly high, and 
acceptable results are sought by a fairly low number of 
generations of computations.     
 

Introduction 
Computational fluid dynamics (CFD) and numerical 
optimization techniques are being used widely in the field of 
aerodynamic shape optimization. This growing interest is 
owing to the fact that CFD is making fast progress using 
advanced computer technology and available efficient 
numerical algorithms. This helps faster computation of the 
flow field which is necessary for the optimization. Also, 
efficient numerical algorithms for optimization are available 
so that the combined effort makes it possible to compute 
optimum solution in realistic time periods. This helps saving 
the cost incurred in experimental methods [1]. 
Optimization in aerodynamics can be categorized in two 
kinds: Gradient based and non-gradient based methods. In 
gradient based methods, the gradient of the objective function 
with respect to design variables plays an important role in 
optimization process. The finite difference and Newton's 
method are examples of gradient methods. 
In non-gradient based methods, the gradient of the objective 
function is not needed and an optimum configuration is chosen 
among different possible models. These methods are also 
called search methods; Random search and Genetic Algorithm 
[2] are examples of such methods.  
Genetic Algorithm (GA) which is based on natural selection 
mechanism and natural genetics is recognized as a robust 
method among optimization techniques. Since genetic 
algorithm uses information of objective function instead of 
derivative values or other information used by gradient based 
methods for optimization, it is different from the other 
optimization methods. In addition, genetic algorithm finds the 
optimum point of a problem through a simultaneous 
multipoint search instead of a point by point search. These two 
properties give genetic algorithms a wide range of applications 
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in engineering problems. As an example, in recent years, 
genetic algorithm is accompanied by the usual methods of 
computational fluid dynamics and therefore it is used for 
optimizing aerodynamic shapes [1, 3-4]. This algorithm is 
very attractive for use in the design and optimization of 
aerodynamic shapes because unlike the gradient based 
methods, it can find the global optimum point of an 
optimization problem [5].  
Optimization of aerodynamic shapes includes determining the 
values of design parameters that generate the geometric details 
of the aerodynamic shapes, in a way that objective function 
values are optimized while the aerodynamic constraints are 
satisfied.  
It is interesting that genetic algorithm is independent of the 
solution method which is used in CFD software. That is, if a 
proper numerical solution method is chosen then the genetic 
algorithm can be applied for any kind of aerodynamic 
optimization problem [6, 7]. Design parameters which 
determine the shape geometry, must satisfy the geometric 
constraints of that problem for finding a reasonable shape. For 
example, in aerodynamic shape optimization of a wing, 
geometric parameters such as wing span, wing chord, wing 
twist angle, maximum chord thickness, radius of trailing edge 
and radius of leading edge, in different cross sections of the 
wing must be limited to reasonable values. 
However, we expect that details of GA algorithm affect the 
speed of convergence in different physical problems. For 
example, one may find that while a certain set of details would 
be most appropriate for transonic invicsid flows, another one 
results in shorter run-times for hypersonic viscous flows. 
In this study, simple genetic algorithm whose parameters are 
improved [8], is used for performing the optimization 
procedure. In this paper we try to find an optimized airfoil 
profile. To do this, optimization is initiated from a given 
airfoil and the flow field is solved; then, this improved simple 
genetic algorithm (ISGA) calculates the best of each 
generation on the basis of its maximum fitness value with 
respect to the design variables. With new design variables the 
flow field is solved again, and this procedure is iterated to 
reach the maximum value of the objective function. The final 
design variables which lead to the maximum value of the 
objective function are optimum ones. Design variables are 
coefficients of a polynomial equation defining the upper and 
lower airfoil profiles. An aerodynamic characteristic namely 

the lift/drag ratio 
d
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 is assumed as an objective function. 

Optimization of a given airfoil (NACA 0012) is studied using 
this objective function.         
 
Optimization Approach 
Genetic algorithm (GA) is a mathematical algorithm which 
uses operational patterns of Darwin’s principle in accordance 
with survival of fitness on the basis of natural genetic 
processes such as mating, crossover, mutation and etc.; also it 
can change the population of single mathematical objects 
(chromosomes) with a special fitness level to a new 
generation. Although genetic algorithms are stochastic 

methods they have simple deterministic processes. They use 
the information of previous generations with high efficiency to 
find new points. These algorithms attempt to avoid being 
completely random and as mentioned in genetic algorithm 
literature, usually a process can not be found that is 
completely random. This algorithm does not need derivative 
values of an objective function for optimization, and only uses 
objective function value in each point. Also, the genetic 
algorithm can be applied to any objective function such as 
continuous or discrete functions, and in each step it surveys a 
set of points and therefore more than one optimized result can 
be obtained [9]. 
In this study the profile of a NACA 0012 airfoil is chosen as 
an initial shape, and the improved genetic algorithm is applied 

to perform optimization of this shape for maximizing
d
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.  

The upper and lower profiles of the airfoil are defined by a 
polynomial and its coefficients are chosen as design variables. 
These coefficients change to binary codes (genes) and produce 
the required chromosomes for this improved simple genetic 
algorithm. In each generation some different shapes are 
produced while each chromosome introduces a specific profile 
for the airfoil. The first generation is produced randomly. By 
using a mutation operator which is applied on a random bit of 
the chromosome and therefore the population that produces 
the first generation already exists. The fitness evaluation is the 
basis of genetic algorithm and it has a great role in its 
selection procedures. 
The genetic algorithm recognizes chromosomes that have 
higher fitness values and selects them as parents for producing 
the next generation. Finding profile of an airfoil which 

produces maximum 
d
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 is the goal of this optimization 

procedure. Hence the 
d
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 is used as the fitness value 

(objective function value) in this algorithm.  

The CFD solver calculates 
d
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 of the airfoil. For a 

chromosome in each generation the solver should be called at 
least once. Therefore, the CFD solver must be called many 
times to complete the optimization. The numerical experiences 
show that the run-times of numerical computations of the 
genetic algorithm in comparison with the CFD solver run-
times are negligible. The selection of parents is based on 
Roulette wheel [9] and the probability that a parent is selected 
depends on its fitness value. Each pair of parents produces two 
offspring (two new chromosomes) by using a crossover 
operator. The mutation operator is applied to offspring on the 
basis of its probability. One-point crossover is used here. The 
crossover point which is on the parent chromosome is selected 
randomly. The mutation operator is performed on a gene in a 
chromosome which is selected randomly, and changes its 
value (if it is zero, it will become one and vice versa). 
Although the reproduction and crossover procedures are done 
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randomly on the basis of the fitness value, they may destruct 
valuable strings and therefore the genetic algorithm can not 
converge uniformly to the global optimum of the problem. To 
have a uniform and faster convergence, the best chromosome 
of each generation can be transferred to the next generation. 
This operator is named elitism [10].  
 
Flow Field Governing Equations 
Euler equations are adopted as the flow field governing 
equations and have an essential role in the determination of 
the objective function. These equations are developed from the 
laws of conservation of mass, momentum and energy. The 
vector from of these equations is: 
 
(1)                                                                                                                  

0=
∂
∂

+
∂
∂

+
∂
∂

y
G

x
F

t
U

  

 
where: 
 
(2)                                            

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ttt vh
Pv

uv
u

G

uh
uv

Pu
u

F

e
v
u

U

ρ
ρ
ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ
ρ
ρ

2

2

 
 
F And G are flux vectors in x and y directions, respectively. 

U  is the vector of conserved variables, and te  and th  are 
total energy and total enthalpy, respectively.  
The above set of equations contains four equations with five 
unknowns. To close this set, we need an extra equation which 
will be the equation of state. For an ideal gas this equation is: 
(3)                                                                                                        

( )ep 1−= γ
ρ

 

  where e  is internal energy and γ  is the specific heat ratio. 
 
Numerical Methods 
A finite volume technique is used for spatial discretization of 
the governing equations. After integration from equation 4 
over triangular control volumes shown in Figure 1, we have: 
(4)                                                                                       
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where jU  represents the numerical approximation of U  in 

cell j  and njF , niG   are approximations to the normal 

components of F , G  on edge i  of the control volume, is∆  

is the length of the control volume edge, and jA  denotes the 

area of the control volume j . The next step is the 
determination of fluxes on the edge of the control volume. 
Here the invicsid fluxes are approximated using Roe’s scheme 
[11]. This scheme, called flux difference splitting, belongs to 
the upwind schemes category, which use approximate 
Riemann solvers for flux to capture flow field discontinuities 
such as shock waves. 
After special integration of the Euler equations, the equations 
are converted to ordinary differential equations: 
(5)                                                                                                 
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where R  is the numerical flux function. Equation (5) is an 
ordinary differential equation which may be solved using 
classical methods such as the 4th order Runge-Kutta method 
[11]: 
(6)                                                                                                              

4,,1,
14

11 K=
+−

∆
+= −− kR

k
tUU kkk                 

 
Grid Generation  
As stated before, the discretization of the equations is carried 
out in triangular cells. Here, the Delaunay triangulation 
method [12] is chosen to discretize the physical domain. An 
advancing front algorithm is used to generate the Delaunay 
triangulation, which is both robust and fast enough. The 
Delaunay triangulation has many properties, and from some 
view points is the best possible triangulation.  
Since the geometry of the airfoil varies during the 
optimization process, a new grid is needed for the new 
geometry. A procedure called spring based smoothing method 
[13] is used to adapt the grid to slow movements of the 
boundaries. In the spring-based smoothing method, the edges 
of the mesh are idealized as a network of interconnected 
springs. The initial length of the edges before any boundary 
motion constitutes the equilibrium state of the mesh. A 
displacement at a given boundary node will generate a force 
proportional to the displacement along all the springs 
connected to the node. Figure 2 represents the results of this 
displacement procedure.  
 
Results   
Since the flow field solver evaluates the objective function, 
the flow filed solver should be validated; therefore results of 
the present solver are compared with those of reference [14]. 
Figure 3 gives the pressure coefficient distribution over the 
lower and upper surface of a NACA 0012 airfoil for free 
stream conditions of 7.0=M and 1.49=α , where M  is 
the Mach number and α  is the angle of attack. It can be seen 
that the present results have good agreement with the 
experimental data of Mirzaei et al. [15]. Figure 4 shows the 
pressure contours of the present solver for this case. 
To estimate the performance of the improved simple genetic 
algorithm as the optimization procedure, an airfoil with initial 
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profile of NACA 0012 is adopted for free stream conditions of 

7.0=M and 1.49=α  and the objective function is
d

l

C
C

. 

This objective function will help us to verify our genetic 
algorithm method. Table 1 shows the results of this 
optimization. In this table the initial and optimized values of 
design variables and objective function are presented. The 
airfoil profile is: 

(7)      ( )4
5

3
4
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51 ,, aa K  are design variables, and for this airfoil t  is 0.12. 
Figure 5., depicts the convergence history of the objective 
function. Figure 6 shows the optimized airfoil and the initial 
airfoil – which has been NACA 0012. As can be seen, the 
airfoil thickness has considerably decreased. As we know 
thinner airfoils tend to have lower drag. This characteristic is 
magnified in transonic flows as the shock wave is avoided by 
decreasing the flow velocity above the airfoil. In figures 7 to 9 
the pressure coefficient over the airfoil and also the Mach and 
pressure contours are depicted. It is obvious that no shock 
waves are present and consequently as the field is solved 
invicsid ly, the only possible source of drag, pressure drag, is 
avoided. In other words, genetic algorithm has successfully 
minimized the drag while increasing lift, by eliminating the 
major source of drag, namely pressure drag. The only 
remaining source is the drag which is not physical and is a part 
of the artificial viscosity which exists intrinsically in the flow 
solver. In this case the lift is also increased because the thin 
airfoil allows the upper surface flow to reach its maximum 
velocity without being forced to lessen, due to shock wave.  
Note that the ISGA method is converged after 50 generations. 
Comparing with the other usual methods such as gradient 
based methods [15] and simple genetic algorithm, it has 
converged faster, and it calls the CFD solver less than 0.1% of 
all possible cases; hence, it is a fairly time saving approach. 
 

 a1 a2 a3 a4 a5 Cl/Cd 

NACA 
0012 0.2969 -0.126 -0.3516 0.2843 -0.1015 16.2 

Optimiz
ed 0.4965 -0.3601 -0.2336 0.2974 -0.2002 1037 

Table 1. Design results 
 

 
Conclusions 
The improved simple genetic algorithm (ISGA) is presented 
and applied for airfoil shape optimization. According to the 
results, this method is very effective and robust and can be 
used for the optimization of simple NACA series airfoils. For 

this test case, with the objective function of
d

l

C
C

, optimization 

leads to an increase in 
d
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C
C

ratio in comparison with the initial 

airfoil (NACA0012) after 50 generations.           
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Figure1. Triangular control volume 
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Figure 3.The pressure coefficient distribution over lower and 

upper surface of NACA 0012 airfoil 
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Figure 2. Spring-based smoothing method 

 
 
 
 
 

 
Figure 4.  Pressure contours of the present solver for 

validation case (Non-dimensionalized by 2
∞∞Uρ ) 
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Figure 5. Growth trend of L/D through the optimization 

process 
 
 

 
Figure 6. Optimized airfoil (Red) with L/D objective function 

in comparison with NACA 0012(Green) 

 
Figure 7. Pressure coefficient along the optimized airfoil 

 

 
Figure 9. Pressure contour for the optimized airfoil (Non-

dimensionalized by 2
∞∞Uρ ) 

 
 

 
Figure 8. Mach contour for the optimized airfoil 
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