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ABSTRACT

The development of fluid motion in an infinitely long circu-
lar pipe with homogeneously distributed internal heat source
is examined numerically. The pipe is placed vertically in the
gravity field with the pipe wall temperature being kept con-
stant. The motion of the fluid is driven upward by the buoy-
ancy force as well as downward by an applied pressure gra-
dient along the pipe axis. Thus, the basic velocity profile can
become inflectional and we may anticipate that the flow may
become unstable in contrast to the isothermal pipe flow which
is known to be linearly stable for any Reynolds number.

We find that the linear instabilities always occur within the
region where the basic velocity profile is inflectional but not
totally reverse. Our nonlinear analysis indicates that there are
two types of nonlinear solutions, referred to as spirals and
ribbons. They bifurcate simultaneously from the same point
on the neutral curve. Furthermore, the branch of the ribbon
extends far inside the region where the basic state is linearly
stable and reaches the isothermal limit, creating a nonlinear
solution in ’pure’ pipe flow for the case with Pr = 0. For the
case with Pr = 7 nonlinear interactions between spirals with
different azimuthal wavenumbers are observed.

INTRODUCTION

To evaluate heat and mass transfer for flow in a pipe is one
of the vital factors in designing a chemical plant and a nu-
clear power plant. Yet, it is only a decade ago that even an
isothermal case saw some progress. Until then, the problem
of transition from laminar flow with a parabolic velocity pro-
file to turbulence in a pipe, started by Reynolds in 1883, had
been remained unsolved. The difficulty to solve the problem
rests in the fact that the isothermal pipe flow is linearly stable
for any Reynolds number and so the transition from laminar
flow to turbulent flow must occur abruptly. Since the linear
critical points are absent, weakly nonlinear analysis does not
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work and nonlinear solutions must be sought directly. Some
clue for nonlinear pipe flows did exist in the study for plane
Couette flow [1], another canonical flow without linear critical
points: nonlinear solutions in plane Couette flow were discov-
ered, therein, for the first time by making the flow unstable by
introducing a spanwise system rotation, following the bifur-
cating solution branch and switching off the rotation to find a
survived nonlinear solution. The survived solution at the zero
rotation is characterized by quasi-streamwise vortices, stream-
wise streaks and a distorted inflectional mean flow. The obser-
vation of the flow structure of the nonlinear solution in plane
Couette flow led to the so-called self-sustaining process, SSP,
for turbulent flow [2].

By introducing an artificial force which would constitute the
SSP, nonlinear solutions in a pipe were obtained [3,4]. The
nonlinear solution, now called exact coherent structure, ECS,
which is a saddle point in the phase space possessing both sta-
ble and unstable manifolds. Turbulent flow in a pipe is believed
to be represented by trajectory wondering around the ECS’s in
the phase space [5].

In the present paper we make the flow linearly unstable by
distributing an internal heat source homogeneously inside a
vertical pipe. Our system is, therefore, physically realizable
in contrast to the previous studies [3,4]. The basic velocity
profile can become inflectional due to the upward buoyancy
force, measured by the Grashof number, Gr, in the presence
of an applied axially downward pressure drop, measured by
the Reynolds number, Re.

First, we identify a region in the (Re, Gr)-space where the
basic flow is unstable by a linear stability analysis. It is found
that linear instabilities occur within the region in the (Re, Gr)-
space where the basic velocity profile is inflectional and par-
tially reverse.

Our nonlinear analysis reveals that there are two types of
nonlinear solutions, spirals and ribbons, bifurcating from the



same neutral points. Spirals are characterized by a vortical
structure which are tilted in one way with respect to the pipe
axis, whereas ribbons have a double vortical structure tilted
with an equal angle in both ways.

Furthermore, for the vanishing Prandtl number, we are able
to detect a path in the (Re, Gr)-space leading to the isother-
mal pipe flow solution, starting from a ribbon solution in the
thermal case.

For the finite Prandtl number interactions between spirals
with various azimuthal wavenumbers are observed.
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MATHEMATICAL FORMULATION

We consider an incompressible fluid motion inside an in-
finitely long circular pipe with the radius, a, placed vertically
in the gravity field. The temperature of the pipe wall is kept
constant while internal heat sources with an intensity, ¢, are
homogeneously distributed inside the pipe. The motion of the
fluid is driven by the buoyancy force as well as the pressure
gradient applied downward along the pipe ( see Fig.1).

Applying the Boussinesq approximation and taking a.,
a? /v, V2 /(v.g.a2), respectively, as the length, time and tem-
perature scales, where v, is the kinematic viscosity, 7, is the
volume expansion coefficient and g, is the acceleration due
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to gravity, we obtain the non-dimensional basic equations in a
cylindrical coordinate system, (r, 6, z), with the unit vectors,
(eTa 693 ez):

the equation of continuity:

V-u=0, @)
the momentum equation:
Du oIl
—— =+ 9k +V? 2
Dr 76; + 9k + Viu, 2)
the temperature equation:
Dy
Pr— = V?J +2Gr. 3
"Dy Va9 4 2Gr 3)

where w is the fluid velocity, II is the pressure and ¥} is the tem-
perature. The no-slip condition and the constant temperature
condition are imposed on the pipe wall at r = 1:

u(l, t) =0, 9(1, t) = 0. “
The Reynolds number, Re, and the Grashof number, Gr,
control the development of the flow in the system. Pr is the
Prandtl number which is prescribed by the material property of
the fluid:
W *x Wy
Re= 2 a ,

Vi

Vy

5

GV QA

(;7’ = ——
2U2K,

&)

) b
Rx

where Wy, is the central velocity when Gr = 0 and k, is the
coefficient of thermal diffusivity.

Fig. 1: The model.

BASIC STATE

The laminar basic steady state, Wp, Tz, can be easily ob-
tained from equations (2) and (3) by assuming its functional
dependency only on r:

1
Wg(r) = Re(1 —7?) + 3—2Gr(1 —rH(3 =12, (6)
1
Te(r) = 5Gr(l —r?). (7)
When the internal heat source is absent, Gr = 0, the basic

steady flow has a well known parabolic velocity profile di-
recting vertically downwards. As G is increased the central



part gets hotter and a reverse upward flow starts developing.
The basic steady flow can be classified in the (Re, Gr)-space
in terms of the existence of inflection points and reverse flow
components as shown in Fig.2.
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Fig. 2: The classification of the basic flow in the (Re, Gr)-
plane.

In the figure, no inflection points exist in the profile of
Wpg(r) in the regions indicated by M; and M5 and two in-
flection points exists in My, M3 and My. W (r) possesses a
reversal component at 7 = 0 in My and Mj3. The flow is to-
tally reversed in M4 and M;5. Typical profiles in each region
are shown in Fig.3

DISTURBANCE EQUATIONS o
We superimpose disturbances, (u, ¥, 11), on the basic state,
(Up, Ts. Il ). Disturbances are assumed to be periodic in the

axial direction. For convenience, u, ) are sveparated into mean
parts, U = (0, V, W), T and residuals @, 9:

u=Up+Vj+Wk+a, (8)
V=Tg+T+17, ©)
O=TIg+IL (10)

Substitution of these disturbances into equations (1), (2) and
(3) leads to the equations for disturbances.

V-a=0, (11)

ou - y 5 - y y
§+ U -V)a+ (a-V)U + (u-V)u

= —VII + 9k + A, (12)

T, 1., 1.
(71~V)v+%+V”+;V’—T—2V:8tV (13)

1. y .
(ﬁ-V)w+W”+;W’+T:8tW (14)

T
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Fig. 3: The basic velocity profiles, Wg(r), along Gr = 40000.

%Jr U -V + (a- V)T + (@ V)D
= £ A9, (15)
Pr(u-V)9+ (T" + %T’) = Pro,T, (16)

whereﬁ:UB+UandT:TB+T.

LINEAR STABILITY ANALYSIS

We omit the nonlinear terms with respect to disturbances in
equations (12) and (15). Also, we disregard equations (13),
(14) and (16) for the mean flow components because they are
created by the quadratic interactions of the residual parts. The
residual part of the velocity disturbance, 4, is separated into a
poloidal part, V x V x (r¢e,.), and a toroidal part, V x (ripe;.):

=V XV x (r¢e) + V x (rye). 17)

Note that the above representation satisfies equation (11) auto-
matically.

We assume periodicity in the 6- and z-direction with the
wavenumber pair (m, 3) and expand disturbances by the mod-
ified Chebyshev polynomials, 7;(r), in the r-direction,

L

(6,9,9) = > _(ae, be, c¢) explimf +iBz + ot] Ty(r), (18)
0



where o is the growth rate. Then, we evaluate the resultant
disturbance equations at the collocation points defined by

n:cos(ﬁ) i=1,...,

where L is the highest order of the modified Chebyshev poly-
nomials used. Then, the problem becomes

Ax =ocBzx

L+1), (19

(20)

with ¢ as the eigenvalue. Here, matrices A and B are func-
tions of Re, Gr, Pr,m and 3, and the elements of the vector
x stand for the amplitude ay, by, c¢ of the disturbance compo-
nents.

The neutral curves, where the real part of o vanishes, are
calculated for the azimuthal wavenumbers, m = 0,1, 2, 3 (see
Fig.4). The basic state is unstable inside the wedged region in
each figure. The axial wavenumber, /3, varies along the curves.
It would be interesting to see that the unstable regions are al-
ways confined within My and M3, where the basic velocity
profile is inflectional but not totally reverse. It should be noted
that the purely hydrodynamic flow, Pr = 0, can be unstable
only for m = 1 (we should add that the stability has been ex-
amined up to Gr = 100000).
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Fig. 4: The neutral curves for Pr 0 (dashed curve) and

Pr = 7 (solid curve). The optimal value of (3 is taken along

the curves. Note that instabilities for Pr = 0 can be seen only
in (b).

NONLINEAR ANALYSIS

The residual part of the velocity disturbance is expressed by
a poloidal part, V x V x (r¢e,), and a toroidal part, V x
(rie,.), as in the linear analysis:

u=VxVx(rge,)+V x (rpe,). (21)

We expand (¢, 1, 19) in the z- and #-directions by the Fourier
series with the wavenumber pair (m, 3) and expand all the dis-
turbances by the modified Chebyshev polynomials, T;(r), in

899

the r-direction,

L K
¢ ZZJ 79 Z Z Z aZ,k,nabE,k,n7CE,k,n)
=0k

—Kn=—N

x explikmb + infB(z — ct)|Te(r), (22)
and
o L
(V,W,I0) = (de, er, fo)Tu(r), (23)
£=0

where we have assumed that the disturbances travell in the z-
direction with the phase speed c.

We evaluate the disturbance equations (12) - (16) at the col-
location points (19) to obtain the algebraic equation,

Aijl‘j + Bijk.%'j.lfk =0 (24)

where the components of z; represent the expansion coeffi-
cients, ag k., be.kns Cokens Ao ons €0kn and fyr n (plus the
phase speed, c¢). The matrices, A;; and B;jy, are determined
as a function of Re, Gr, Pr, m and (3. Solutions are sought by
using Newton=Raphson iterative method.

We choose the bulk Reynolds number as a nonlinear mea-
sure:

2m 1
Rey = / / (Wa(r) + W(r))rdrds.  (25)
0 0

RESULTS

We examine two cases, Pr = 0 and Pr = 7. First, we
describe the Pr = 0 case. It is found that two types of non-
linear solutions bifurcate from the neutral curve. We call one
of them spiral and the other ribbon. Spirals are characterized
by a vortical structure which is tilted in one way with respect
to the pipe axis, whereas ribbons have a double vortical struc-
ture tilted with the equal angle in both ways (see Fig.5). Fig.6
shows that the spiral and the ribbon with (m, 3) = (1, 1.0) bi-
furcate from the same point on the neutral curve. It can be seen
that the branch of the spiral exists within the wedged region
where the basic state is unstable, simply bridging two neutral
points, whereas the branch of the ribbon extends far inside the
region where the basic state is stable.

It would be worthwhile examining how far the branch of the
ribbon extends for other values of 3. In particular, it would
be of great interest to see whether the branch can reach the
line of the isothermal case, Gr = 0. Our successful attempt
to find a isothermal solution is described in Fig.7. We start
from the neutral point at (Re, Gr) = (—2869,30000) (open
circle) for 5 = 1.44 and follow a path by keeping Gr = 30000
and increasing Re first up to (Re, Gr) = (1500, 30000) (filled
square). We are able to reach the isothermal case (Re, Gr) =
(1500, 0) (filled triangle) by decreasing Gr from (Re, Gr)
(1500, 30000).

Having obtained a ribbon at (Re, Gr) = (1500, 0), we now
explore the branch of isothermal pipe flow solutions as a func-
tion of Re. We find that the branch experiences a turning point
at Re ~ 1000 when Re is decreased from 1500. Then the



(a) Spiral (b) Ribbon

Fig. 5: Isosurfaces of the streamwise vorticity of spiral (a) and
ribbon (b). (m, 3) = (1,1.0), Gr = 30000.
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Fig. 6: Branches of the spiral (a) and the ribbon (b) bifurcating
from the same points on the neutral curve. Pr = 0. (m, §) =
(1,1.0), Gr = 30000. Note the difference in scale between
(a) and (b).
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Fig. 7: The path from (Re, Gr) = (—2869, 30000) (open cir-
cle) to the isothermal case (Re, Gr) = (1500, 0) (filled trian-
gle) via (Re, Gr) = (1500, 30000) (filled square). (m, 5) =
(1,1.44).
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branch changes direction towards larger Re as shown in Fig.8.
Close examination of the solution (see Fig.9) indicates that our
isothermal solution is identical to the mirror symmetric travel-
ling waves [6].
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Fig. 8: The bifurcation diagram for isothermal pipe flow, Gr =
0. (m, ) = (1,1.44).
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Fig. 9: Cross-sectional flow pattern of the ribbon for isother-
mal pipe flow on the upper branch at Re;, = 1200. (a) z = 0.
(b) z =m. (m,3) = (1,1.0).

In the thermal case with Pr = 7 unstable regions for
m = 0,1,2 and 3 overlap in the (Re, Gr)-space (see Fig.4)
and mode interactions with different m becomes possible as
exemplified by Fig.10. In the figure we see that the branches
of two spirals with (m, 8) = (1,1.0) and (m,8) = (2,2.0),
which bifurcate from the neutral points indicated by the filled
circles and triangles, respectively, merge at the points indicated
by the crosses.
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Fig. 10: The mode interaction of spirals with (m, 3) = (1, 1.0)
(dashed curve) and (m, 3) = (2,2.0) (solid curve) at Gr =
20000 for Pr = 7. The dotted straight line represents the

laminar flow.

CONCLUSION

The bifurcation of flows of fluid in a pipe driven by the buoy-
ancy force due to a homogeneously distributed internal heat
source and an applied pressure drop along the pipe axis is ana-
lyzed. The basic state becomes unstable in a parameter region
where the basic velocity profile is inflectional. It is found that
two types of nonlinear solutions, spirals and ribbons, bifurcate
simultaneously from the point on the neutral curve. By follow-
ing the nonlinear solution branch in the parameter space the
isothermal solution in a pipe is recovered for Pr = 0. Al-
though our isothermal nonlinear solution of pipe flow is not
new, we stress that it is obtained for the first time by consider-
ing a physically realizable system, not by introducing an arti-
ficial force [3,4]. For Pr = 7, nonlinear interactions between
spirals with different azimuthal wavenumbers are observed.
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