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The bound of uniform strong primeness of the ring Mn(R) o f  n by n matrices over the unitary ring R 
is denoted mn(R). The concepts of uniform, right and left strong primeness for matrix rings are re-
interpreted in terms of bilinear equations and multiplication of vectors. These interpretations are used 
to prove new results. Bounds of strong primeness of unitary rings R are linked to the bounds for 
Mn(R). The bound m2(D) i s  investigated for division rings D. Results by van den Berg (1998) and 
Beidar and Wisbauer (2004) linking uniform strong primeness to the existence of certain, possibly 
nonassociative, division algebras are generalised from fields to division rings. The result mn(D) ≤ 2n 
− 1 o f  van den Berg (1998) for division rings is extended to mnn′ (R) ≤ (2n − 1)mn′ (R) f o r 
general unitary rings. In the case of formally real fields F , it is improved to mn(F ) ≤ 2n − 2 for 
integers n > 1 a n d  mn(F ) ≤ 2n − 4 f o r  even n > 2. This improvement, used in conjunction with 
a generalisation of an algebraic–topological proof of Hopf’s theorem on real division algebras, yields 
m2k+1(R) = m2k+2(R) = 2 k+1. Bounds on mn(R) f o r  other n are also obtained.
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1. Introduction

There are several notions of strong primeness in the literature. The oldest of these 
has its origin in two independent works: the MSc thesis of Lawrence [1] and the PhD 
thesis of Viola-Prioli [2]. The former is an investigation of primitivity in group rings; one 
of its striking results shows that a condition, somewhat stronger than primeness (but 
not as strong as being a domain), is required of a ring R in order that the group ring 
R[G] o v e r  a suitable free product G of groups be right primitive. This condition, later 
christened “right strongly prime”, was seen as interesting in its own right and there 
followed the development of a theory for strongly prime rings in [3,4] (see also [2]).

A ring R is said to be right strongly prime if for each nonzero a ∈ R, there exists 
a nonempty finite subset S (dependent on a) of R such that the set aS has trivial 
right annihilator. In this situation the subset S is called a right insulator for a. More 
specifically, the ring R is said to be right strongly prime of bound n if there exists 
a positive integer n with the property that every nonzero element in R possesses a 
right insulator of size n and no smaller such n exists. Left strongly prime rings and left 
insulators are defined in the obvious dual fashion.

Handelman and Lawrence also introduce in [4] a stronger, and left–right symmetric,
variant of strong primeness that is the notion of primary interest in this paper: they call a
ring R uniformly strongly prime if R contains a finite subset S that is a right insulator for
every nonzero a ∈ R (such a set is called a uniform insulator for R); that is, aSb = 0  only
if a = 0  o r  b = 0 .  The ring R is called uniformly strongly prime of bound n if n is the
smallest positive integer for which R possesses a uniform insulator of size n.

It is shown in [4] that if D is any division ring, then Mn(D) i s  right (and left) strongly
prime of bound n, and uniformly strongly prime of bound at most n2 since the set o
matrix units is easily shown to constitute a uniform insulator. Van den Berg [5] sharpened
this result, showing that the bound of uniform strong primeness of Mn(D) a l w a y s
lies from n to 2n − 1 i n c l u s i v e .  Curiously, its exact value is not determined
solely by n, but also depends on subtle algebraic features of the ground division ring D
Indeed, it has been shown that the bound of uniform strong primeness of Mn(F) i s  2n −
1 i f  F is an algebraically closed field [5, Proposition 8], and n if and only if there exists
a (possibly nonassociative) division algebra over F of dimension n ([6, Theorem 1.2], [7
Theorem 11]); this means, for example, that the bound of Mn(Q), with Q the field o
rationals, is always n, for there exists, for every n, an irreducible polynomial of degree n
over Q and thus an n-dimensional field extension of Q. The bound of uniform strong
primeness of Mn(F) c a n ,  however, lie strictly between n and 2n − 1 a s  examples in
this paper and earlier papers show; the ring of 3 b y  3 matrices over the reals, for
example, is uniformly strongly prime of bound 4.

This paper continues the work of Beidar, Wisbauer and the second author [5–7] on 
bounds of uniform strong primeness in matrix rings.

It is important to note that the sole focus on matrix rings, and in particular on 
matrix rings over division rings, is not as restrictive as it might appear. Indeed, as 



 
 
 
 
 
 
 
 
 

shown in [3, Theorem 4.7], every ring R which is right strongly prime of bound greater
than 1 i s  prime right Goldie and therefore a right order in Mn(D) f o r  some division
ring D. Moreover, in this situation, R inherits uniform strong primeness from the
overring Mn(D) a n d  its bound is at most that of the overring. If R is also a left order
in Mn(D)(this is the case, for example, whenever D = F is a field, for left and right orders
coincide in Mn(F) b y  the Faith–Utumi Theorem), the bound of R is identical to that of
Mn(D) [5, Corollary 7]. Thus the calculation of bounds of uniform strong primeness of a
significant class of strongly prime rings reduces to a consideration of matrix rings over
division rings. However, as earlier work on this project has shown, the determination of
this index in such apparently “simple” rings turns out to be surprisingly difficult.

In this paper, a method is developed for the calculation of the bound of uniform 
strong primeness of the matrix ring Mn(R) that involves reduction to a system of bilinear
equations over R. This method shall provide a tool for proving results that are new, as 
well as a simplifying perspective on some that are old.

2. Preliminaries

N, Z, Q, R and C will denote the sets of positive integers (0 is excluded), integers,
rationals, reals and complex numbers respectively.

For n ∈ N ∪ {0}, define Nn = {k ∈ N : k ≤ n} = {1, 2, . . . , n}. For k ∈ Z,

sgn(k) =
{
k/|k| if k �= 0
0 if k = 0

}
.

For a ∈ R, �a� and �a	 are the floor and ceiling respectively of a.
Throughout R will denote a unitary ring (ring with identity), D a division ring and 

F a field.
For n, m ∈ N, Mn×m(R) is the ring of n by m matrices over R and Mn(R) means

Mn×n(R).
For n ∈ N, i ∈ Nn and x ∈ Rn, xi is the ith component of x, 0 is the zero vector

in Rn and e(i) is the ith unit vector in Rn. (The brackets emphasise that e(i) does not
mean the ith component of a vector e.)

For n, m ∈ N, i ∈ Nn, j ∈ Nm and A ∈ Mn×m(R), Aij is A’s ith-row, jth-column entry 
and Ai· and A·j are A’s ith row vector and jth column vector respectively. Following [8], 
vec A is the vector in Rnm obtained from A ∈ Mn×m(R) b y  putting A’s columns on top 
of one another in order, that is,

vecA =

⎛
⎜⎜⎜⎜⎜⎝

A·1

A·2

...
A

⎞
⎟⎟⎟⎟⎟⎠ .
·m



For n, m ∈ N and p, q ∈ Nn, O is the zero matrix in Mn×m(R), I the identity matrix in 
Mn(R) and, adapting notation from [8], E(pq) is the matrix in Mn×m(R) where for i ∈ Nn, 
j ∈ Nm,

(E(pq))ij =
{

1 if p = i and q = j

0 otherwise.

}

(As with vectors, the brackets emphasise that E(pq) does not mean the entry in the pth
row and qth column of a matrix E.)

Using and adapting notation in [6], if R is a ring for which the indicated index exists, 
the bound of uniform (respectively right, left) strong primeness of R will be denoted by 
m(R) (respectively mr(R), ml(R)) and if n ∈ N, the bound of uniform strong primeness 
of the matrix ring Mn(R) will be denoted by mn(R). If R is right (respectively left) 
strongly prime but not right (respectively left) strongly prime of any bound m ∈ N, take 
mr(R) = ∞ (respectively ml(R) = ∞).

3. Bilinear equations

The first re-interpretation of types of strong primeness for matrix rings in this paper
involves homogeneous linear and bilinear equations. “(Bi)linear equation” will 
always mean “homogeneous (bi)linear equation”. The notation used here is adapted 
from [8].
Proposition 1. Suppose n, m ∈ N, X ∈ Mn(R)\{O} and S = {A(p) : p ∈ Nm} is a
nonempty finite subset of Mn(R) with R a unitary ring. Consider the following condi-
tions:

(i) For x, y ∈ Rn, (yTA(p)x = 0 for p ∈ Nm) ⇒ (y = 0 or x = 0).
(ii) For x ∈ Rn, (Xi·A(p)x = 0 for p ∈ Nm, i ∈ Nn) ⇒ x = 0.
(iii) For y ∈ Rn, (yTA(p)X·j = 0 for p ∈ Nm, j ∈ Nn) ⇒ y = 0.

S is a uniform insulator for Mn(R) (respectively right insulator for X, left insulator
for X) iff (i) (respectively (ii), (iii)) holds.

Proof. The argument is an application of the definitions of uniform, right and left insu-
lators and the fact that for A, B, C ∈ Mn(R),

BAC = O ⇔ (for i, j ∈ Nn, Bi·AC·j = 0);

see the proof of [6, Lemma 2.2]. �
A matrix A corresponds to the bilinear equation yTAx = 0. A set of matrices is a 

uniform insulator precisely when the corresponding system of bilinear equations has no 
nontrivial solutions, and it is a right or left insulator when a system of linear equations 



that comes from restricting the bilinear equations to specific y or x has no nontrivial 
solutions. The question “What is mn(R)?” is thus equivalent to the question “What is
the smallest number of bilinear equations yTA(p)x = 0 that one needs to force y = 0 or
x = 0?”.

In the following result, parts (i) and (ii) without the conditions on the bounds come 
from [4, Proposition II.1] and [9, Lemma 9] respectively; the conditions on the bounds 
are obtained by adapting proofs from and using ideas in those articles and [7].

Theorem 2. Let n ∈ N and let R be a unitary ring.

(i) Mn(R) is right (respectively left) strongly prime precisely when R is right (respec-
tively left) strongly prime, in which case mr(R) ≤ mr(Mn(R)) ≤ nmr(R) (respec-
tively ml(R) ≤ ml(Mn(R)) ≤ nml(R)).

(ii) Mn(R) is uniformly strongly prime precisely when R is uniformly strongly prime, in
which case m(R) ≤ mn(R) ≤ n2m(R).

Proof. (i) Suppose R is right strongly prime. Given A ∈ Mn(R)\{O}, take i, p ∈ Nn

with Aip �= 0; then Aip has a right insulator S ⊆ R of size at most mr(R). Consider
the set T = {E(pq)a : a ∈ S, q ∈ Nn} ⊆ Mn(R). For a ∈ R, q ∈ Nn, x ∈ Rn one has
Ai·(E(pq)a)x = Aipaxq. Hence

Ai·Tx = {0}

⇒
(
for q ∈ Nn, AipSxq = {0}

)
⇒ (for q ∈ Nn, xq = 0)

⇒ x = 0.

Thus by Proposition 1, T is a right insulator for A of size at most nmr(R).
Suppose Mn(R) is right strongly prime and choose a ∈ R\{0}. The matrix E(11)a has

a right insulator {A(p) : p ∈ Nm} with m ≤ mr(Mn(R)). Let S = {(A(p))11 : p ∈ Nm}.
For b ∈ R,

aSb = {0}

⇒
(
for p ∈ Nm, a(A(p))11b = 0

)
⇒

(
for p ∈ Nm, (E(11)a)A(p)(E(11)b) = O

)
⇒ E(11)b = O

⇒ b = 0.

Thus S is a right insulator for a of size at most mr(Mn(R)).
The proof for left strong primeness is dual to this one.



(ii) Suppose R is uniformly strongly prime; then there is a nonempty finite set S with 
|S| = m(R) and (a, b ∈ R, aSb = {0}) ⇒ (a = 0 or b = 0). Take T = {E(pq)a : a ∈
S, p, q ∈ Nn} ⊆ Mn(R). For p, q ∈ Nn, x, y ∈ Rn, a ∈ R, one has yT (E(pq)a)x = ypaxq.
Hence

yTTx = {0}
⇒

(
for p, q ∈ Nn, ypSxq = {0}

)
⇒ (for p, q ∈ Nn, yp = 0 or xq = 0)

⇒
(
(for some p ∈ Nn, yp �= 0) ⇒ (for q ∈ Nn, xq = 0)

)
⇒ (y �= 0 ⇒ x = 0).

Thus by Proposition 1, T is a uniform insulator for Mn(R) o f  size n2m(R).
Suppose Mn(R) is uniformly strongly prime; then there is a nonempty finite set {A(p) :

p ∈ Nmn(R)} with (B, C ∈ Mn(R) and for p ∈ Nmn(R), BA(p)C = {O}) ⇒ (B =
O or C = O). This is a right insulator for each nonzero matrix in Mn(R), so it is a right
insulator for each E(11)a where a ∈ R\{0}. Applying the argument from the proof of (i),
{(A(p))11 : p ∈ Nmn(R)} is a uniform insulator for R of size at most mn(R). �

The result [7, Theorem 4] that mn(D) ≤ 2n − 1 f o r  division rings D is generalised 
below.

Theorem 3. Suppose n, n′ ∈ N and R is a unitary ring. Then mnn′(R) ≤ (2n −1)mn′(R).

Proof. Take a uniform insulator S′ = {A(p) : p ∈ Nmn′ (R)} for Mn′(R). Let B(p) =∑min{p,n}
k=max 1,p n+1 E(k,p+1 k) ∈ Mn(R) for p ∈ N2n−1 (these matrices are used in the

proof of 
{
[7, 

−
Theorem

} 
4]), 

−
that is, B(1) = E(1,1), B(2) = E(1,2) + E(2,1), B(3) = E(1,3) +

E(2,2)+E(3,1), . . . , B(n) = E(1,n)+E(2,n−1)+. . .+E(n,1), B(n+1) = E(2,n)+E(3,n−1)+. . .+
E(n,2), . . . , B(2n−1) = E(n,n). It is shown that S = {A(p,q) : p ∈ N2n−1, q ∈ Nmn′ (R)} is a
uniform insulator for Mnn′(R), where each A(p,q) ∈ S is the nn′ by nn′ matrix obtained
from B(p) by replacing each entry 0 with the zero n′ by n′ matrix and replacing each
entry 1 with A(q).

For x, y ∈ Rn′n, write y = ( yT(1) | yT(2) | . . . | yT(n) )T with each y(j) ∈ Rn′ and
similarly for x. The bilinear equation yTA(p,q)x = 0 corresponding to each A(p,q) ∈ S is∑min{p,n}

k=max{1,p−n+1}(y
T
(k)A(q)x(p+1−k)) = 0 (given A(p,q), take the sum expressing B(p) in

terms of E(k,l) and replace each E(k,l) with yT(k)A(q)x(l) to obtain the left hand side of
A(p,q)’s equation).

One uses Proposition 1 repeatedly in the rest of the proof. Assume the equations 
yTA(p,q)x = 0 hold for some y ∈ Rnn′\{0}, x ∈ Rnn′ . Let p ∈ Nn be minimal with
y(p) �= 0. By the equations of the matrices A(p,q), yT(p)A(q)x(1) = 0 for q ∈ Nmn′ (R), so
x(1) = 0 (S′ is a uniform insulator). If x(1), x(2), . . . , x(j) = 0 for some j ∈ Nn−1 then by
the equations of the matrices A(p+j,q), yT A(q)x(j+1) = 0 for q ∈ Nm ′ (R), so x(j+1) = 0
(p) n



(S′ is a uniform insulator). By induction, x = 0. Therefore S is a uniform insulator for 
Mnn′(R). �
Example 4. The set {A, B} with

A =
(

1 0
0 1

)
, B =

(
0 −1
1 0

)

is easily shown to be a uniform insulator for M2(R), so m6(R) = m3(2)(R) ≤ (2(3) − 
1)m2(R) ≤ 10. The proof of Theorem 3 above yields a uniform insulator for M6(R) 
consisting of the following ten matrices, where each O is the 2 b y  2 zero matrix:

⎛
⎜⎝

A O O

O O O

O O O

⎞
⎟⎠ ,

⎛
⎜⎝

B O O

O O O

O O O

⎞
⎟⎠ ,

⎛
⎜⎝

O A O

A O O

O O O

⎞
⎟⎠ ,

⎛
⎜⎝

O B O

B O O

O O O

⎞
⎟⎠ ,

⎛
⎜⎝

O O A

O A O

A O O

⎞
⎟⎠ ,

⎛
⎜⎝

O O B

O B O

B O O

⎞
⎟⎠ ,

⎛
⎜⎝

O O O

O O A

O A O

⎞
⎟⎠ ,

⎛
⎜⎝

O O O

O O B

O B O

⎞
⎟⎠ ,

⎛
⎜⎝

O O O

O O O

O O A

⎞
⎟⎠ ,

⎛
⎜⎝

O O O

O O O

O O B

⎞
⎟⎠ .

(Later in this article, it is shown that m6(R) = 8.)

Corollary 5. Suppose R is a unitary domain and n ∈ N. Then mn(R) ≤ 2n − 1.

Proof. Take n′ = 1 i n  Theorem 3, noting that m1(R) = 1 s i n c e  {1} is a uniform 

insulator for R. �
3.1. Division rings

Little is known about the value of mn(D) in the case where D is a noncommutative
division ring. This section sheds some light on the case n = 2.

The ideas of Proposition 1 are used in the proof of [7, Theorem 3]. The result and 
argument are adapted here, using ideas from [8].

Proposition 6. Suppose A(p) (p ∈ Nm) are matrices in Mn(D) with D a division ring.
Then the following statements are equivalent:

(i) {A(p) : p ∈ Nm} is a uniform insulator for Mn(D).



(ii) For y ∈ Dn\{0}, the matrix

Y (y) =

⎛
⎜⎜⎜⎜⎜⎝

yTA(1)

yTA(2)

...
yTA(m)

⎞
⎟⎟⎟⎟⎟⎠

has right column rank n.
(iii) For x ∈ Dn\{0}, the matrix

X(x) = (A(1)x | A(2)x | . . . | A(m)x )

has left row rank n.

If D is a field, “right column rank” and “left row rank” may each be replaced with “rank”.

Proof.

{A(p) : p ∈ Nm} a uniform insulator for Mn(D)

⇔
(
y, x ∈ Dn, y �= 0, Y (y)x = 0 ⇒ x = 0

) 
(Proposition 1)

⇔
(
y, x ∈ Dn, y �= 0,

n∑
k=1

(
Y (y)·kxk

)
= 0 ⇒ x = 0

)

⇔ Y (y) has right column rank n for y ∈ Dn\{0}.

Therefore (i) ⇔ (ii). The proof of (i) ⇔ (iii) is similar; it uses yTX(x) instead of 
Y (y)x. �
Theorem 7. Let D be a division ring. Then m2(D) is 2 if some equation wcw + wd −
aw − b = 0, a, b, c, d ∈ D, c �= 0 has no solution w ∈ D and is 3 otherwise.

Proof. By [7, Theorem 4], m2(D) ∈ { 2, 3}.
Let A(1), A(2) ∈ M2(D) be nonzero and consider the corresponding bilinear equations

yTA(1)x = 0, yTA(2)x = 0.
One may assume (A(1))11 �= 0 without loss of generality: to achieve this, taking

J =
( 0 1

1 0

)
, one may replace A(1), A(2), yT , x with JrA(1)J

s, JrA(2)J
s, yTJr, Jsx

respectively, where r, s ∈ N2. (The choice r = s = 2 leaves everything unchanged; r = 1
swaps the rows in each A(p) and swaps the elements of y; s = 1 swaps the columns in
each A(p) and swaps the elements of x.)

Also, one may assume A(1) ∈ {E(11), I} without loss of generality: taking q′ =
(A(1))22 − (A(1))21(A(1))−1

11 (A(1))12 and



q =
{

1 q′ = 0
q′ q′ �= 0,

}

one may replace A(1), A(2), yT , x with

(
(A(1))−1

11 0
−(A(1))21(A(1))−1

11 1

)
A(1)

(
1 −(A(1))−1

11 (A(1))12q−1

0 q−1

)
,

(
(A(1))−1

11 0
−(A(1))21(A(1))−1

11 1

)
A(2)

(
1 −(A(1))−1

11 (A(1))12q−1

0 q−1

)
,

yT
(

(A(1))11 0
(A(1))21 1

)
,

(
1 (A(1))−1

11 (A(1))12
0 q

)
x

respectively, so that the original A(1) is replaced with E(11) if q′ = 0 and I otherwise.
(These transformations may be obtained by adapting standard Gaussian elimination to 
division rings.)

Now let A(2) =
(
a b
c d

)
.

Case I: A(1) = E(11): The bilinear equations are y1x1 = 0, y1ax1 + y1bx2 + y2cx1 +
y2dx2 = 0. If y1 = 0 (x1 = 0) then the second equation becomes y2(cx1 + dx2) = 0
((y1b + y2d)x2 = 0), so the solution set is

{
(y, x) ∈ D2 ×D2 : 0 ∈

{
y, x,

(
y1

cx1 + dx2

)
,

(
x1

y1b + y2d

)}}
.

There is a nontrivial solution

y = e(2), x =
{

(−c−1d 1 )T c �= 0
e(1) c = 0

}

and so {A(1), A(2)} is not a uniform insulator for M2(D).
Case II: A(1) = I: The bilinear equations are y1x1 +y2x2 = 0, y1ax1 +y1bx2 +y2cx1 +

y2dx2 = 0. If c = 0 then there is the nontrivial solution y = e(2), x = e(1), so suppose
c �= 0. If y1 = 0 then the equations become y2x2 = 0, y2(cx1 + dx2) = 0 and this gives
y2 = 0 or x2 = 0 = cx1 + dx2, which implies y = 0 or x = 0; therefore all nontrivial
solutions have y1 �= 0.

Suppose (y, x) is a nontrivial solution and let w = −y−1
1 y2. The first equation becomes

x1 = wx2, which implies x2 �= 0. Substituting x1 = wx2 into the second equation, one has
wcw+wd −aw−b = 0. If this equation has a solution w then any (y, x) with y2 = −y1w,
x1 = wx2 is a solution, there are nontrivial solutions and {A(1), A(2)} is not a uniform
insulator for M2(D); otherwise there are no nontrivial solutions and {A(1), A(2)} is a
uniform insulator for M2(D).

Therefore there is a uniform insulator for M2(D) of size 2 (that is, m2(D) = 2) iff
some equation wcw + wd − aw − b = 0, a, b, c, d ∈ D, c �= 0 has no solution w ∈ D. �



Observe that if the division ring D of Theorem 7 is commutative (and therefore a 

field), then the condition of Theorem 7 reduces to the existence of an irreducible 
polynomial of degree 2 o v e r  D which in turn implies the existence of a field extension 
of dimension 2 o v e r  D. This is known to imply m2(D) = 2  [7, Theorem 11].

A version of the Fundamental Theorem of Algebra for the division ring H of quater-
nions, proved by Eilenberg and Niven [10, Theorem 1], says that for n ∈ N, each 
equation in H of the form c0wc1w  . . . c n +(finite sum of terms of the form d0wd1w  . . . d k

with k <
n) = 0 is satisfied by some w if the constants ci are all nonzero. Taking n = 2 and
c0 = c2 = 1  i n  this result and applying Theorem 7, one obtains

Corollary 8. m2(H) = 3.

3.2. Commutative rings

If R is a commutative ring and A ∈ Mn(R), then

yTAx =
n∑

k=1

n∑
l=1

(
Akl(ykxl)

)
= (vecA) ·

(
vec yxT

)
,

so the equation yT Ax = 0  i s  equivalent to (vec A) · z = 0 ,  which can be seen as a 
linear equation in the components zn(l−1)+k = ykxl of z = v e c yxT (see [8]). By
interpreting bilinear equations as linear ones in this way, one finds an alternative 
characterisation of mn(F ), F a field.

The following lemma and theorem and the proof of the theorem are adapted from the 
results and proofs of [6, Theorem 1.3, Lemma 2.2]. Some ideas are rephrased in light of 
Proposition 1 and the previous paragraph to illustrate a new perspective on the 
argument.

Lemma 9. Suppose n ∈ N, F is a field and S = {A(k) : k ∈ Nmn(F )} is a uniform
insulator for Mn(F ) of smallest possible size. Then S is a linearly independent set.

Proof. If n = 1 the result is trivial (m1(F ) = 1 and for y, x ∈ F\{0}, y0x = 0),
so let n > 1. Take A(1) =

∑mn(F )
k=2 a(k)A(k) where a(k) ∈ F for k ∈ Nmn(F )\{1}. If

yTA(k)x = 0 for k ∈ Nmn(F )\{1} then yTA(1)x =
∑mn(F )

k=2 a(k)(yTA(k)x) = 0. Thus
{A(k) : k ∈ Nmn(F )\{1}} is a uniform insulator for Mn(F ), contradicting the definition
of mn(F ). �
Theorem 10. (See [6, Theorem 1.3].) Suppose n ∈ N and F is a field. Then the highest 
dimension of a subspace S of Mn(F ) such that no matrices in S are of rank 1 is n2 − 
mn(F ).

Proof. Take an arbitrary subspace S of Mn(F ). Mn(F ) is isomorphic to Fn2 as a
vector space under the isomorphism vec, so S′ = vecS is a subspace of Fn2 with



dimS′ = dimS = d. Let B be any matrix in M(n2−d)×n2(F ) with linearly independent
rows such that S′ is the null space of B. The matrices in Mn(F ) of rank 1 are precisely
the matrices of the form vwT with v, w ∈ Fn\{0}. Letting y, x ∈ Fn and z = vec yxT ,

(S has no matrices of rank 1)

⇔
(
S′ has no vectors of the form vec vwT with v, w ∈ Fn\{0}

)
⇔

(
Bz = 0 ⇒ (y = 0 or x = 0)

)
⇔

(
(for i ∈ Nn2−d, Bi·z = 0) ⇒ (y = 0 or x = 0)

)
⇔

((
for i ∈ Nn2−d,

(
vec
(
vec−1 BT

i·
))

· z = 0
)
⇒ (y = 0 or x = 0)

)
⇔

({
vec−1 BT

i· : i ∈ Nn2−d

}
is a uniform insulator for Mn(F )

)
.

Thus there is a correspondence between subspaces S of Mn(F) w i t h  no matrices of 
rank 1 and sets of linearly independent uniform insulators for Mn(F ), where each
uniform insulator corresponding to a subspace S of dimension d has size n2−d. From the
definition of mn(F ), n2−d ≥ mn(F ), so d ≤ n2−mn(F ). By Lemma 9, any uniform
insulator of size mn(F ) i s  linearly independent, so it corresponds to a subspace of
Mn(F) o f  dimension n2 − mn(F) w i t h  no matrices of rank 1. �
3.3. Involutive fields and formally real fields

It will be proved that the upper bound of 2n − 1 for mn(F ) can be lowered if F is a
formally real field.

Recall that an involution on a field F is a field automorphism ∗ : F → F : a �→ a∗

which is its own inverse. Such a function ∗ has an associated norm ‖ ·‖ : F → F : a �→ aa∗,
which will be called definite if for any family {a(k) : k ∈ Nn} ⊆ F , 

∑n
k=1 ‖a(k)‖ = 0 iff

for k ∈ Nn, a(k) = 0. The classical prototype of involution with definite associated norm
is the conjugate map on C.

Lemma 11. Suppose n ∈ N is given. For each p ∈ N2n−2\{1}, let Cp = {(i, j) : i, j ∈
Nn, i < j, i + j = p + 1}. Suppose Z ⊆ Nn and a relation ∼ on Nn satisfy the following
conditions:

(i) ∼ is reflexive and symmetric.
(ii) Partial transitivity: (i, j, k ∈ Nn, j /∈ Z, i ∼ j, j ∼ k) ⇒ i ∼ k.
(iii) (i ∈ Z, j /∈ Z, k ∈ Nn, i ∼ j) ⇒ i ∼ k.
(iv) i, j ∈ Z ⇒ i ∼ j.
(v) For p ∈ N2n−2\{1}, if i � j for at most one (i, j) ∈ Cp then i ∼ j for (i, j) ∈ Cp.

Then for i, j ∈ Nn, i ∼ j.



Proof. One inducts on n ∈ N. For n = 1, if ∼ satisfies (i) then 1 ∼ 1 and so i ∼ j for 
i, j ∈ N1 (whatever Z is).

Assume the result for a particular n = n1 ∈ N; the result is shown for n = n1 + 1.
Suppose Z ⊆ Nn1+1 and a relation ∼ on Nn1+1 satisfy (i) to (v). Three cases are con-
sidered.

Case 1: 1 /∈ Z: By (i), 1 ∼ 1. Suppose that for some n2 ∈ Nn1 and all i, j ∈ Nn2 ,
i ∼ j (this was established for n2 = 1; one inducts on n2). Then 1 ∼ n2 + 1 by (v) with
p = n2 + 1 and by (i), n2 + 1 ∼ 1. Also, 1 ∼ i for i ∈ Nn2 . By (ii), n2 + 1 ∼ i (and
i ∼ n2 + 1 by (i)) for i ∈ Nn2 . By (i), n2 + 1 ∼ n2 + 1. Hence i ∼ j for i, j ∈ Nn2+1. By
induction on n2, i ∼ j for i, j ∈ Nn1+1.

Case 2: 1 ∈ Z and for j /∈ Z, 1 � j: Suppose that for some n2 ∈ Nn1 , Nn2 ⊆ Z (this
is true for n2 = 1 by assumption; one inducts on n2). By (iv), i ∼ j for i, j ∈ Nn2 . Again
by (v) with p = n2 + 1, 1 ∼ n2 + 1. Since 1 � j for j /∈ Z, n2 + 1 ∈ Z. Thus Nn2+1 ⊆ Z.
By induction on n2, Z = Nn1+1, so by (iv), i ∼ j for i, j ∈ Nn1+1.

Case 3: 1 ∈ Z and for some j /∈ Z, 1 ∼ j: By (iii), 1 ∼ k for k ∈ Nn1+1. Define
Z ′ = {i ∈ Nn1 : i + 1 ∈ Z} and define a relation ∼′ on Nn1 by i ∼′ j ⇔ (i + 1) ∼ (j + 1)
for i, j ∈ Nn1 . Then Z ′ and ∼′ satisfy (i) to (v) with “Z”, “∼” replaced with “Z ′”,
“∼′” respectively. By the inductive hypothesis, i ∼′ j for i, j ∈ Nn1 , that is, i ∼ j for
i, j ∈ Nn1+1\{1}. Hence i ∼ j for i, j ∈ Nn1+1.

Thus in all cases, the result holds for n = n1 + 1. By induction, the result holds for
n ∈ N. �
Lemma 12. Let n ∈ N, n > 1 and let F be a field with involution ∗ whose associated norm 
‖ · ‖ is definite. For x ∈ Fn, let x∗ ∈ Fn be the vector with each (x∗)k = (xk)∗. Take
B(p) =

∑min{p,n}
k=max{1,p−n+1} E(k,p+1−k) sgn(p + 1 − 2k) ∈ Mn(F ) for p ∈ N2n−2\{1}, that

is, B(2) = E(1,2) − E(2,1), B(3) = E(1,3) − E(3,1), B(4) = E(1,4) + E(2,3) − E(3,2) − E(4,1),
B(5) = E(1,5) + E(2,4) − E(4,2) − E(5,1), . . . , B(2n−2) = E(n−1,n) − E(n,n−1). (These are
close variants of matrices used in the proof of [7, Theorem 4].) For x ∈ Fn, define 
M(x) = ( x∗ | B(2)x | B(3)x | . . . | B(2n−2)x ) ∈ Mn×(2n−2)(F ). Then for x ∈ Fn, one
has rank M(x) = n iff x �= 0.

Proof. Given x ∈ Fn\{0}, one has rank M(x) = n iff for y ∈ Fn, yTM(x) = 0T implies 
y = 0. It thus suffices to show that for y, x ∈ Fn, yTM(x) = 0T implies y = 0 or x = 0.

Suppose y, x ∈ Fn satisfy yTM(x) = 0T . This matrix equation corresponds to

(
yTM(x)

)T
1 = yTx∗ =

n∑
k=1

(
ykx

∗
k

)
= 0,

(
yTM(x)

)T
p

= yTB(p)x =
min{p,n}∑

k=max{1,p−n+1}

(
ykxp+1−k sgn(p + 1 − 2k)

)
= 0

(for p ∈ N2n−2\{1}). The equation (yTM(x))Tp = 0, p ∈ N2n−2\{1} is equivalent to



 

 

 
 
 

�p/2�∑
k=max{1,p−n+1}

∣∣∣∣ yk xk

yp+1−k xp+1−k

∣∣∣∣ = 0.

(Here, each pair ykxp+1−k, −yp+1−kxk in the equation for (yTM(x))Tp is combined to
form the determinant appearing in the sum. For instance, if n ≥ 5 then the equation 
y1x5 +y2x4−y4x2−y5x1 = 0 for (yTM(x))T5 becomes (y1x5−y5x1) +(y2x4−y4x2) = 0,
that is, 

∣∣ y1 x1
y5 x5

∣∣+ ∣∣ y2 x2
y4 x4

∣∣ = 0.)
Let Z = {i ∈ Nn : yi = 0} and define the relation ∼ on Nn by:

For i, j ∈ Nn,

(
i ∼ j ⇔

∣∣∣∣ yi xi

yj xj

∣∣∣∣ = 0
)
.

T
1

Z and ∼ satisfy conditions (i) to (v) of Lemma 11, so i ∼ j for i, j ∈ Nn and (y | x) h a s
rank at most 1, i.e., there are a, b ∈ F and∑ w ∈ F n with y = aw, x = bw. Substituting
these into (yT M(x)) = 0 ,  one finds ab∗ 

k
n
=1 ‖wk‖ = 0 .  This gives three possibilities:

• a = 0, in which case y = 0.
• b = 0, in which case x = 0.
•
∑n

k=1 ‖wk‖ = 0, in which case w = 0 (since ‖ · ‖ is definite) and so y = x = 0. �
Theorem 13. Let F be a field with involution ∗ whose associated norm is definite. Let K
be a subfield of F such that K is fixed by ∗ and [F : K] = n′ ∈ N. Also let n ∈ N, n > 1. 
Then mnn′(K) ≤ (2n − 2)n′.

Proof. One may assume without loss of generality that the K-vector space F ⊆ Mn′(K)
(identify each element of F with its image under some representation F → Mn′(K)).
Let {B(k) : k ∈ Nn′} ⊆ Mn′(K) be a K-basis for F .

Take w ∈ Knn′ . For each i ∈ Nn, define X(i) =
∑n′

k=1 B(k)w(i−1)n′+k ∈ F . Since
∗ is a K-algebra automorphism on F , it follows from the Noether–Skolem Theorem 
that there exists C ∈ Mn′(K) such that A∗ = CAC−1 for all A ∈ F ; so for i ∈ Nn,
X∗

(i) =
∑n′

k=1(CB(k)C
−1)w(i−1)n′+k.

Suppose w �= 0. Since {B(k) : k ∈ Nn′ } is a K-basis for F , some X(i) �= O. Put x ∈ F n

with each xi = X(i); then x �= 0, so rank M(x) = n by Lemma 12.
From now on, interpret M(x) as a block matrix in Mnn′×(2n−2)n′(K). Since

[F : K] = n′, the rank of the block matrix M(x) is nn′.
Since each entry of M(x) i s  a K-linear combination of the components of w, it

follows that each column of M(x) c a n  be expressed in the form Aw for a suitable nn′

by nn′ matrix A. One can therefore choose a set of matrices S = {A(p) : p ∈ N(2n−2)n′ } ⊆
Mnn′ (K) s u c h  that M(x) = (  A(1)w | A(2)w | . . .  | A((2n−2)n′)w ). Since rank M(x) =
nn′ whenever w �= 0, one concludes from Proposition 6 that S is a uniform insulator for
Mnn′ (K) a n d  mnn′ (K) ≤ (2n − 2)n′ as required. �



Recall that a field F is called formally real if for every family {a(k) : k ∈ Nn} ⊆ F ,∑n
k=1 a

2
(k) = 0 iff for k ∈ Nn, a(k) = 0. Observe that a field F is formally real precisely

if the norm associated with the identity involution on F is definite.

Corollary 14. Suppose F is a formally real field and n ∈ N, n > 1. Then:

(i) mn(F ) ≤ 2n − 2. (In particular, m2(F ) = 2.)
(ii) m2n(F ) ≤ 4n − 4. (In particular, m4(F ) = 4.)

Proof. (i) Take K = F with the identity involution and n′ = 1  i n  Theorem 13.
(ii) Apply the Cayley–Dickson construction to the formally real F to obtain a field E 

= {a + bi : a, b ∈ F } of dimension 2 o v e r  F with i2 = −1, an involution ∗ : E → E : a
+ bi �→ a − bi that fixes F , and an associated norm ‖ · ‖  : E → E : a + bi �→ (a + bi)(a + 
bi)∗ = a2 + b2. Since F is formally real, the norm ‖ · ‖  on E is easily seen to be definite.
Now in Theorem 13, take F , E for K, F respectively and take n′ = 2 .

The special cases m2(F ) = 2  , m4(F ) = 4 a r e  a consequence of the fact that 
mn′ (D) ≥ n′ for all n′ and all division rings D [7, Theorem 4]. �
Remark 15. With reference to the proof of Corollary 14(ii) above, one could try to extend 

this further, applying the Cayley–Dickson construction again to obtain a division ring 
F [i, j] for an attempted proof that m4n(F ) ≤ 8n − 8 for integers n > 1. Unfortunately, 
this fails. The above results depend on applying Lemma 11 to a relation ∼ defined via 

2 by 2 determinants. Although determinants are not well defined in division∣  ∣rings which
are not fields, the reasonable definition of the 2 by 2 determinant would be ∣ a b

c d
∣ = ad −cb

identically, because of the structure of M(x) a n d  the associated bilinear equations. But 
then the partial transitivity condition (ii) of Lemma 11 fails: consider (y | x) w i t h  y1 = 
i, y2 = j, y3 = ij, x1 = j, x2 = i, x3 = 1.

4. Multiplication of vectors

There is another interpretation of the types of strong primeness for matrix rings that 
involves a multiplication operation of vectors.

Proposition 16. Suppose n, m ∈ N and R is a unitary ring. Consider the following 
conditions for a multiplication function � : (Rn)2 → Rm.

(i) � is left linear in its first argument and right linear in its second argument. That 
is, for a ∈ R, w, x, y ∈ Rn,
∗ (aw + y) � x = a(w � x) + (y � x).
∗ y � (wa + x) = (y � w)a + (y � x).

(ii) For y, x ∈ Rn, y � x = 0 ⇒ (y = 0 or x = 0).



 
 

 
 

 
 
 
 

(iii) For x ∈ Rn and X ∈ Mn(R)\{O}, (Xi· � x = 0 for i ∈ Nn) ⇒ x = 0.
(iv) For y ∈ Rn and X ∈ Mn(R)\{O}, (y �X·j = 0 for j ∈ Nn) ⇒ y = 0.

mn(R) ≤ m (respectively mr(Mn(R)) ≤ m, ml(Mn(R)) ≤ m) iff there is a multiplication
function � : (Rn)2 → Rm such that (i) and (ii) hold (respectively (i) and (iii) hold,
(i) and (iv) hold).

Proof. The proof is an application of Proposition 1 and the fact that the functions � :
( Rn)2 → Rm satisfying (i) are precisely the functions � : ( Rn)2 → Rm of the form (y �
x)p = yT A(p)x for y, x ∈ Rn, p ∈ Nm for some matrices A(p) ∈ Mn(R) ( w h e r e  each
(A(p))ij = (e(i) � e(j))p). �

The result [6, Theorem 1.2(ii)] that there is an n-dimensional (not necessarily associa-
tive) division algebra over a field F precisely when mn(F ) = n is generalised to division 
rings. Define a division pseudoalgebra over a division ring D to be a D-bimodule DMD

with a multiplication � : M2 → M which is left linear in its first argument, right linear 
in its second and such that for y ∈ M\{0}, x ∈ M , each of the equations y � w = x, 
w � y = x has exactly one solution w ∈ M . For D = F a field, this idea coincides with 
the usual concept of a (not necessarily associative) division algebra over F [7].

Theorem 17. Suppose n ∈ N and D is a division ring. Then there is a division pseudo-
algebra over D which is isomorphic to Dn as a D-bimodule precisely when mn(D) = n.

Proof. By [7, Theorem 4], mn(D) = n iff mn(D) ≤ n. By Proposition 16, mn(D) ≤ n iff
there is an operation � : ( Dn)2 → Dn, left linear in its first argument and right linear in
its second, such that

y, x ∈ Dn, y � x = 0 ⇒ (y = 0 or x = 0). (1)

Suppose � : ( Dn)2 → Dn is left linear in its first argument and right linear in its 
second. It will be shown that (1) is equivalent to

y ∈ Dn\{0}, x ∈ Dn ⇒
(

each of the equations y � w = x, w � y = x

has exactly one solution w ∈ Dn

)
. (2)

If (2) holds and y ∈ Dn\{0}, x ∈ Dn satisfy y�x = 0 then y�0 = y�(00) = 0 ( y�0) = 
0, so x = 0 by (2). Hence (2) ⇒ (1).

Assume (1); take � to be defined using a uniform insulator S = {A(p) : p ∈ Nn} for
Mn(D) o f  size n as in the proof of Proposition 16. Choose y ∈ Dn\{0}. For x, w1, w2 ∈
Dn, if y � w1 = y � w2 = x then y � (w1 − w2) = 0, so w1 = w2 by (1). Using �’s definition
via S and Proposition 6’s notation, for w ∈ Dn one has y � w = Y (y)w. By Proposition 6,
Y (y) h a s  right column rank n, so every x ∈ Dn can be written as Y (y)w



for some w ∈ Dn. Hence y � w = x has exactly one solution w ∈ Dn for y ∈ Dn\{0}, x ∈ 
Dn. Similarly, the same is true for w � y = x. Thus (1) ⇒ (2).

Hence mn(D) = n iff there is an operation � : ( Dn)2 → Dn, left linear in its first 
argument and right linear in its second, satisfying (2); that is, iff Dn can be made into a 
division pseudoalgebra over D by defining a vector multiplication on it. �

For D = F a field, every n-dimensional vector space over F is isomorphic to F n, so 
every n-dimensional division algebra over F is isomorphic to F n with an appropriate 
vector multiplication; this proves [6, Theorem 1.2(ii)].

Proposition 16 can be used to obtain an alternative proof of Theorem 13 which is 
presented below.

Proof. One may assume without loss of generality that the K-vector space F = 
Kn′(identify each element of F with its co-ordinate vector with respect to some K-basis 
for F ). The multiplication of the field F is then a commutative operation � : F 2 → F 
satisfying conditions (i) and (ii) of Proposition 16, so (y � x)p = yT X(p)x identically for 
some X(1), X(2), . . . ,  X(n′) ∈ Mn′ (K). Also, ∗ : F → F is a K-vector space homomor-
phism, so some C ∈ Mn′ (K) s a t i s fi e s  x∗ = Cx  identically.

Let B′
(1), B(1) be the identity matrices in Mn(K), Mn(F ) respectively. For p ∈ N2n−2

\{1}, take the matrix B(p) ∈ Mn(F) f r o m  the proof of Lemma 12 and obtain
B′

(p) ∈ Mn(K) by replacing the entries 0, 1, −1 ∈ F with 0, 1, −1 ∈ K respectively.
Write D(1) = C, D(p) = I ∈ Mn′(K) for p ∈ N2n−2\{1}. Take the (2n − 2)n′ matrices
A(p,q) ∈ Mn′n(K), p ∈ N2n−2, q ∈ Nn′ with each A(p,q) = B′

(p) ⊗ X(q)D(p), using the
Kronecker tensor product ⊗ where for matrices X, Y , the matrix X ⊗ Y is obtained 
from X by replacing each entry Xij with XijY .

Take y, x ∈ Kn′n and write y = ( yT(1) | yT(2) | . . . | yT(n) )T with each y(i) ∈ Kn′ , and
similarly for x. Consider y′, x′ ∈ Fn with components (y′)i = y(i), (x′)i = x(i) for i ∈ Nn.
For p ∈ N2n−2, write D(p) ◦ x′ ∈ Fn where for i ∈ Nn, (D(p) ◦ x′)i = D(p)(x′)i.

Suppose y, x satisfy the (2n − 2)n′ equations yT A(p,q)x = 0  . For p ∈ N2n−2, the n′ 

bilinear equations yT A(p,q)x = 0 together are equivalent to the equation (y′)T B(p)(D(p) ◦ 
x′) = 0 where matrix multiplication is defined using the field multipli-cation � of F . 
(Each yT A(p,q)x = ( ( y′)T B(p)(D(p) ◦ x′))q.) Thus y′, x′ ∈ F n satisfy the 2n 
−2 e q u a t i o n s  (y′)T B(p)(D(p) ◦ x′) = 0; that is, (y′)T (x′)∗ = 0 and for p ∈ N2n−2
\{1},(y′)T B(p)x

′ = 0. Taking the matrix M(x′) ∈ Mn (2n 2)(F) f r o m  Lemma 12, one 

sees that (y′)T M(x′) = 0, so by Lemma 12, y′ = 0 or x
×
′ =

−
0. Thus y = 0 or x = 0.

By Proposition 1, the (2n − 2)n′ matrices A(p,q) form a uniform insulator for Mn′n(K). �

4.1. The real numbers

A result shown by Bott and Milnor [11, Corollary 1] via deep algebraic–topological the-
orems says that every (not necessarily associative) division algebra over R has dimension



 
 

 

 
 
 

 

1, 2, 4 or 8. In the light of [6, Theorem 1.2(ii)] (or the more general Theorem 17) and a
result of van den Berg [7, Theorem 15] which gives n ∈ { 2, 4, 8} ⇒ mn(R) = n, this
means that

Theorem 18. mn(R) = n ⇔ n ∈ {1, 2, 4, 8}.

It is proved that for n ∈ N, mn(R) ≥ 2�log2 n�. The argument used is generalised from a
proof due to Hatcher [12, Theorem 3.20] of Hopf’s celebrated theorem: the dimension of
every real division algebra is a power of 2. In the light of [6, Theorem 1.2(ii)] or Theorem
17, this corresponds to the statement that mn(R) = n only if n is a power of 2. For easy
comparison with Hatcher’s proof of Hopf’s theorem, notation from that proof is used
here. Equivalence classes are denoted by [·].

A full introduction of all the algebraic–topological terms used in the proof of 
Theorem 19 below, such as projective space RP n, the unit sphere Sn and the 
cohomology ring H∗(X; R), would lead this article too far astray. The reader is referred 

instead to a text such as [12] for the necessary background.

Theorem 19. For n ∈ N, mn(R) ≥ 2�log2 n�.

Proof. The result is known for n ∈ { 1, 2} [7, Theorem 15(ii)]. Take an integer n ≥ 3, let 
m = mn(R) a n d  take the continuous map u : Rm\{0} → Sm−1 : x �→ x/|x|.

There is a bilinear multiplication � : (Rn)2 → Rm such that for y, x ∈ Rn one has
the implication y � x = 0 ⇒ 0 ∈ {y, x}.

Take g : (Sn−1)2 → Sm−1 so that for y, x ∈ Sn−1, g(y, x) = u(y � x) (which exists
because y � x �= 0). Since � is bilinear, it is continuous; u is also continuous, so g is 
continuous too.

Projecting the spheres onto their projective spaces, one has the continuous map 
h : (RPn−1)2 → RPm−1 so that for y, x ∈ Sn−1, h([y], [x]) = [g(y, x)]. The function
h is well defined since for y, x ∈ Sm−1, g(y, −x) = u(y � (−x)) = u(−(y � x)) =
−u(y � x) = −g(y, x) and similarly g(−y, x) = −g(y, x).

Let α ∈ H1((RPn−1)2; Z/2Z) (respectively β ∈ H1((RPn−1)2; Z/2Z)) be the equiva-
lence class of cocycles from C1((RPn−1)2) to Z/2Z which take cycles whose projections
on the first (respectively second) RPn−1 factor are not boundaries to [1] and all other 
cycles to [0]. Let γ ∈ H1(RPm−1; Z/2Z) be a generator of H1(RPm−1; Z/2Z); γ is the
equivalence class of cocycles from C1(RPm−1) to Z/2Z which take boundaries (respec-
tively cycles which are not boundaries) to [0] (respectively [1]).

Consider the dual map h∗ : H1(RPm−1; Z/2Z) → H1((RPn−1)2; Z/2Z); it is shown 
that h∗(γ) = α + β.

Consider the paths in Sn with opposite endpoints. Images of such paths under the 
standard quotient map from Sn to RPn will be called nontrivial loops; other loops in 
RPn will be called trivial loops.



Suppose the path λ : [0, 1] → Sn−1 has opposite endpoints in Sn−1. For x ∈ Sn−1, the
path [0, 1] → Sm−1 : t �→ g(λ(t), x) has opposite endpoints g(λ(0), x) and g(λ(1), x) =
g(−λ(0), x) = −g(λ(0), x); so h maps each loop in (RPn−1)2 whose projection onto 
the first (and, similarly, the second) of the two RPn−1 factors is nontrivial and whose
projection onto the other RPn−1 factor is constant onto a nontrivial loop in RPm−1.

So the class h∗(γ) ∈ H1((RPn−1)2; Z/2Z) = {0, α, β, α + β} ∼= (Z/2Z)2 consists of
cocycles from C1((RPn−1)2) to Z/2Z which take each cycle in (RPn−1)2 whose projection
onto one of the two RPn−1 factors is not a boundary and whose projection onto the other 
RPn−1 factor is constant to [1]; so h∗(γ) = α + β.

Using the fact that the map h∗ on H∗(RPm−1; Z/2Z) is a ring homomorphism, it
follows that in H∗((RPn−1)2; Z/2Z) = (Z/2Z)[α, β]/(αn, βn), one has 0 = h∗(0) =
h∗(γm) = (h∗(γ))m = (α + β)m =

∑m
k=0
(
m
k

)
αkβm−k.

This is equivalent to the statement that 
(
m
k

)
is even for each integer k ∈ (m − n, n), 

which is true iff n ≤ 2� log2 m�, that is, log2 n ≤ �log2 m�. Now for a, b ∈ R, a ≤ �b� ⇔
�a	 ≤ �b� ⇔ �a	 ≤ b. Therefore �log2 n	 ≤ log2 m; hence 2�log2 n� ≤ m. �

In particular, taking k ∈ N, one has 2k+1 ≤ m2k+1(R) a n d  2k+1 ≤ m2k+2(R). By 
Corollary 14, m2k+1(R) ≤ 2k+1 and m2k+2(R) ≤ 2k+1; so m2k+1(R) = m2k+2(R) = 2 k+1. 
Combining this with Corollary 14, [7, Proposition 6, Theorem 15], Theorem 18 and 
Theorem 3 with n′ ∈ { 2, 4, 8}, one has

Theorem 20. For n ∈ N, k ∈ N with k ≥ 4:

n ∈ [1, 10] ⇒ mn(R) = 2�log2 n�

n ∈
[
2k−1 + 3, 2k − 1

]
⇒ mn(R) ∈

⎡
⎢⎢⎢⎣2k,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n− 8 8 divides n

2n− 6 n mod 8 = 7
2n− 4 n mod 8 ∈ {2, 4, 6}
2n− 2 n mod 8 ∈ {1, 3, 5}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

n = 2k ⇒ mn(R) ∈
[
2k + 1, 2k+1 − 8

]
n ∈

{
2k + 1, 2k + 2

}
⇒ mn(R) = 2k+1.

Remark 21. The fourth point of the previous theorem tells one that the set {mn(R)/n :
n ∈ N} (contained in [1, 2)) has 2 as an accumulation point, because limk→∞ 2k+1/(2k +
1) = 2. It would be interesting to know whether limn→∞ mn(R)/n exists. If it does, its
value must be 2 in view of the earlier comment.
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