
   

HEFAT2012 
9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 

16 – 18 July 2012 
Malta 

 
DEVELOPMENT OF NUMERICAL ANALYSIS METHOD BASED ON STAGGERED 

GRID FOR ARBITRARY 3-DIMENSIONAL MESH SHAPE FOR TWO-PHASE 
THREE-FIELD MODEL 

 
 

Soon Joon HONG a, Yeon Joon CHOO a, Su Hyun HWANG a, Tae Young HANb, Goon-Cherl PARKc 
*Author for correspondence 

a) FNC Tech., SNU 135-308, Kwanak-Ro 599, Kwanak-Gu, Seoul, 151-742, S. Korea 
b) Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 350-600, S. Korea 
c) Department of Nuclear Engineering, Seoul National University, Kwanak-Ro 599, Kwanak-Gu, Seoul, 

151-742, S. Korea 
E-mail: sjhong90@fnctech.com 

 
 
 

ABSTRACT 
Numerical analysis method for an unstructured staggered 

grid system for 3-field two-phase flow model was developed. 
Because of the complex definition of staggered volume and 
corresponding variables, commercial computational fluid 
dynamics codes usually adopt a collocated grid system for the 
analysis of complicated domain. In the conventional staggered 
grid system the staggered cell takes the halves of the 
neighboring two scalar cells. However, this study takes the 
whole of the two neighboring cells for the definition of the 
staggered cell. Finite volume method over this staggered grid 
system was implemented with some creative vector algebra and 
calculus. Time advancement was based on the semi-implicit 
method. This numerical treatment was successfully applied and 
the numerical tests show the effectiveness of this approach. 
This approach decreases the interpolation calculation to obtain 
not-solved-variables at cell or face. Only the diffusion terms 
require the interpolation, which is thought to be of minor 
importance. 

NOMENCLATURE 
A  [m2] area 

D  [m2/s] general diffusion coefficient or mass 
diffusion coefficient of gas species 

ˆ
fd  [m] directional normal vector for face f

LRd  [m] distance vector from point Lx  to Rx
wE  [W/m3] wall heat transfer to field   not 

including phase change 
wF  [N∙sec/m4] wall drag coefficient between wall 

and field 

LRf  [m] distance vector connecting left cell 
center to right cell center across face 
f  

iG  [kg/m3∙sec] mass source of species i  per unit 
volume and time 

g [m/s2] gravity vector 

gli gH 
[W/m5K] gas-liquid-interface to gas heat 

transfer coefficient per volume  

gli lH 
[W/m5K] gas-liquid-interface to liquid heat 

transfer coefficient per volume  

dgi gH 
[W/m5K] gas-drop-interface to gas heat transfer 

coefficient per volume  

dgi dH 
[W/m5K] gas-drop-interface to drop heat 

transfer coefficient per volume  

h  [J/kg] specific enthalpy of field 

*h  [J/kg] modified specific enthalpy of field 

k  [W/m·K] thermal conductivity  

M [N/m3] generalized drag  
p [Pa] pressure  

T [K] temperature  
t [sec] time  
U  [J/kg] specific internal energy  

V  [m3] volume  

V  [m/sec] normal velocity of phase  on face f 

x [m] location  

iY  [-] mass fraction of species i , 

 /i g    

 
 
Special characters 
 [-] void fraction or local concentration  
  [kg/m3∙sec] mass volumetric production rate  

A  [-] area porosity 
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v  [-] volume porosity  

  [kg/m3] density  
  [W/m3] energy dissipation 
  [kg/m∙sec] viscosity  

 
Subscripts 
d   drop region or dispersed drop field 

deent   de-entrainment or deposition 

dgi   drop-gas interface 

dli   drop-liquid interface 
ent   entrainment 
g   gas field 

gdi   gas-drop interface 

gli   gas-liquid interface 

l   continuous liquid field 

ldi   liquid- drop interface 

lgi   liquid-gas interface 

n   all noncondensable gases including 
air and hydrogen, normal direction 

R   remote 

S   cell or control volume surface

S    another cell or control volume 
surface 

   phase or field index 

 
Superscripts 
CD   bulk condensation 

EV   bulk evaporation 

s   saturated 
t   turbulence 
w   wall or solid surface 
 
 
INTRODUCTION 

Differently from laboratory and academic environments, 
industrial application in computational fluid dynamics (CFD 
deals with the domain of complicated shape. Through the long 
experiences in the assessment of complex geometry, 
unstructured grids of arbitrary shaped mesh such as tetrahedron 
rather than a hexahedron has been found to be less man-hour 
consuming than the generation of structured grids. Unstructured 
grids also give the merits of easy refinement of meshes for the 
interesting region. Together with the advancement of 
computational capacity, the unstructured grids have become 
more popular, even though the structured grid is still used for 
the more exact calculation in academic research for simple 
geometry domain. 

In the process of differencing the governing equations, 
finite volume method (FVM) is usually adopted, because it can 
easily conserve the fluid properties. Since the FVM is a kind of 
finite element method (FEM), it requires an integration domain, 
i.e. a numerical control volume. FVM is applied on two grid 
systems; staggered grid and collocated grid. In the staggered 

grid system scalar variables such as pressure, temperature, and 
so on are located at the cell centre, and the vector variables 
such as velocity are located in cell face. Thus, for the 
implementation of FVM the staggered control volume (or mesh) 
for momentum equation should be additionally defined, as 
shown in Figure 1. As shown in Figure 1, the staggered control 
volumes should be independently defined for each coordinates, 
for example, x-directional staggered control volume should be 
defined for x-directional velocity component, and y-directional 
staggered control volume should be defined for y-directional 
velocity component in Cartesian coordinate. In the collocated 
grid system all the variables, regardless that they are scalar 
variables or vector variables, are located in the cell centre.  

 

 
Figure 1 Numerical control volume for momentum equation in 

staggered grid system 
 
The merit of the staggered grid system is that it can avoid 

the unrealistic check board type pressure distribution and it can 
easily conserve the convective properties through the faces 
because the velocities are defined at the faces. However in spite 
of such merits the staggered grid system is not generally 
adopted in 3-dimensional complex geometry because of the 
difficulties in the generation of staggered control volume in 
arbitrary mesh shapes such as tetrahedral mesh. So, commercial 
computational fluid dynamics codes usually adopt the 
collocated grid system together with unstructured grid system 
for the analysis of complicated domain. 

Such a trend is also similar in the field of multi-dimensional 
two-phase flow, especially in nuclear system application. 
Neptune_CFD, in which the six classical transport equations 
(mass, momentum and energy for both liquid and gas) of the 
two-phase model, with the same pressure in the two phases, are 
solved is based on a fully unstructured finite volume meshing, 
together with a collocated arrangement for all flow variables[1]. 
CUPID (Component Unstructured Program for Interfacial 
Dynamics) code, which has been developed by Korea Atomic 
Energy Research Institute (KAERI), and treats 3-field equations (gas 
field, continuous liquid field, and dispersed drop field), also adopts the 
collocated method on an unstructured grid system[2]. SPACE(Safety 
and Performance Analysis CodE) code, which has been developed by 
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Korean nuclear industry as a design code of safety analysis for nuclear 
power plant, treats similar equations to those of CUPID, and is based 
on collocated method for 3-dimentional part on an unstructured grid 
system[33]. The other nuclear system codes such as COBRA/TRAC, 
MARS, and GOTHIC are based on staggered method, but they use the 
structured grid system[4,5,6]. 

In spite of favourlessness in industrial application some 
researchers have been interested in the staggered method. 
Wenneker et al. proposed new type staggered cell such as the 
shaded part in Figure 2, whereas in the conventional staggered 
grid system the staggered cell takes the halves of the 
neighbouring two scalar cells, as shown in Figure 1. And they 
applied it successfully to a compressible flow[7]. 

 

 
Figure 2 Numerical control volume for momentum equation in 

staggered grid system proposed by Wenneker et al.[7] 
 
Momentum cell in Figure 2 make it easy to integrate 

convective terms, because the surfaces of momentum cell are 
surfaces of scalar cell, at which the velocities are already 
defined. This paper is a trial to the application of such 
momentum cell to two-phase flow of two-fluid model, even 
though compressible flow, which is the domain of Wenneker et 
al.’s, is far different from two-phase flow which is based on 
two-fluid model in numerical analysis. 

 
GOVERNING EQUATIONS 

Governing equations for the numerical implementation are 
those of CAP (Containment Analysis Package) which has been 
developed for the assessment of thermal hydraulic behaviours 
in containment for the design of nuclear power plant [8]. CAP 
code plays a role of boundary condition of SPACE which 
solves the response of RCS (Reactor Coolant System). CAP 
code is based on 3-field, 2-phase flow model. Gas phase falls to 
a gas field, and liquid phase to a continuous liquid field or a 
dispersed drop field. Fluids under consideration are water in the 
form of gas and liquid, air, and hydrogen. Each field 
interchanges mass, momentum, and energy, each other. 
Homogeneous and equilibrium assumptions for gas species are 
known to be quite valid in many cases. These fluids also 
exchange momentum and energy with boundary walls. More 
detailed phenomena in containment are described in reference 8. 

 
Continuity Equation 

Continuity equation for each field has the source terms; 
mass generation from the other fields and general source term.  

 

For gas field which are the mixture of steam, air, and 
hydrogen. 

 

   g g g g gt
   




v
 

     
 * *

s sv
gli g v g gli l v l

g l

p
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p
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   
 


 (1) 

     
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dgi g v g dgi d v d
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For continuous liquid 
 

   l l l l lt
   




v  

     
 * *

s sv
gli g v g gli l v l

g l

p
H T p T H T p T

p

h h

   



 (2) 

ent deent l    

 
For dispersed drop 
 

   d d d d dt
   

 


v  

     
 * *

s sv
dgi g v g dgi d v d

g d

p
H T p T H T p T

p

h h

   



 (3) 

ent deent d    

 
 

Momentum Equation 
The source terms in momentum equation in each field is 

composed of pressure force, body force (gravity), viscous force, 
force due to phase change, inter-phase frictional force, wall 
friction force, virtual mass force, and general momentum 
source.  

 
For gas field 
 

g
g g g g g gt

   


 


v
v v  

  t
g g g g g g gp            g v  (4) 

   EV EV
lg l g dg d g g g     v v v v v  

    w
gl l g gd d g g gF F F      v v v v v  
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   VM VM
gl g l gl l g gd g d dg d gC C

t t
             

v v v v  

gM  

 
 
For continuous liquid 
 

l
l l l l l lt

   
 


v

v v  

  t
l l l l l l lp           g v  (5) 

   CD
gl g l deent d l l l     v v v v v  

    w
lg g l ld d l l lF F F      v v v v v  

 VM
gl g l gl g l lC

t
        

v v M  

 
For dispersed drop 
 

d
d d d d d dt

   
 


v

v v  

  t
d d d d d d dp           g v  (6) 

   CD
dg g d ent l d d d     v v v v v  

    w
dg g d ld l d d dF F F      v v v v v  

 VM
gd g d dg g d dC

t
        

v v M  

 
Energy Equation 

The source terms in energy equation in each field is 
composed of 

 
For gas field 
 

   g g g g g g gU U
t
   




v  

 
  

g
g g

t
g g g g g g

p p
t

k T k T







   


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   (7) 
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For continuous liquid 
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For dispersed drop 
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Gas Motion Equation 
Gas motion equation describes the convection and diffusion 

of each gas species. The source terms are composed of 
diffusion term and general source term. 

 

   g g i

g g g i

Y
Y

t

 
 





v  

 g i g i iD Y G          (10) 

For the subscript i, 1 means steam, 2 air, and 3 hydrogen. 
And for the mixture of noncondensable gas, air and hydrogen, n 
is used. In the numerical process in this study the 
noncondensable gas mixture equation of subscript n is used 

 
GRID SYSTEM 

The staggered grid system is considered in this study. 
Conceptual figuration of grid is shown in Figure 3.  

 
 

fn
PRd

 
(a) Scalar Cell 

 
(b) Momentum Cell 

Figure 3 Grid system for numerical implementation 

 
For the implementation of differencing the equations over 

the numerical cell several geometrical vector should be defined. 
The centroid of the scalar cell is calculated as 

1

1 n

centroid i
iN 

 x x      (11) 

xi is each vertex of the cell. Each face, f, of the scalar cell 
has the normal directional vector, ˆ

fd , which implies the unique 

direction of the face. It is set during the generation of the mesh 
and never changed in the process of numerical implementation. 
On the normal directional vector velocity, V, is defined.  

ˆ
fVv d        (12) 

 
Thus, the velocity vector is perpendicular to the face f. V 

has the positive sign if the direction is same to ˆ
fd , and negative 

if sign if the direction is inverse to ˆ
fd . 

And outward normal vector, fn , should be defined 

temporally. The word ‘temporally’ means that the sign of fn
changes when the neighbouring cell are under implementation. 
Using this outward normal vector in- and out-flow can be 
identified; 

 
 
 
 

ˆ ˆ0, 0, 0 :

ˆ ˆ0, 0, 0 :

ˆ ˆ0, 0, 0 :

ˆ ˆ0, 0, 0 :

f f f f

f f f f

f f f f

f f f f

if V and then F AV Outflow

if V and then F AV Inflow

if V and then F AV Inflow

if V and then F AV Outflow

     

     

     

     

d n d n

d n d n

d n d n

d n d n

  (13) 

Connection vector PRd or ,f PRd  is required in order to 

indicate the information of connection from the centroid of the 
cell P of interest to the centroid of the cell R or remote 
neighbour, which has the attribute of  

ˆ 0PR f d d       (14) 

 
IMPLEMENTATION OF FINITE VOLUME METHOD 

Primitive unknown variables in this implementation are 
summarised in Table 1. For gas mass fraction the 
noncondensable gas mixture is solved firstly, and then the mass 
fractions of individual gas are solved in order. 

 

Table 1 Primitive unknown variables 

 Variables No. of Variables

Field Volume Fraction ,g l   2 

Pressure p  1 

Velocity 

, , ,

, , ,

, ,

g g g

l l l

d d d

u v w

u v w

u v w

 9 

Specific Internal Energy , ,g l dU U U  3 

Gas Mass Fraction 
2

,air HY Y  2 

Total - 17 
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Porosity method was introduced in order to make a larger 
cell for stable calculation[9]. Some noticeable integration 
results are presented here. 

Through the FVM (Finite Volume Method) the convective 
term in continuity equation of field ϕ is developed to be 

    

 11 n

n

t

t CV
H dvdt

t    




   x v  

      1n n n

S
S

F           (15) 

, where 
   

   

1 1
, , ,

1
, ,

n n
S A S S S S

n
A S S S S S

F A

A V

 







 



 

 

v n

n d
    (16) 

Upwind scheme was used in the above formulation and the 
symbol ~ means the upstream property. 

Then, convective term in momentum equation becomes 
through the integration over the momentum cell in Figure 3. 

  

 11 n

n

t

t CV
H dvdt

t     




  x v v  

         ,
n n n n

S S
S

S

V F     d     (17) 

        
, ,
n n n n
f f S

S
S

V F     d    

Pressure term in momentum equation is differenced to be 

  

 11 n

n

t

CV t
H pdtdv

t 



   x  

 
, ,

ˆ n
v f f f fV p         (18) 

, where fp  is not still known, but multiplying ,f LRd   

make the calculation easy 
 

,, ,
ˆ n

f LRv f f f fV p    d  

   , ,
ˆ n

R Lv f f f p pV        (19) 

Viscosity term in momentum equation 

  

 

 
11 n

n

t t
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H dtdv
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

  

                 




d

n d
 (20) 

For the final arrangement of momentum equations the face 

directional vector, ,f LRd , should be multiplied. 

Conduction term in energy equation can be treated as 
followings; 

  

 

  
11 n

n

t t

CV t
H k T k T dtdv

t     




      x  

    
,

ˆ ˆˆ
n

n t
S

SS

k k         (21) 

       
  , ,, ,

,
, ,

nn n
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S S S
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T A
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

          
 

d
n

d n d n
 

,A S SA   
    , ,
n n

g R g P
S

T T  means the temperature difference between 

the cell P and R , which are the neighbouring cells around 

surface S. 
 
,
n

g ST  is the distance-weighted-average of the 

temperature gradient at the cell centre. Distance means the 
distance from the surface S and each cell centre. The 
temperature gradient at the cell centre can be obtained by 
Green-Gauss theorem. 

   
, ,

1n n
P S S S

SP

T T A
V    



   n     (22) 

 
,
n
ST   is the temperature at surface S’, and calculated from 

averaging the neighbouring cell temperature by weight the 
distance from the surface S’ to the cell centre. 

The other terms are easily integrated without difficulties. As 
shown in the above development the interpolation approach is 
used usually in diffusion term. So the diffusion terms may 
include some errors. Reviewing the computational code of two-
phase flow the diffusion terms in source terms have been 
frequently omitted [2,3,5]. So the accuracy of the interpolation 
for diffusion term is thought to be minor. 

 
TIME ADVANCEMENT 

Differencing method for time was based on semi-implicit 
method. Thus, momentum equations are explicitly treated, and 
then the pressure field is calculated from continuity equations 
and energy equations. This method is especially referred to as 
ICE (Implicit Continuous Eulerian) [10].  

Unknowns of the new time step should be linearized based 
on the old time step variables and the thermodynamic relations. 
Detailed formulations are described in reference 8. 

Difference equations of momentum equations are arranged 
in the form of 
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  
  
  
      

 

    
,

1 1
,

,

g g
n n

l l R L

d d

s V

s V p p

s V







 

  
      
     

   (23) 

Replacing the pressure at time step (n+1) by at (n), the 
velocities become intermediate values, and are expressed using 
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superscript * instead of (n+1). Then above equation changes to 
be the form of 

    
*

,
*

,
*

,

g g g
n n

l l l R L

d d d

V H A

V H A p p

V H A







    
          
        

  (24) 

And the velocity correction can be define as like; 
 

 

 
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1 *
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1 *
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V V AV
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

 







                                     

  (25) 

Using this equation the flow quantity in equation (16) can 
be expressed in terms of old time step values. 

    1 *
, , , ,

ˆn
f f A f f R L f fF F A A p p         n d (26) 

This equation means that the flow in new time step is 
expressed in terms of intermediate flow and pressure difference 
driven flow. 

All the scalar equations are arranged to be 
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      (27) 

Further simpler form is  
*ˆ   Ax b f p      (28) 

T
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  (31) 

Introducing *ˆ b b f the equation (28) becomes 
1 1

1 1 1
P P S R

S

p p 

 

  

 

      


x A b A p

A b A p A p
 (32) 

Simpler form of this equation is 

   1
P P S R

S

p p   
   

 
x A b c c   (33) 

The last row of the matrix in equation (33) is for the 
pressure correction. That is, 

   1

7 77P P P S R
S

p p p                 
A b c c  (34) 

This is reduced to  

     1

7 7 7
1 P P S R

S

p p              c c A b  (35) 

Applying above equation for all cell, a system pressure 
equation is obtained 

 A p r        (36) 
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 1

T

i Np p p  p      (38) 
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7 7 71

T

i N

                
r A b A b A b     (39) 

 
Once the pressure field is obtained the new velocity field is 

obtained from the velocity correction of equation (25), Known 
pressure field and velocity field enables to get the other scalar 
variables easily by solving the equation (27). 

Such a numerical analysis results were coded using C++ 
language and several tests were conducted. 

 
NUMERICAL TESTS 

The preliminary calculation was conducted with simple 
geometry and physical conditions. Figure 4 shows the 
computational domain used in preliminary calculation. 

 

 

Figure 4 Computational domain 

 
The flow boundary condition with the constant normal 

velocity of 
, 1.0 /x gV m s  is attached on the left-bottom corner 

and the pressure boundary condition with 1.0 5P e kPa  on the 

left-upper. The whole domain is initially filled with the single 
phase water vapour at 1.0 5P e kPa and 400gT K condition 

and supplied with same phase through the flow boundary. The 
10X10 structured computational meshes were generated. The 
numerical scheme derived in this study is surely applicable to 

the unstructured grid though, and the simple structured grid cell 
was adopted in this preliminary stage for the intuitive 
inspection approach.  

 
Typical flow pattern of calculation result in the form of 

vector is shown in Figure 5. The numerical technique applied 
newly should be carefully examined in various aspect and 
conditions, i.e. term by term effects, mesh size sensitivities, 
numerical stabilities etc. Currently, applicability of the 
numerical technique derived in this study, however, was 
studied. The further studies on error analysis and comparative 
analysis with commercial CFD tools are planned. And essential 
numerical test for unstructured mesh is also to be carried out. 

 

 

Figure 5 Calculation result (velocity field) 

 
 

CONCLUSION 
This study shows the successful development of numerical 

analysis method based on staggered grid for arbitrary 3-
dimensional mesh shape for two-phase three-field model. The 
benefit of this method is to minimize the interpolation. The 
interpolation appears only in diffusion terms. However the 
diffusion terms in two-phase flow has been considered less 
important. 

The algorithm developed in this study will be used in 3-
dimensional module in CAP code, and further verification and 
validation will be performed. 
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