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Abstract

In this paper, as part of a project initiated by A. Mallios consisting
of exploring new horizons for Abstract Differential Geometry (à la
Mallios), [5, 6, 7, 8], such as those related to the classical symplectic
geometry, we show that essential results pertaining to biorthogonality
in pairings of vector spaces do hold for biorthogonality in pairings ofA-
modules. We single out that orthogonality is reflexive for orthogonally
convenient pairings of free A-modules of finite rank, governed by non-
degenerate A-morphisms, and where A is a PID (Corollary 3.8). For
the rank formula (Corollary 3.3), the algebra sheaf A is assumed to
be a PID. The rank formula relates the rank of an A-morphism and
the rank of the kernel (sheaf) of the same A-morphism with the rank
of the source free A-module of the A-morphism concerned.

Key Words: convenient A-modules, quotient A-modules, free subpresheaf,
orthogonally convenient A-pairings.

1 Introduction

The present article could be inscribed within the framework of Abstract 
Differential Geometry (`a la Mallios) for the simple reason that it is sheaf-
theoretic by nature. To recall succinctly the main features of Abstract Dif-
ferential Geometry (ADG as an acronym), one should retain the fact that

∗My thanks are due to the referees for their pertinent remarks.
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ADG chiefly indicates the extent which one retrieves fundamental notions and 
results of the standard differential geometry of smooth manifolds with no use 
of any notion of classical differentiability. The aim of ADG is to bring out the 
sheaf-theoretic character of Calculus ([5]). Again, briefly speaking, ADG 
pursues an axiomatic approach to classical differential geometry; the basic 
tools are sheaves of modules, with respect to an appropriate sheaf of
C-algebras (alias, C-algebra sheaf ) over a given topological space X, which, in 
some circumstances, is assumed to be paracompact. It is worth noting that 
prominent features within the setting of ADG are vector sheaves, that is, 
locally free sheaves of A-modules of finite rank over an arbitrary topolog-ical 
space X. Vector sheaves are deemed to be the counterparts/substitutes of 
vector bundles (of finite rank) in the classical theory. In [14], we proved that 
ADG has a possible extension in the field of symplectic geometry. For 
instance, the “affine Darboux theorem” is valid in the category of A-modules,

with A satisfying certain conditions. More precisely, let A be an R-algebra 
sheaf on a topological space X such that every positive section is invertible 
(this condition is called the inverse-closed section condition) and every 
positive section has a square root, and let (E, ϕ) be a free A-module of rank 2n 
on X, where ϕ : E ⊕ E −→ A is a skew-symmetric non-degenerate A-bilinear 
form. Moreover, let I and J be two (possibly empty) subsets of {1, . . . , n}, A = 
{ri ∈ E(U) : i ∈ I} and B = {sj ∈ E(U) : j ∈ J} such that

ϕU (ri, rj ) = ϕU (si, sj ) = 0, ϕU (ri, sj ) = δij , (i, j) ∈ I × J.

Then, there exists a basis B of (E(U), ϕU ) that contains A∪B. B is called a 
symplectic basis of (E(U), ϕU ). On using this result, we obtain a counterpart

of the Darboux theorem (cf [13]). In fact, let A be a C-algebra sheaf on a 
given topological space X, satisfying the inverse-closed section condition,

(E, ω) a symplectic free A-module of finite rank, say n ∈ N. Then for any open 
set U in X,

ωU =
∑n

k=1

t2k−1
U ∧ t2U

k,

where t1U , . . . , tnUis a basis of E∗(U). On another side, assume that A is a
C-algebra sheaf on X and has no zero-divisors (we call it a “strict integral 
domain”), that is, for any open U ⊆ X, if r, s ∈ A(U) are nowhere-zero 
sections, then their product rs is nowhere zero. If E is an A-module and ϕ : E ⊕ 
E −→ A an orthosymmetric A-bilinear form (see, for instance, [4, p.97] for 
orthosymmetric bilinear form), that is, ϕ is such that E⊥ = E>; this
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is equivalent to saying that, for every open U ⊆ X and sections s ∈ E(V ), t ∈ 
E(U), where V is a subopen of U,

ϕV (s, t|V ) = 0 if and only if ϕV (t|V , s) = 0.

Then, componentwise, ϕ is either symmetric (that is, the geometry is 
orthogonal) or skew-symmetric (the geometry is symplectic).

This paper grew out of our earlier efforts to understand the conditions
defining convenient A-modules (cf [11], [15], and [16]), which, however, re-
quire notions of free subpresheaf of modules and of PID-algebra sheaf. The
former, due to A. Mallios, is defined as follows. A subpresheaf F of a presheaf
of modules (or more precisely, A(U)-modules) E on a topological space X is
called a free subpresheaf if for every open U in X, F (U) is a free sub-A(U)-
module of E(U). As to the notion of PID-algebra sheaf, we have the following
definition. An algebra sheaf A is called a PID-algebra sheaf if for every open
U ⊆ X, the algebra A(U) is a PID algebra. Consequently, all sub-A-modules
of a free A-module are section-wise free. In the same vein, we recall that an
A-bilinear form φ : E ⊕E −→ A on an A-module E is called orthosymmetric
if E⊥φ = E>φ , cf [11]. Equivalently, for every open U ⊆ X and (local) sections
s ∈ E(V ), t ∈ E(U), where V is an open subset of U , we have φV (s, t|V ) = 0
if, and only if, φV (t|V , s) = 0. (Given an A-pairing (E ,F ;φ), E⊥φ(U) consists
of all sections s ∈ F(U) such that φV (E(V ), s|V ) = 0 for every open V ⊆ U .
Similarly, F>φ(U) consists of all s ∈ E(U) with φV (s|V ,F(V )) = 0 for any
open V ⊆ U .)

Then, we have

Definition 1.1 A convenient A-module is a self A-pairing (E , E ;φ) ≡
(E , φ), where E is a free A-module of finite rank and φ an orthosymmetric
A-bilinear form, such that the following conditions are satisfied:

(1) If F is a free subpresheaf of A(U)-modules of E, so is F⊥ ≡ F⊥φ ;

(2) Every free subpresheaf F of A(U)-modules of E is orthogonally reflexive,
i.e., F⊥> = F>⊥ = F ;

(3) The intersection of any two free subpresheaves of A(U)-modules of E
is a free subpresheaf of A(U)-modules.
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The notion of convenient A-module was in fact an initial suggestion of 
A. Mallios that has been successfully applied in one of our joint articles with 
him (cf. [11]) and also since then. The motivation, of course, was to iso-late 
characteristic properties of an important notion that classically “works”, and 
make it, eventually, independent of its classical “environment”. Indeed, this is 
the general philosophy/moral of Mallios, and also the quintessence 
throughout the whole ADG. We do have applications of this notion in the 
“geometry of gauge fields”, in general, where the domain of coefficients is no 
more the classical numerical fields, but suitable function algebras (e.g. wave 
functions), which are, in principle, non-normed topological algebras.

Now, concerning Definition 1.1, by supposing that the (coefficient) al-

gebra sheaf A is a PID-algebra sheaf, we obtain that every subpresheaf of 
A(U)-modules of a free A-module is free. So in that context, conditions (1) 
and (3) of Definition 1.1 are satisfied. As for condition (2), the orthogonality 
reflexivity is a known situation in ordinary Functional Analysis: see, for in-
stance, Hilbert spaces and structures having similar properties; we do have 
the so-called complemented topological algebras, Hilbert algebras and the like 
with the aforementioned property for ideals(:modules), and also analogous 
examples in infinite-dimensional Hamiltonian systems. The mentioned ex-
amples are particular cases of more general potential applications that can be 
“explored” in A. Mallios [9, p. 109ff, Chap. 3] within the same context of 
“geometry of gauge fields”, this time however, in terms of ADG. (I am 
indebted to A. Mallios for this comment on convenient A-modules.)

Let us also recall the notion of orthogonally convenient A-pairings,
which was introduced in our paper [15].

Definition 1.2 A free A-pairing (E ,F ;φ) of (free) A-modules E and F is
called an orthogonally convenient A-pairing if for all free sub-A-modules

E0 and F0 of E and F , respectively, their orthogonal E⊥φ0 and F>φ0 are free
sub-A-modules of F and E , respectively.

As an example of orthogonally convenient A-pairings, one may con-
sider canonical free A-pairings, cf. [15]. An A-pairing (E , E∗; ν) is called a
canonical A-pairing if the A-bilinear form ν is defined such that, for every
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open U ⊆ X, ψ ∈ E∗(U) and s ∈ E(U), νU(s, ψ) := ψU(s). (E , E∗; ν) is called
a canonical free A-pairing if E is a free A-module. As a convention, we will
denote by ν the A-bilinear form in the canonical A-pairing determined by
an A-module E .

In this paper, we show that given an orthogonally convenient A-pairing
(E ,F ;φ), where E and F have finite rank and A is a PID-algebra sheaf, if φ
is non-degenerate, orthogonality is reflexive on free sub-A-modules. More ex-
actly, for any free sub-A-modules G and H of E and F , respectively, (G⊥φ)>

φ

is A-isomorphic to G, and (H>φ)⊥φ is A-isomorphic to H. It is worth noting
at this place, that we do actually realize here the crucial “property (2)” of
Definition 1.1. The proof of this result is based on the rank formula, which
is the analogous of the dimension formula of vector spaces. See [3, p. 54,
Corollaire 2].

As a general remark, all sheaves and presheaves in the paper are defined
on a fixed topological space X. Also, if E is an A-module, E(U) will denote
the A(U)-module of sections of E over an open subset U of X.

2 Universal property of quotient A-modules

This section contains proofs of the basic results on biorthogonality in canon-
ical pairings of A-modules, namely Proposition 2.6 and Theorems 2.9 and
2.10.

Theorem 2.1 Let E, F and G be A-modules.

1. Let φ ∈ HomA(E ,F) be a surjective A-morphism. Then, if ψ ∈
HomA(E ,G) such that kerφ ⊆ kerψ, there exists a unique θ ∈ HomA(F ,G)
such that the diagram

E
φ //

ψ ��?
??

??
??

? F
θ

��
G
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commutes. In other words, the mapping θ 7→ θ ◦ φ is an A(X)-isomorphism
from HomA(F ,G) onto the sub-A(X)-module of HomA(E ,G) consisting of
A-morphisms whose kernel contains kerφ.

2. Let φ ∈ HomA(F ,G) be an injective A-morphism. Then, if ψ ∈
HomA(E ,G) such that Imψ ⊆ Imφ, there exists a unique θ ∈ HomA(E ,F)
making the diagram

E
θ

��

ψ

��?
??

??
??

?

F
φ

// G

commute. More precisely, the mapping θ 7→ φ ◦ θ is an A(X)-isomorphism
from HomA(E ,F) onto the sub-A(X)-module of HomA(E ,G) consisting of
A-morphism whose image is contained in Imφ.

Proof. Assertion 1. Uniqueness. Let θ1, θ2 ∈ HomA(F ,G) be such that
ψ = θ1 ◦ φ and ψ = θ2 ◦ φ. Fix an open subset U in X; since φU is surjective,
the equation θ1,U ◦ φU = θ2,U ◦ φU implies that θ1,U = θ2,U . Thus, θ1 = θ2.

Existence. Fix an open subset U in X and consider an element (section)
t ∈ F(U). Since φU is surjective, there exists an element s ∈ E(U) such that
t = φU(s). Now, suppose there exists an r ∈ F(U) with u ∈ kerψU and
v /∈ kerψU as its pre-images by φU , i.e.

φU(v) = r = φU(u)

with u ∈ kerψU and v /∈ kerψU . Since φU is linear, φU(v − u) = 0; so
v − u ∈ kerφU ⊆ kerψU . But u ∈ kerψU , so v ∈ kerψU , which yields a
contradiction. We conclude that such a situation cannot occur. Furthermore,
the element ψU(s) does only depend on t. Let θU be the A(U)-morphism
sending F(U) into G(U) and such that

θU(t) = ψU(s);

that
ψU = θU ◦ φU

is clear.
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Next, let us consider the complete presheaves of sections of E , F and
G, respectively, viz.

Γ(E) ≡ (Γ(U, E), αUV ), Γ(F) ≡ (Γ(U,F), βUV ), Γ(G) ≡ (Γ(U,G), δUV ).

Given open subsets U and V of X such that V ⊆ U , since ψ ∈ HomA(E ,G),
one has

ψV ◦ αUV = δUV ◦ ψU . (1)

But ψU = θU ◦ φU and ψV = θV ◦ φV , therefore, (1) becomes

θV ◦ φV ◦ αUV = δUV ◦ θU ◦ φU
or

θV ◦ βUV ◦ φU = δUV ◦ θU ◦ φU . (2)

Since φU is surjective, it follows from (2) that

θV ◦ βUV = δUV ◦ θU ,

which means that θ ≡ (θU)X⊇U, open is an A-morphism of F into G such that

ψ = θ ◦ φ,

as required.

Finally, for Assertion 2 one applies dualization as it is the dual of
Assertion 1.

The universal property of quotient A-modules is then obtained as a
corollary of Theorem 2.1. More precisely, one has

Corollary 2.2 (Universal property of quotient A-modules) Let E be
an A-module, E ′ a sub-A-module of E, and φ the canonical A-morphism of
E onto E/E ′. The pair (E/E ′, φ) satisfies the following universal property:

Given any pair (F , ψ) consisting of an A-module F and an A-morphism
ψ ∈ HomA(E ,F) such that E ′ ⊆ kerψ, there exists a unique A-morphism

ψ̃ ∈ HomA(E/E ′,F) such that the diagram

E
φ //

ψ !!CC
CC

CC
CC

C E/E ′

ψ̃
��
F
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commutes, i.e.
ψ = ψ̃ ◦ φ.

The kernel of ψ̃ equals the image by φ of the kernel of ψ, and the image
of ψ̃ equals the image of ψ.

The mapping θ 7→ θ ◦ φ is an A(X)-isomorphism of the A(X)-module
HomA(E/E ′,F) onto the sub-A(X)-module of HomA(E ,F) consisting of A-
morphisms of E into F whose kernel contains E ′.

Proof. Apply assertion 1 of Theorem 2.1.

Similarly to the classical case (cf. [3, p. 15, Corollary 1]), we also have
the following corollary, the proof of which is an easy exercise and is, for that
reason, omitted.

Corollary 2.3 Let E and F be A-modules and φ ∈ HomA(E ,F). Then,

(1) E/ kerφ = Imφ within A-isomorphism.

(2) Given a sub-A-module F ′ of F , E ′ ≡ φ−1(F ′) is a sub-A-module of E
containing kerφ; moreover, F ′ = φ(E ′) if φ is surjective.

(3) Conversely, if E ′ is a sub-A-module of E containing kerφ, then F ′ ≡
Im E ′ is a sub-A-module of F such that E ′ = φ−1(F ′).

As a further application of the universal property of quotientA-modules,
we have

Corollary 2.4 Let E be a free A-module, and E1 a free sub-A-module of E.
Then, the A-morphism φ ∈ HomA(E∗, E∗1 ) such that every φU maps an ele-
ment (ψV )U⊇V, open of E∗(U) onto its restriction (ψV |E1(V ))U⊇V, open ∈ E∗1 (U)
is surjective, and has E⊥1 ⊆ E∗ as its kernel, where E⊥1 is the orthogonal of
E1 in the canonical A-pairing (E , E∗; ν). Moreover,

E∗/E⊥1 = E∗1
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within A-isomorphism.

Proof. That kerφ = E⊥1 is clear. Now, let E2 be a free sub-A-module of E
complementing E1. It follows (cf. [6, p. 137, relation (6.21)] that

E∗ = E∗1 ⊕ E∗2 ,

so that if U is open in X and

ψ ≡ (ψV )U⊇V, open ∈ E∗1 (U) and θ ≡ (θV )U⊇V, open ∈ E∗2 (U),

then

Ω ≡ ψ + θ ∈ E∗(U).

Consequently,

φU(Ω) = (ΩV |E1(V ))U⊇V, open = ψ;

thus φU is surjective. Hence, applying Corollary 2.3 (1), we obtain an A-
isomorphism

E∗/E⊥1 ' E∗1 .

Now, let us introduce the notion of A-projection.

Definition 2.5 Let E be an A-module, F and G two supplementary sub-
A-modules of E . An A-endomorphism πF ∈ HomA(E , E) := EndA(E) such
that

πF(E) = πF(F ⊕ G) = F

is called an A-projection onto F (parallel to G). In a similar way, one
defines A-projections onto G (parallel to F). An A-projection πF is
called orthogonal if, for any section s ∈ E(U),

πFU (s) ≡ πFU (r + t) = r,

where s = r + t with r ∈ F(U) and t ∈ G(U). Likewise, one defines the
orthogonal A-projection onto G.



10 Patrice P. Ntumba

Proposition 2.6 Let E be a free A-module, E1 and E2 two supplementary
free sub-A-modules of E, π1 ≡ πE1 , π2 ≡ πE2 the corresponding orthogonal
A-projections. Then,

E∗ = E⊥1 ⊕ E⊥2 ,
and the orthogonal A-projections π′1 ≡ πE

⊥
1 , π′2 ≡ πE

⊥
2 associated with this

direct decomposition are given by setting

π′1,U(α) := (αV ◦ π2,V )U⊇V, open and π′2,U(α) := (αV ◦ π1,V )U⊇V, open

for any α ≡ (αV )U⊇V, open ∈ E∗(U).

The proof of Proposition 2.6 requires some part of [10, p. 404, Theorem
2.2], which we restate here for easy referencing.

Theorem 2.7 Let (E , E∗;A) be the canonical free A-pairing determined by
E. Then, for any open subset U ⊆ X,

rank E∗(U) = rank E(U).

If φ ∈ E∗(U) and φU(s) = 0 for all s ∈ E(U), then φ = 0; on the other hand,
if φ(s) = 0 for all φ ∈ E∗(U), then s = 0.

Now, let us get to the proof of Proposition 2.6.

Proof. (Proposition 2.6) Fix an open set U in X. That (αV ◦π2,V )U⊇V, open
and (αV ◦π1,V )U⊇V, open belong to E⊥1 (U) and E⊥2 (U), respectively, is obvious.
For any open V ⊆ U, the relation

αV = αV ◦ π1,V + αV ◦ π2,V

shows that
E∗(U) = E⊥1 (U) + E⊥2 (U).

Finally, suppose that there exists β ≡ (βV )U⊇V, open in E⊥1 (U)∩ E⊥2 (U);
since βV (s) = 0 for any open V ⊆ U and any s ∈ E(V ) = E1(V )⊕ E2(V ), it
follows that β = 0 (cf. Theorem 2.7). Thus,

E∗(U) = E⊥1 (U)⊕ E⊥2 (U)
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and hence
E∗ = E⊥1 ⊕ E⊥2

as claimed.

From [10], we also recall the following result a particular case of which
will be needed below.

Theorem 2.8 Let (E ,F ;A) be an A-pairing such that the right A-kernel,
i.e. E⊥, is identically 0. Moreover, let E0 and F0 be sub-A-modules of E and
F , respectively. Then, there exist natural A-isomorphisms into:

E/F⊥0 −→ F∗0 and E⊥0 −→ (E/E0)∗.

An interesting result may be derived from Theorem 2.8, viz.:

Theorem 2.9 Let E be a free A-module, E1 a free sub-A-module of E, and
φ the canonical A-morphism of E onto (the free sub-A-module) E/E1. The
A-morphism

Λ : (E/E1)∗ −→ E∗

such that, given any open subset U ⊆ X and a section ψ ∈ (E/E1)∗(U) :=
HomA|U ((E/E1)|U ,A|U),

ΛU(ψ) := (ψV ◦ φV )U⊇V, open

is an A-isomorphism of (E/E1)∗ onto E⊥1 , where E⊥1 is the A-orthogonal of
E1 in the canonical A-pairing (E , E∗;A).

Proof. It is clear that Λ is indeed an A-morphism. Now, let us fix an open
set U in X and let us consider a section ψ ≡ (ψV )U⊇V, open ∈ (E/E1)∗(U).
Then, ΛU(ψ) = 0 if for any open V in U and s ∈ E(V ),

ΛU(ψ)(s) = 0.

But
ΛU(ψ)(s) = (ψV ◦ φV )(s) = ψV (φV (s)) = 0,
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therefore, by Theorem 2.7,
ψV = 0.

It follows that
ker ΛU = 0,

and consequently
ker Λ = 0;

in other words, Λ is injective.

Next, for every ψ ≡ (ψV )U⊇V, open ∈ (E/E1)∗(U), where the open set U
is fixed in X,

ΛU(ψ)(s) = (ψV ◦ φV )(s) = 0,

where s is any element in E1(V ); that is

ΛU(ψ) ∈ E⊥1 (U),

from which we deduce that
Im Λ ⊆ E⊥1 .

Finally, still under the assumption that U is an open set fixed in X, let
us consider, for every open V ⊆ U, the following commutative diagram

E(V )
φV //

ψV ◦φV %%LLLLLLLLLL
(E/E1)(V )

ψV
��

A(V )

.

The universal property of quotient A-modules (cf. Corollary 2.2) shows that,
given an element σV ∈ HomA(V )(E(V ),A(V )) such that kerφV ⊆ kerσV , i.e.,
σV (E1(V )) = 0, there is a unique ψV ∈ HomA(V )((E/E1)(V ),A(V )) such that

σV = ψV ◦ φV .

It is clear that the family σ ≡ (σV )U⊇V, open is an A-morphism E|U −→ A|U
satisfying the property that:

σ = ψ ◦ φ.

Thus, Λ is surjective and the proof is finished.

As a result, based essentially on everything above, we have
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Theorem 2.10 Let (E , E∗;A) be the canonical free A-pairing and E1 a free
sub-A-module of E. Then,

(1) (E⊥1 )> = E1 within A-isomorphism.

(2) E1 has finite rank if and only if E⊥1 has finite corank in E∗, and then
one has

rank E1 = corankE∗E⊥1 .

(3) E1 has finite corank in E if and only if E⊥1 has finite rank, and

corankEE1 = rank E⊥1 .

Proof. Assertion (1). Let E2 be a free sub-A-module of E , complementing
E1. By Proposition 2.6,

E∗ = E⊥1 ⊕ E⊥2 .

Yet, we know that E1 ⊆ (E⊥1 )>. Now, consider a section s ∈ (E⊥1 )>(U); there
exist r ∈ E1(U) and t ∈ E2(U) such that s = r+ t. The section t is orthogonal
to E⊥2 (U), and since r and s are orthogonal to E⊥1 (U), we then have that t
is orthogonal to E⊥1 (U)⊕ E⊥2 (U) = E∗(U). It follows from Theorem 2.7 that
t = 0; thus (E⊥1 )>(U) ⊆ E1(U), and hence (E⊥1 )> ⊆ E1.

Assertion (2). Since E1 is free, it follows that E∗1 ' E1 (cf. [6, p. 298,
(5.2)]). Thus, E1 has finite rank if and only if E∗1 has finite rank, and

rank E∗1 = rank E1.

But, by Corollary 2.4, E∗/E⊥1 is A-isomorphic to E∗1 , therefore

rank E1 = corankE∗E⊥1 .

Assertion (3). Let E2 be a free sub-A-module of E complementing E1,
that is E = E1⊕E2. But E/E1 is A-isomorphic to E2 (cf. [12]), therefore E/E1
is free; consequently E/E1 has finite rank if and only if (E/E1)∗ has finite
rank, and one has

(E/E1)∗ ' E/E1
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so that
corankEE1 = rank E/E1 = rank (E/E1)∗.

But, by Theorem 2.9, (E/E1)∗ ' E⊥1 within A-isomorphism, so the assertion
is corroborated.

3 Biorthogonality in A-modules

In the theory of vector spaces (cf. [3, p.67, Théorème 7.5]), if E is K-vector
space, E∗ its dual, and F a subspace of E∗, then F is finite dimensional if and
only if F ′ ( F ′ is the subspace of E consisting of vectors that are orthogonal
to F ) is finite codimensional in E. Moreover, one has

dim F = codimEF
′, (F ′)⊥ = F.

In this section, we investigate this result (Theorem 3.4) and those of the
previous sections in a more general setting, that is, A-pairings defined by
arbitrary A-bilinear morphisms.

For the purpose of the main results of this section, we recall that
given an A-pairing (E ,F ;φ), the A-bilinear morphism φ is said to be non-
degenerate if E⊥φ ≡ E⊥ = F>φ ≡ F> = 0, and degenerate otherwise. The
A-morphism

φR ∈ HomA(F , E∗) ≡ HomA(F ,HomA(E ,A))

such that, for any open subset U ⊆ X and sections t ∈ F(U) and s ∈ E(V ),
where V ⊆ U is open,

φRU(t)(s) ≡ (φR)U(t)(s) := φV (s, t|V )

is called the right insertion A-morphism associated with φ. Similarly, for
every open subset U ⊆ X and sections s ∈ E(U) and t ∈ F(V ), where V is
open in U,

φLU(s)(t) ≡ (φL)U(s)(t) := φV (s|V , t)
defines an A-morphism, denoted φL, of E into F∗, i.e.,

φL ∈ HomA(E ,F∗) ≡ HomA(E ,HomA(F ,A)).
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The A-morphism φL is called the left insertion A-morphism associated with
φ.

Definition 3.1 Let E and F be free A-modules. An A-morphism φ ∈
HomA(E ,F) is called free if Im φ is a free sub-A-module of F . The rank of
Im φ is called the rank of φ, and is denoted rank φ.

We may now state the counterpart of the fundamental theorem “of the
whole [standard] theory”; see, e.g., [3, p. 54, Théorème 6.4].

Theorem 3.2 Let φ ∈ HomA(E ,F) be a free A-morphism mapping a free
A-module E into a free A-module F . Then, the rank of φ is finite if and only
if the kernel of φ has finite corank in E. Moreover, one has

rankφ := rank Imφ = corankE kerφ.

Proof. Corollary 2.3(1) shows that the quotient free A-module E/ kerφ is
A-isomorphic to Im φ.

Corollary 3.3 Let A be a PID algebra sheaf and E, F free A-modules.
Then, if rank E is finite, every free A-morphism φ ∈ HomA(E ,F) has fi-
nite rank, and

rank(φ) + rank ker(φ) = rank E . (3)

The formula above is called the rank formula.

Proof. Indeed, given that every A(U), where U is open in X, is a PID
algebra, it follows that ker(φU) is a free sub-A(U)- module of the free A(U)-
module E(U). By elementary module theory (see, for instance, [1, p. 173,
Proposition 8.8] or [2, p. 105, Corollary 2]), we have

rank ker(φU) + rank Im(φU) = rank E(U).
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Since for any subsets U and V of X, rank ker(φU) = rank ker(φV ), it follows
that ker(φ) is a free sub-A-module of E , and therefore

rank ker(φ) + rank Im(φ) = rank E ,

or
rank ker(φ) + rank(φ) = rank E .

The rank formula being a spin-off of the so-called fundamental theorem
of the whole classical theory (: Linear Algebra) contributes of course to the
study of the geometry of a vector space through the projective geometry of its
subspaces; hence, it significance for the analogous situation in our generalized
case (: A-modules).

Theorem 3.4 Let (E , E∗;A) be the canonical free A-pairing, and F a free
sub-A-module of E∗. F has finite rank if and only if F> has finite corank in
E; moreover, one has

rank F = corankEF>; (F>)⊥ = F .

Proof. The case F = 0 is trivial.

Suppose that F has finite rank; let U be an open subset ofX, (eU∗1 , . . . , eU∗n )
a canonical (local) gauge of F (cf. [6, p. 291, (3.11) along with p. 301, (5.17)
and (5.18)]), and φ ∈ HomA(E ,An) be such that if s ∈ E(U),

φU(s) := (eU∗1 (s), . . . , eU∗n (s)).

It is clear that φ is indeed an A-morphism of E into An whose kernel is F>,
which is a free sub-A-module of E for the simple reason that canonical free
A-pairings are orthogonally convenient, see [15]. It is also clear that Im φ is
A-isomorphic to the free A-module An; thus, by Theorem 3.2, one has

rank(φ) := corankEF> = rank F . (4)

According to Theorem 2.10(3), (F>)⊥ has finite rank, and

rank (F>)⊥ = corankEF>. (5)
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Since F is contained in (F>)⊥, we deduce from (4) and (5) that

F = (F>)⊥.

Conversely, suppose that F> has finite corank in E ; then (F>)⊥ has
finite rank, and thus F as well, as F is contained in (F>)⊥.

It is clear that if the A-bilinear morphism φ : E ⊕ F −→ A is non-
degenerate, then both insertion A-morphisms φR and φL are injective. More-
over, if E and F are free A-modules of finite rank, then

E = F

within A-isomorphism.

While the notion of orthogonality with respect to arbitrary A-bilinear
forms generalizes orthogonality in canonical A-pairings, the former may re-
late with the latter through the following lemma.

Lemma 3.5 Let (E ,F ;φ) be a free A-pairing, G and H free sub-A-modules
of E and F , respectively. Then,

G⊥φ ' (φL(G))>, (6)

and
H>φ ' (φR(H))>. (7)

Proof. Let U be an open subset of X. Since G is free, it is clear that for a
section t ∈ F(U) to be in G⊥φ it is necessary and sufficient that

φU(G(U), t) = 0.

But

(φLU(G(U)))> = {t ∈ F(U) : φLU(G(U))(t) := φU(G(U), t) = 0},

therefore (6) holds as required.
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In a similar way, one shows (7).

The case where (E ,F ;φ) is an orthogonally convenient pairing and φ is
non-degenerate is interesting, yielding e.g. the following result.

Theorem 3.6 Let (E ,F ;φ) be an orthogonally convenient pairing , where E
and F are free A-modules of finite rank. Then, the free quotient A-modules
E/F>φ and F/E⊥φ are isomorphic; i.e. one has

E/F>φ = F/E⊥φ

within A-isomorphism. Hence, they also have the same rank.

Proof. Since (E ,F ;φ) is orthogonally convenient, kernels E⊥φ and F>φ are
free sub-A-modules of F and E , respectively. By [12], it follows that the
quotient A-modules E/F>φ and F/E⊥φ are free, and for any open subset U
of X,

(E/F>φ)(U) = E(U)/F>φ(U) = E(U)/F(U)>
φ

and
(F/E⊥φ)(U) = F(U)/E⊥φ(U) = F(U)/E(U)⊥φ

within A(U)-isomorphism. Clearly, for a fixed open U ⊆ X, if s ∈ E(U) and
t, t1 ∈ F(U) such that t− t1 ∈ E⊥φ(U), then

φU(s, t) = φU(s, t1).

In the same vein, if s = s1 mod F>φ(U) and t = t1 mod E⊥φ(U), then

φU(s, t) = φU(s1, t1).

Now, let us consider the A-bilinear morphism

φ ≡ (φU)X⊇U, open ≡ ((φ)U)X⊇U, open : E/F>φ ⊕F/E⊥φ −→ A,

induced by the A-bilinear morphism φ, which is such that, for any open
U ⊆ X and sections s := cl(s) mod F>φ(U), t := cl(t) mod E⊥φ(U) (cl(s)
stand for the equivalence class containing s), one has

φU(s, t) := φU(s, t).
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It is clear that φU(s, t) = 0 for any s ∈ (E/F>φ)(U) = E(U)/F>φ(U) is
equivalent to φU(s, t) = 0 for any s ∈ E(U); therefore t ∈ E⊥φ(U) = 0 and
hence t = 0. This implies that (E/F>φ)⊥φ = 0. Similarly, that φU(s, t) = 0
for any t ∈ (F/E⊥φ)(U) = F(U)/E⊥φ(U) is equivalent to s = 0, from which
we deduce that (F/E⊥φ)>

φ
= 0. Hence, φ is non-degenerate; so

E/F>φ = F/E⊥φ

within A-isomorphism.

We also have

Theorem 3.7 Let A be a PID algebra sheaf, (E ,F ;φ) an orthogonally con-
venient A-pairing with E, F of finite rank. Then,

(1) For every free sub-A-modules G and H of E and F , respectively, one
has

1.1) φL(G) ' (G⊥φ)⊥ and φR(H) ' (H>φ)⊥.

1.2) rank φL(G) = corankFG⊥φ and rank φR(H) = corankEH>
φ
.

(2) A-morphisms φL and φR have the same rank:

rank(φL) = rank(φR), (8)

which is (cf. Definition 3.1 ) the rank of φ.

Proof. Assertion (1). Since (E ,F ;φ) is orthogonally convenient, the sub-
A-module G⊥φ is free, and thus

G⊥φ(U) ' G(U)⊥φ

for every open U ⊆ X. By Lemma 3.5,

G⊥φ = (φL(G))>

within A-isomorphism. Applying Theorem 3.4, and since rank F is finite,
we have

(G⊥φ)⊥ = φLG
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within A-isomorphism. By the same theorem along with Theorem 2.10, it
follows that

rank G⊥φ + rank φLG = rank F ,

from which we deduce that

rank φLG = corankFG⊥φ .

In particular,
rank(φL) = corankFE⊥φ . (9)

In a similar way, one shows the claims related to the induced A-
morphism φR by using the fact that rank E is finite. The analog of (9)
is

rank(φL) = corankEF>
φ

. (10)

Assertion (2). That

ker(φL) ' E⊥φ and ker(φR) ' F>φ

is immediate. Applying the rank formula (Corollary 3.3), we obtain

rank(φR) := rank φR(F) = rank F − rank E⊥φ = corankFE⊥φ , (11)

and

rank(φL) := rank φL(E) = rank E − rank F>φ = corankEF>
φ

. (12)

From (9), (10), (11) and (12), one gets (8).

Corollary 3.8 Let A be a PID algebra sheaf and (E ,F ;φ) an orthogonally
convenient A-pairing with E, F free A-modules of finite rank. Then,

(1) For every free sub-A-modules G and H of E and F , respectively, one
has

1.1) rank G⊥φ ≥ rank F − rank G and rank H>φ ≥ rank E − rank H
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1.2) (G⊥φ)>
φ ⊇ G and (H>φ)⊥φ ⊇ H.

(2) If φ is nondegenerate, then

2.1) rank G⊥φ + rank G = rank F = rank E = rank H>φ + rank H
2.2) (G⊥φ)>

φ ' G and (H>φ)⊥φ ' H.

Proof. Assertion (1). Theorem 3.7 shows that

rank φL(G) = corankFG⊥φ = rank F − rank G⊥φ .

On the other hand, by virtue of Corollary 3.3, one has

rank φL(G) = rank G − rank (kerφL ∩ G).

It follows, in particular, that

rank G ≥ rank φL(G),

from which we have

rank G⊥φ ≥ rank F − rank G.

Likewise, one shows the second inequality of 1.1).

Assertion (2). If φ is nondegenerate, rank E = rank F ; therefore φL is
an A-isomorphism of E onto F∗. Thus, rank φL(G) = rank G, and

rank G⊥φ = rank F − rank G.

Likewise, one has
rank H>φ = rank E − rank H.

Applying relation 2.1) to the free sub-A-modules G and G⊥φ of E and
F , respectively, we see that

rank (G⊥φ)>
φ

= rank G.

Since G is contained in (G⊥φ)>
φ
, it follows that

(G⊥φ)>
φ

= G

within A-isomorphism. In a similar way, we show that (H>φ)⊥φ = H within
A-isomorphism.
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