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1 Introduction

This paper is concerned with the generalization of modules of Kähler differ-
entials by changing to the setting of sheaves of A-modules, where, in general,
A stands for a sheaf of associative and unital algebras on a topological space
X. Differentials are amongst objects that play tremendous roles in commuta-
tive algebra and algebraic geometry similar to those of tangent and cotangent
bundles in differentiable geometry (see [3, Chapter 16]). Kähler differentials
of an R-algebra S over a ring R form an S-module, denoted ΩS/R, which is
such that, for any S-module M , one has

DerR(S,M) ' HomS(ΩS/R,M);

in other words, the construction of ΩS/R, as D. Eisenbud puts it, “linearizes”
the construction of derivations. The above isomorphism is usually used to
compute DerR(S,M) in terms of ΩS/R. This is the direction we intend to
go along for the analogous version of derivations in the setting of sheaves of
A-modules.

The main result (Theorem 3.2) is derived from the classical theorem
which states that given a ring R, an R-algebra S and I the kernel of the
multiplication map µ : S ⊗ S −→ S, if e : S −→ I/I2 is the map defined by
b 7−→ 1 ⊗ b − b ⊗ 1, there is an isomorphism ϕ : ΩS/R ' I/I2 such that the
pair (d,ΩS/R) is isomorphic to (e, I/I2), i.e.,

DerR(S, I/I2) ' HomS(ΩS/R, I/I
2).

Now, in trying to enlarge the traditional framework of modules to
sheaves of modules over sheaves of rings (or in particular, over sheaves of
algebras), one is faced with the fact/reality that for non-complete generating
presheaves, the sought counterparts of classical results are not straightfor-
ward and require a good measure of control over the sheafification functor.
Every sheaf and presheaf considered within the bounds of this paper are
assumed to be defined on a fixed topological space X.
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2 Non-commutative case

Definition 2.1 Suppose that we have the following: a topological space
(X, τX), a sheaf K of rings, a sheaf A of K-algebras, and a sheaf E of A-
modules. A K-derivation of A into E is a sheaf morphism

∂ : A −→ E (1)

such that the following conditions are satisfied:

(1) ∂ is a K-morphism.

(2) For every U ∈ τX and sections s, t ∈ A(U), ∂U satisfies the Leibniz
condition, that is,

∂U(s · t) = ∂U(s) · t+ s · ∂U(t). (2)

The triple (A, ∂, E), thus obtained, is called a K-differential triad on X (see
[6, pp. 2, 3]).

Of course, concerning (2), we have used the morphism of the (complete)
presheaves of sections of A and E induced by ∂; for the sake of simplicity,
the latter is still denoted ∂ (a practice that we shall often apply in the sequel
without specific mention).

Now, let us consider the generating presheaf of the tensor product sheaf
A⊗K A, that is, the presheaf given by the correspondence

U 7−→ Γ(U,A)⊗Γ(U,K) Γ(U,A) ≡ A(U)⊗K(U) A(U),

where U runs over the open sets in X, along with the obvious restriction
maps (that is, {ρUV ⊗ ρUV ; U, V ∈ τX and V ⊆ U} if {ρUV ; U, V ∈ τX , V ⊆ U}
is the family of restriction maps of Γ(A)). For every U ∈ τX , the tensor
product A(U)⊗K(U)A(U) has a canonical (A(U),A(U))-bimodule structure,
given by the following prescription

x · (s⊗K(U) t) · y ≡ x(s⊗ t)y := (xs)⊗ (ty) ≡ (xs)⊗K(U) (ty),
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where s, t, x, y ∈ A(U). On the other hand, let us also consider, for every
U ∈ τX , the K(U)-linear map mU : A(U)⊗K(U) A(U) 7−→ A(U) determined
by the K(U)-bilinear map A(U)×A(U) −→ A(U); (s, t) 7−→ st, so

mU(s⊗ t) = st.

It is easily seen that every mU is an (A(U),A(U))-bimodule morphism;
whence, the family

m ≡ (mU)U∈τX : Γ(A)⊗Γ(K) Γ(A) −→ Γ(A) (3)

is a Γ(K)-morphism. By sheafifying (3), we obtain a K-morphism of A-
modules

S(m) ≡ m : A⊗K A −→ A, (4)

where S is the sheafifying functor, (see [5, pp. 33- 37]). Since every mU is an
(A(U),A(U))-bimodule morphism, it follows that (4) is an (A,A)-bimodule
morphism (in this bimodule morphism, we are considering A as an (A,A)-
bimodule). By [5, p. 108, (2.10)], the kernel of m, I ≡ (kerm,π|kerm, X), is
a sub-(A,A)-bimodule of A⊗K A.

For the purpose of Lemma 2.1, we recall the following notion: If S ≡
(S(U), ρUV ) is a presheaf (of sets), then ρU : S(U) −→ S(U, π) defines the
(canonical) map sending an element of S(U) to a section of the sheaf gen-
erated by the presheaf S over U ; cf [5, pp. 30, (7.8), (7.9), (7.11)]. π is the
local homeomorphism obtained through sheafification.

Lemma 2.1 Let X be a topological space, K a sheaf of commutative rings,
A a sheaf of associative and unital K-algebras, and m : A⊗KA −→ A the A-
morphism which corresponds to the usual multiplication A-bilinear morphism
on A. Then, the family ∂ ≡ (∂U)U∈τX such that

∂U(s) = s⊗ 1− 1⊗ s ∈ A(U)⊗K(U) A(U) (5)

for every U ∈ τX and section s ∈ A(U), yields a K-derivation of A into I :=
kerm. Moreover, for every U ∈ τX , the left A(U)-module I(U) = kermU is

generated by {∂̃U(s) ≡ ρU(∂U(s)); s ∈ A(U)}.
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Proof. The first assertion is straightforward. Indeed, let’s consider the
collection I ≡ (I(U), (ρUV ⊗ ρUV )|I), where, for every U ∈ τX , I(U) is the
A(U)-module generated by the set

{s⊗ 1− 1⊗ s; s ∈ A(U)} ⊆ A(U)⊗K(U) A(U).

It is clear that I is a subpresheaf of Γ(A)⊗Γ(K) Γ(A), a generating presheaf
of the sheaf A ⊗K A. Since, for every U ∈ τX , ∂U : A(U) −→ I(U) (given
by that ∂U(s) = s ⊗ 1 − 1 ⊗ s) is a K(U)-derivation, it follows that the
family ∂ ≡ (∂U)U∈τX yields a K-derivation of A into the sheafification I of
the presheaf I.

On the other hand, let J ⊆ N be finite, si, ti ∈ A(U), where U is open

in X. If ˜∑
i∈J si ⊗ ti ≡ ρU(

∑
i∈J si ⊗ ti) belongs to I(U), then

∑
i∈J siti = 0

and thus

ρU

(∑
i∈J

si ⊗ ti
)

= ρU

(∑
i∈J

si(1⊗ ti − ti ⊗ 1)
)

=
∑
i∈J

siρU(∂U(ti)).

We should draw our attention to the fact that, in Lemma 2.1, we have
taken ∂ as the sheaf morphism obtained after sheafification of the presheaf
morphism ∂ ≡ ∂ : Γ(A) −→ Γ(A) ⊗Γ(K) Γ(A), rather than the sheaf mor-
phism induced by the presheaf morphism Γ(∂) : Γ(A) −→ Γ(A⊗K A).

Theorem 2.1 Let A be an associative and unital K-algebra sheaf, where
K is a commutative algebra sheaf, and ∂ : A −→ I ⊆ A ⊗K A the K-
derivation, given by (5). Then, ∂ has the following universal property: For
every (A,A)-bimodule E and every K-derivation δ : A −→ E, there exists a
unique (A,A)-morphism ϕ : I −→ E such that

δ = ϕ ◦ ∂. (6)

Proof. It is clear that for every (A,A)-morphism ϕ : I −→ E , ϕ ◦ ∂ is a
K-derivation. Conversely, let δ : A −→ E be a K-derivation; then we first
show that if there exists an (A,A)-morphism ϕ : I −→ E such that δ = ϕ◦∂,
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such a ϕ must be unique. To this end, let’s consider the presheaf morphism
ϕ : I −→ Γ(E), where I is the presheaf such that I(U) is generated by the
set in (5), such that Γ(δ) ≡ δ = ϕ ◦ ∂ ≡ ϕ ◦ Γ(∂); so, for any U ∈ τX and
section s ∈ A(U),

ϕU(s⊗ 1− 1⊗ s) = δU(s).

Since I(U) is generated by ∂U(A(U)), it follows that

ϕU

(∑
i∈I

si ⊗ ti
)

=
∑
i∈I

siϕU(1⊗ ti − ti ⊗ 1) =
∑
i∈I

siδU(ti);

wherefore, ϕ is unique. Hence, the sheafification ϕ := S(ϕ) of ϕ is unique
and satisfies (23).

Now, as every mapping (s, t) 7−→ −sδU(t) of A(U) × A(U) into E(U)
is K(U)-bilinear, there exists a unique Γ(K)-morphism

ψ ≡ (ψU)U∈τX : Γ(A)⊗Γ(K) Γ(A) −→ Γ(E)

such that

ψU(s⊗ t) = −sδU(t);

it suffices to verify that the restriction ϕ of ψ to I is Γ(A)-linear for the left
and right A-module structures. The first assertion is obvious since, for every
U ∈ τX and sections r, s, t ∈ A(U),

ψU(r(s⊗ t)) = −(rs)δU(t) = rψU(s⊗ t).

To prove linearity on the right-hand side, note that, if
∑

i∈I si ⊗ ti ∈ I(U)
and t ∈ A(U), then∑

i∈I

siδU(tit) =
∑
i∈I

siδU(ti)t+
∑
i∈I

(siti)δU(t);

but
∑

i∈I siti = 0, therefore∑
i∈I

siδU(tit) = (
∑
i∈I

siδU(ti))t.
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Thus, for any U ∈ τX , we have a canonical K|U -isomorphism ϕ 7−→ ϕ◦∂

Hom(A|U ,A|U )(I|U , E|U) −→ DK|U (A|U , E|U), (7)

where the right-hand side is the K(U)-module of K|U -derivations of A|U into
E|U .

Hence, under the hypotheses of Theorem 2.1, we have

Corollary 2.1 If DK(A, E) denotes the K-module of germs of K-derivations
of A into E, then

Hom(A,A)(I, E) = DK(A, E), (8)

within a K-isomorphism.

3 Commutative case

We will assume, throughout this section, that whenever one considers tensor
products of A-modules, the “coefficient sheaf ” A is a sheaf of commutative
and unital C-algebras. Keeping with the rule of the previous section, we
assume that all sheaves involved in this section are defined over the same
topological space X.

For the purpose of the main results of this section, we recall the follow-
ing results (cf. [5, pp. 130- 132, (5.11) and Theorem 5.1]).

Lemma 3.1 If E is an A-module, then the functor

⊗AE : A-ModX −→ A-ModX (9)

is covariant and right exact.

Lemma 3.2 If E is a vector sheaf, then the tensor product functor ⊗AE is
exact.
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A result more general than the one of Lemma 3.1 goes as follows.

Lemma 3.3 Let R,R′,R′′ be right A-modules, E a left A-module and

R′
ϕ //R

ψ //R′′ // 0 (10)

an exact A-sequence. Then, the A-sequence

R′ ⊗A E
ϕ⊗1E //R⊗A E

ψ⊗1E //R′′ ⊗A E // 0 (11)

is exact.

Proof. The proof is similar to the proof of Lemma 3.1.

As for a dual statement, we have

Lemma 3.4 Let S,S ′,S ′′ be left A-modules, E a right A-module and

S ′ δ // S λ // S ′′ // 0 (12)

an exact A-sequence. Then, the A-sequence

E ⊗A S ′
1E⊗δ // E ⊗A S

1E⊗λ // E ⊗A S ′′ // 0 (13)

is also exact.

By applying mutatis mutandis the proof of [2, p. 252, Proposition 6],
one has

Theorem 3.1 Assuming the hypotheses of Lemmas 3.3 and 3.4, the A-
morphism ψ ⊗ λ : R⊗A S −→ R′′ ⊗A S ′′ is surjective. Furthermore,

ker(ψ ⊗ λ) = Im(ϕ⊗ 1S) + Im(1R ⊗ λ) (14)

within an A-isomorphism.
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In other words,

Corollary 3.1 Assuming the hypotheses of Lemmas 3.3 and 3.4, with R′
and S ′ sub-A-modules of R and S, respectively, one has

(R⊗A S)/[Im(R′ ⊗A S) + Im(R⊗A S ′)] = (R/R′)⊗A (S/S ′) (15)

within an A-isomorphism.

If the A-modules of Corollary 3.1 are sheaves of A-algebras ; more
precisely, suppose that R is the sheaf A, R′ ≡ I an ideal subsheaf of A and
S ′ the trivial subsheaf 0 of S, we have

(A/I)⊗A S = S/IS (16)

within an (A/I)-isomorphism.

Now, let K be a sheaf of commutative rings with an identity element,
A a sheaf of commutative K-algebras and E an A-module. Since A is com-
mutative, E can be considered as an (A,A)-bimodule. Indeed, for every open
U ∈ τX and sections α, β ∈ A(U) and s ∈ E(U), since A(U) is commutative,
there is a one-to-one correspondence A(U)× E(U) −→ E(U)×A(U), given
by

(βα)s 7−→ s(αβ) = s(βα).

We now show that the left and right A-module sheaf structures of E are
compatible. To this end, we note the following:

(αs)β ≡ (sα)β = s(αβ) = s(βα) = (sβ)α ≡ α(sβ),

which corroborates the claim that E may be regarded as an (A,A)-bimodule.
On the other hand, since, for every U ∈ τX and sections r, s, t, u ∈ A(U),

r(s⊗ t)u = (rs)⊗ (tu) = (rs)⊗ (ut) = (r ⊗ u)(s⊗ t), (17)

the (Γ(A),Γ(A))-bimodule presheaf structure on Γ(A)⊗Γ(K) Γ(A) is identical
with its (Γ(A) ⊗Γ(K) Γ(A))-module presheaf structure. Sheaf-wise, we have
that the (A,A)-bimodule sheaf structure of the K-module A⊗KA is equiva-
lent to its (A⊗KA)-module sheaf structure. By virtue of (17), it follows that
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the kernel (sheaf ) I of the K-morphism (4) is an ideal sheaf of the K-algebra
sheaf A⊗K A. But m is surjective, therefore

(A⊗K A)/I = A (18)

within a K-isomorphism. In addition, let’s consider E as an (A ⊗K A)-
module by means of the K-morphism m; in fact, for any U ∈ τX and sections
α, β ∈ A(U), s ∈ E(U), we set

(α⊗ β)s := m(α⊗ β)s = (αβ)s.

Then,
Hom(A,A)(I, E) = HomA⊗KA(I, E) (19)

within a K-isomorphism, for, given an U ∈ τX and sections α, β ∈ A(U),
s ∈ I(U), using the fact that the (A,A)-bimodule sheaf structure of A⊗KA
is identical with its (A⊗KA)-module sheaf structure and I is an ideal sheaf
in A⊗K A, we have: ϕ ≡ (ϕV )U⊇V, open ∈ Hom(A,A)(I, E)(U) implies that

(α|V ⊗ β|V )ϕV (s) = α|V ϕV (s)β|V = ϕV (α|V sβ|V ) = ϕV ((α|V ⊗ β|V )s),

for any subopen V of U , which means that ϕ ∈ HomA⊗KA(I, E)(U). In the
same way, one shows that HomA⊗KA(I, E)(U) ⊆ Hom(A,A)(I, E)(U). Hence,
(19) is proved.

On the other hand, for any U ∈ τX and sections s ∈ A(U), t ∈ E(U)

(s⊗ 1− 1⊗ s)t = 0;

so,
IE = 0;

that is, the ideal sheaf I is contained in the annihilator of the (A ⊗K A)-
module E . On applying the sheaf isomorphism (16) to K-algebra sheaves I
and (A⊗K A)/I, one has the canonical (A⊗K A)/I-isomorphism

((A⊗K A)/I)⊗A I = I/I2;

hence, by virtue of (18) and [5, p. 304, (6.11)], we have the following sheaf
isomorphisms

HomA(I/I2, E) = HomA(((A⊗K A)/I)⊗A I, E)
= HomA((A⊗K A)/I,HomA(I, E))
= HomA(A,HomA(I, E))
= HomA(I, E).
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But A is commutative, therefore

HomA(I, E) = Hom(A,A)(I, E);

so
HomA⊗KA(I, E) = HomA(I/I2, E) (20)

within an A-isomorphism.

It follows, from the discussion above and Theorem 2.1, that we have
proved the analogous of [2, p. 569, Proposition 18]. Also see [3, pp. 410,
411, Theorem 16.24] and [4, pp. 746- 748, Theorem 3.1].

Theorem 3.2 Let K be a sheaf of commutative rings, A a sheaf of com-
mutative and unital K-algebras and I the ideal kernel sheaf of the surjective
K-morphism (4). Moreover, let ∂A/K : A −→ I/I2 be the K-morphism such
that ∂A/K = q◦∂, where q : I −→ I/I2 is the canonical K-morphism and ∂ is
the K-morphism given component-wise by (5). Then, the mapping ∂A/K is a
K-derivation and, for every A-module E and every K-derivation δ : A −→ E,
there exists a unique A-morphism ϕ : I/I2 −→ E such that δ = ϕ ◦ ∂A/K.

The A-module I/I2 is called the A-module of germs of Kähler differ-
entials (or K-differentials ) of A and is denoted by ΩK(A) (see [2, p. 569]).
By virtue of (8), (19) and (20), there is a canonical A-isomorphism

HomA(ΩK(A), E) = DK(A, E). (21)

4 Functoriality of K-differentials

Throughout this section, all the algebra sheaves are assumed to be associative
and unital and all the algebra sheaf morphisms are assumed to be unital.

Lemma 4.1 Let K ≡ (K, σ,X) be a sheaf of commutative rings and A ≡
(A, π,X) a sheaf of K-algebras where the continuous “ exterior multiplica-
tion” is given via a ring sheaf morphism η : K −→ A, that is, the map

K ◦ A −→ A : (k, a) 7−→ ηx(k)a ∈ Ax ⊆ A,
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with σ(k) = π(a) = x ∈ X. (We have used the familiar notation as in [5,
p. 96, (1.37)], i.e., K ◦ A = {(k, a) ∈ K × A : σ(k) = π(a)}.) In the
same vein, let K′ be another sheaf of commutative rings and A′ a sheaf of
K′-algebras via a sheaf morphism η′ : K′ 7−→ A′. Moreover, let ψ : K −→ K′
and ϕ : A −→ A′ be sheaf morphisms such that

ϕ ◦ η = η′ ◦ ψ.

Then, there exists a unique A-morphism ϑ : ΩK(A) −→ ΩK′(A′) such that

ϑ ◦ ∂A/K = ∂A′/K′ ◦ ϕ,

where ∂A′/K′ is the K′-derivation of A′ into the A′-module ΩK′(A′) of germs
of Kähler differentials of A′.

Proof. First let us note that ΩK′(A′) is an A-module by composing ϕ with
the K′-derivation ∂A′/K′ . That ∂A′/K′ ◦ ϕ : A −→ ΩK′(A′) is a K-derivation
is clear; the existence and uniqueness of ϑ follow from Theorem 3.2

We shall denote the A-morphism ϑ of Lemma 4.1 by Ω(ϕ); clearly, if
K′′ is a sheaf of commutative rings, A′′ a sheaf of K′′-algebras via a sheaf
morphism η′′, ψ′ : K′ −→ K′′ and ϕ′′ : A′ −→ A′′ are ring and algebra sheaf
morphisms, respectively, such that

η′ ◦ ψ = ϕ ◦ η, η′′ ◦ ψ′ = ϕ′ ◦ η′,

then
Ω(ϕ′ ◦ ϕ) = Ω(ϕ′) ◦ Ω(ϕ).

By considering the canonical A-morphism

ιA : ΩK(A) −→ ΩK(A)⊗A A′,

which is the sheafification of the canonical Γ(A)-morphism

Γ(ιA) : Γ(ΩK(A)) −→ Γ(ΩK(A))⊗Γ(A) Γ(A′)

such that, for any U ∈ τX and section s ∈ Γ(ΩK(A))(U) ≡ Γ(U,ΩK(A)),

Γ(ιA)(s) = s⊗ 1,
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where 1 ∈ Γ(A′)(U) ≡ A′(U) is the identity section of A′ over U , we obtain
a Γ(A′)-morphism

Γ(Ω0(ϕ)) : Γ(ΩK(A))⊗Γ(A) Γ(A′) −→ Γ(ΩK′(A′))

such that
Γ(Ω(ϕ)) = Γ(Ω0(ϕ)) ◦ Γ(ιA).

If
Ω(ϕ) := SΓ(Ω(ϕ)), Ω0(ϕ) := SΓ(Ω0(ϕ)),

we have that

Ω0(ϕ) : Γ(ΩK(A))⊗Γ(A) Γ(A′) −→ ΩK′(A′)

is the A′-morphism such that

Ω(ϕ) = Ω0(ϕ) ◦ ιA.

Theorem 4.1 below allows us to construct a commutative diagram of
sheaves involving sheaves of germs of K-derivations and sheaves of morphisms
on A-modules of germs of K-differentials. In order to achieve this, we first
examine the theorem in question. We note hereby that algebra sheaves A
and B of Theorem 4.1 are arbitrary, that is, not necessarily associative and
unital.

Theorem 4.1 Let A, B be algebra sheaves, E a locally free left A-module (in
other words, a vector sheaf) of rank m, and G a left B-module. Moreover, let
F be a (B,A)-bimodule such that, as a left B-module, F is locally free and
of rank n. Then,

HomA(E ,HomB(F ,G)) = HomB(E ⊗A F ,G) (22)

within an isomorphism of group sheaves.

Proof. Let U and V be local frames (see [5, p. 126, Definition 4.2]) of E and
F , respectively. That W ≡ U ∩V := {U ∩ V : U ∈ U , V ∈ V} is a common
local frame of E and F is clear. So, if U ∈ W , then, applying [5, p. 137,
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(6.22), (6.23), (6.24’)] and the fact that HomB(F ,G) is a left A-module, one
has the following A|U -isomorphisms:

HomA(E ,HomB(F ,G))|U = HomA|U (Am|U ,HomB|U (Bn|U ,G|U))

= HomA|U (Am|U ,HomB|U ((B|U)n,G|U)),

that is,
HomA(E ,HomB(F ,G))|U = Gmn|U . (23)

In the same way, one shows that

HomB(E ⊗A F ,G)|U = Gmn|U (24)

within a B|U -isomorphism. On the other hand, for any open subset W of X,
one has the following morphism

HomA|W (E|W ,HomB(F ,G)|W )
ϕW // HomB|W (E|W ⊗A|W F|W ,G|W ),

which is given by

ϕW (α)(s⊗ t) := (αZ(s))Z(t) ≡ α(s)(t),

where α ∈ HomA|W (E|W ,HomB(F ,G)|W ), s ∈ (E|W )(Z) = E(Z), t ∈ F(Z),
with Z a subopen of W . Clearly, the family ϕ ≡ (ϕW )W∈τX yields an A-
morphism. We shall indeed show that the sheafification S(ϕ) ≡ ϕ̃ of ϕ is an
A-isomorphism. For this purpose, we notice that, by virtue of (23) and (24),

HomA(E ,HomB(F ,G))x = Gmnx = HomB(E ⊗A F ,G)x, (25)

for any x ∈ X. The equalities in (25) are valid up to group isomorphisms.
Furthermore, as

HomA(E ,HomB(F ,G))x = HomAx(Ex,HomB(F ,G)x)

and
HomB(E ⊗A F ,G)x = HomBx(Ex ⊗Ax Fx,Gx),

for any x ∈ X, ϕx is an Ax-isomorphism (see [1, p. 198, Theorem 15.6]).
Whence, by [5, p. 68, Theorem 12.1], ϕ is an A-isomorphism, and the proof
is complete.

In particular, we have.
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Corollary 4.1 Let K be a sheaf of commutative rings, A a K-algebra sheaf
such that its corresponding A-module ΩK(A) of germs of K-differentials is a
vector sheaf, B an arbitrary K-algebra sheaf and E a B-module. Then,

HomB(ΩK(A)⊗ B, E) = HomA(ΩK(A), E) (26)

within an isomorphism of group sheaves.

Lemma 4.2 Suppose the conditions of Lemma 4.1, where the K-algebra
sheaf A is such that its A-module ΩK(A) of germs of K-differentials is a
vector sheaf. Then, for every A′-module E ′, the diagram

HomA′(ΩK′(A′), E ′)
Hom(Ω0(ϕ),1E′ )//

σA′

��

HomA′(ΩK(A)⊗A A′, E ′)
σA◦rA

��
DK′(A′, E ′)

C(ϕ)
// DK(A, E ′),

where, for any open U ⊆ X, C(ϕ)U : DK′(A′, E ′)(U) −→ DK(A, E ′)(U) is
given by

C(ϕ)U(D) := D ◦ (ϕ|U),

σA′ : HomA′(ΩK′(A′), E ′) ' DK′(A′, E ′), σA : HomA(ΩK(A), E ′) ' DK(A, E ′)
and rA : HomA′(ΩK(A) ⊗A A′, E ′) ' HomA(ΩK(A), E ′) are the canonical
sheaf isomorphisms, commutes.

Proof. Fix an open set U in X, and let ϑ ∈ HomA′(ΩK′(A′), E ′)(U) =
HomA′|U (ΩK′(A′)|U , E ′|U). For every ϑ ∈ HomA′(ΩK′(A′), E ′)(U), by defini-
tion, one has

(Hom(Ω0(ϕ), 1E ′))U(ϑ) := ϑ ◦ Γ(Ω0(ϕ))|U ≡ ϑ ◦ Ω0(ϑ)|U .

One the other hand, for any α ∈ HomA′(ΩK(A)⊗A A′, E ′)(U),

(rA)U(α) := α ◦ Γ(ιA)|U ≡ α ◦ (ιA)|U .
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Thus, one has

(σA ◦ rA ◦ Hom(Ω0(ϕ), 1E ′))U(ϑ) = (σA ◦ rA)U(ϑ ◦ Ω0(ϕ)|U)
= (σA)U(ϑ ◦ Ω0(ϕ)|U ◦ (ιA)|U)
= ϑ ◦ Ω0(ϕ)|U ◦ (ιA)|U ◦ (∂A/K)|U
= ϑ ◦ (Ω(ϕ))|U ◦ (∂A/K)|U
= ϑ ◦ (∂A′/K′)|U ◦ ϕ|U
= C(ϕ)U(ϑ ◦ (∂A′/K′)|U)
= (C(ϕ)U ◦ (σA′)U)(ϑ).
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