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Within

 

the

 

proposed

 

method,

 

a

 

set

 

of

 

experimental

 

data

 

points

 

are

 

fitted

 

using

 

a

 

multi-channel

 

S-
matrix.

 

Then

 

the

 

resonance

 

parameters

 

are

 

located

 

as

 

its

 

poles

 

on

 

an

 

appropriate

 

sheet

 

of

 

the

 

Riemann

 

surface

 

of

 

the

 

energy.

 

The

 

main

 

advantage

 

of

 

the

 

method

 

is

 

that

 

the

 

S-matrix

 

is

 

constructed

 

in

 

such

 

a

 

way

 

that

 

it

 

has

 

proper

 

analytic

 

structure,

 

i.e.

 

for

 

any

 

number

 

of

 

two-body

 

channels,

 

the

 

branching

 

at

 

all

 

the

 

channel

 

thresholds

 

is

 

represented

 

via

 

exact

 

analytic

 

expressions

 

in

 

terms

 

of

 

the

 

channel

 

momenta.

 

The

 

way

 

the

 

S-matrix

 

is

 

constructed

 

makes

 

it

 

possible

 

not

 

only

 

to

 

locate

 

multi-channel

 

resonances

 

but

 

also

 

to

 

extract

 

their

 

partial

 

widths

 

as

 

well

 

as

 

to

 

obtain

 

the

 

scatter-ing

 

cross-section

 

in

 

the

 

channels

 

for

 

which

 

no

 

data

 

are

 

available.

 

The

 

efficiency

 

of

 

the

 

method

 

is

 

demonstrated

 

by

 

two

 

model

 

examples

 

of

 

a

 

single-channel

 

and

 

a

 

two-channel

 

problems,

 

where

 

known

 

resonance

 

parameters

 

are

 

rather

 

accurately

 

reproduced

 

by

 

fitting

 

the

 

pseudo-data

 

artificially

 

generated

 

using

 

the

 

corresponding

 

potentials.
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1. Introduction

Quantum resonances play an important role in theoretical description and intu-

itive understanding of physical processes taking place in the microscopic world of

molecules, atoms, nuclei and various nano-systems. This is why locating the corre-

sponding spectral points E = Er −
i
2Γ, i.e., determining the resonance parameters,

Er (resonance energy) and Γ (resonance width), is an indispensable part of any

theoretical modeling as well as of an analysis of scattering data.
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From the theoretical point of view, the resonances, being complex-valued eigen-

energies of the Hamiltonian, are not easy to locate. For each angular momentum,

they appear as regular sequences of points on the so-called nonphysical sheet of the

complex energy surface (see, for example, Ref. 1). The influence of these resonances

on the corresponding partial-wave cross-section depends not only on their distribu-

tion over the energy surface but also on the corresponding S-matrix residues.2–5

The analysis of scattering data, i.e., phenomenological extraction of resonance

parameters, is perhaps even more difficult than their theoretical determination.

Indeed, a measured cross-section is the sum of all partial-wave cross-sections, where

the effects of all possible resonances add together. Therefore, the sharp structures

corresponding to individual resonances, may overlap and smear out their discrete

character. Such an overlap very often happens even with resonances belonging to

the same partial wave.

In a phenomenological search for resonances, the first step usually consists in

performing the so-called phase-shift analysis,1,6,7 i.e., in obtaining numerical val-

ues of the partial-wave phase shifts or the corresponding reaction amplitudes, for a

set of collision energies. Then the amplitudes known on the real axis, are analyti-

cally continued onto the complex-energy Riemann surface, where the resonances are

identified as their singularities. Various methods differ in the way such an analytic

continuation is done.1

The basic idea underlying the majority of existing approaches of this type, con-

sists in fitting the experimental points with curves obtained from a phenomenolog-

ical scattering amplitude, where possible resonance poles are artificially embedded

by hand and their complex energies serve as the fitting parameters. The most sim-

ple of such approaches is the Breit–Wigner parametrization.8 Another version of

the same approach is based on the Fano parametrization,9 where the amplitude is

split into the resonant and background parts, which makes it more realistic and

allows one to treat more complicated “zigzags” of the cross-section. In nuclear and

particle physics, the resonances are usually introduced into the fitting procedure via

a model propagator with explicit singularities at complex energies (unitary isobar

model).10,11

Many authors emphasize (see, for example, Chap. 6 in Ref. 1 and references

therein as well as a more recent publication12) that for a reliable analytic continua-

tion of the scattering amplitude (or S-matrix) it is very important to construct its

phenomenological expression preserving proper analytic structure, i.e., its branching

points, various symmetries, etc. This can easily be achieved for the single-channel

problems and with some effort for two-channel ones (Dalitz–Tuan representation).13

However, when the number of channels is three or more, constructing the S-matrix

with correct branching at all the thresholds becomes extremely difficult within the

traditional approaches.13,14

In the present paper, we resolve this difficulty. For obtaining the S-matrix, we

use the structure of the Jost matrix derived in our early publications,15,16 where

all the factors responsible for the branching are given analytically for an arbitrary
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number of channels. This enables us to perform the analytic continuation and the

search for resonances in a model-independent way, i.e., without embedding the

resonance poles by hand.

2. Jost Matrices

Consider anN -channel collision process that can symbolically be written as a chem-

ical or nuclear reaction,

A+B →











A+B ,

C +D ,

. . . ,

with two-body systems in both the initial and final states. We assume that the

interaction forces for these systems are of a short-range type, i.e., at large distances

(r → ∞) they decay faster than the Coulomb force. The wave function describing

such a process at the collision energy E is a column matrix,

Ψ(E, r) =







ψ1(E, r)

ψ2(E, r)

. . .






,

where each of the N lines corresponds to a separate channel. The channels are

characterized not only by the type of the particles (A + B, C +D, etc.) but also

by the complete sets of channel quantum numbers (such as the threshold energy,

angular momentum, spin, etc.). In other words, any two states of the system that

differ by at least one quantum number are considered as different channels even if

the type of the particles and the threshold energies are the same. This means that

a channel state has a definite value of the angular momentum and thus its angular

dependence can be factorized as

ψn(E, r) =
un(E, r)

r
Yℓnmn

(θ, ϕ) .

The set of radial wave functions un obey the coupled system of radial Schrödinger

equations,

[

∂2r + k2n −
ℓn(ℓn + 1)

r2

]

un(E, r) =
2µn

~2

N
∑

n′=1

Vnn′(r)un′ (E, r) , (1)

where the coupling is due to the off-diagonal elements of the interaction-potential

matrix Vnn′ . In Eq. (1), the channel momentum,

kn =

√

2µn

~2
(E − En) , (2)

is determined by the difference between the total energy E and the channel thresh-

old En, as well as by the reduced mass µn in the channel n.
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Each of the N equations of the set (1) is of the second-order. In the theory of

differential equations (see, for example, Ref. 17) it is shown that such a set has 2N

linearly independent solutions, i.e., 2N linearly independent columns that form a

basis in the solution space, and only half of these columns are regular at r = 0.

The regular columns can be combined in a square matrix Φ(E, r), which is called

the fundamental matrix of regular solutions. Since a physical wave function must

be regular, it is a linear combination of the columns of the matrix Φ(E, r).

When the particles move away from each other (r → ∞), the potential matrix

tends to zero and thus the right-hand side of Eq. (1) vanishes. The remaining set

of N second-order (Riccati–Bessel) equations,

[

∂2r + k2n −
ℓn(ℓn + 1)

r2

]

un(E, r) ≈ 0, r → ∞ , (3)

has 2N linearly independent column-solutions. These 2N columns can be combined

in two diagonal square matrices,

W (in) =















h
(−)
ℓ1

(k1r) 0 · · · 0

0 h
(−)
ℓ2

(k2r) · · · 0

...
...

...
...

0 0 · · · h
(−)
ℓN

(kNr)















, (4)

W (out) =















h
(+)
ℓ1

(k1r) 0 · · · 0

0 h
(+)
ℓ2

(k2r) · · · 0

...
...

...
...

0 0 · · · h
(+)
ℓN

(kN r)















(5)

that involve the Riccati–Hankel functions h
(±)
ℓ (kr) and represent the in-coming and

out-going spherical waves in all N channels.

The 2N columns of the matrices (4) and (5) constitute a basis in the solution

space at large distances and thus each column of the fundamental matrix Φ(E, r)

is their linear combination when r → ∞. This can be written as

Φ(E, r) −→
r→∞

W (in)(E, r)F (in)(E) +W (out)(E, r)F (out)(E) , (6)

where the combination coefficients are combined in the square matrices F (in)(E)

and F (out)(E). They are functions of the energy and are called the Jost matrices.

The S-matrix that completely determines all the scattering observables, is ex-

pressed via the Jost matrices (the details can be found, for example, see Chap. 20

in Ref. 18 or in Refs. 2, 16, 19 and 20),

S(E) = F (out)(E)[F (in)(E)]−1 . (7)
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The resonances are those spectral points

E = Er −
i

2
Γ, Er > 0, Γ > 0 , (8)

on the Riemann surface of the energy, where

detF (in)(E) = 0 . (9)

The energy surface has a square-root branching point at every channel threshold

En. This is because the Jost matrices depend on the energy E via the channel

momenta (2) and for each of them there are two possible choices of the sign in

front of the square root. The resonance spectral points are located on the so-called

nonphysical sheet of this Riemann surface, i.e., such a layer of the surface where all

the channel momenta have negative imaginary parts. In the numerical calculations,

the choice of the sheet is done by an appropriate choice of the signs in front of the

square roots (2).

3. Analytic Structure of the Jost Matrices

In the present paper, our main goal is to find a way of a reliable parametrization

of experimental data, such that it would allow us to locate the resonance spectral

points at complex energies. As we described in the previous section, the multi-

channel S-matrix has very complicated energy dependence via the channel momenta

and therefore is defined on a Riemann surface with an intricate connection of many

layers. This means that a straightforward parametrization of such a matrix using

an arbitrarily chosen functional form may give erroneous results. When choosing

the parametrization form, it is important to take into account as much information

on the symmetry properties and analytic structure of the S-matrix as possible.

First of all, we notice that the S-matrix is a kind of “ratio”, given by Eq. (7),

of the Jost matrices F (out) and F (in), which are not completely independent of

each other but rather are somehow related. In other words, the parameters in the

“numerator” and “denominator” of (7) should be the same. Indeed, as we found

in Ref. 16, for the systems interacting via short-range potentials, the Jost matrices

have the following structure:

F (in)
mn (E) =

kℓn+1
n

kℓm+1
m

Amn(E)− ikℓmm kℓn+1
n Bmn(E) , (10)

F (out)
mn (E) =

kℓn+1
n

kℓm+1
m

Amn(E) + ikℓmm kℓn+1
n Bmn(E) , (11)

where the energy-dependent matrices A(E) and B(E) are the same for both F (in)

and F (out). Moreover, in the same Ref. 16, it was established that the matrices A(E)

and B(E) are single-valued analytic functions of the energy defined on a single one-

layer energy plane. In other words, the matrices A(E) and B(E) are the same for

all the sheets of the Riemann surface and all the complications stemming from the

branch points are isolated in Eqs. (10) and (11) via the explicit factors depending on
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the channel momenta. Therefore, by using the expressions (10) and (11) in Eq. (7),

we guarantee that the “numerator” is properly related to the “denominator” (which

means guaranteed unitarity on the real axis) and that all the branching points are

properly embedded. If we find an adequate parametrization of the matrices A(E)

and B(E), the resulting S-matrix will automatically have correct values on all the

sheets of the Riemann surface.

Introducing the diagonal matrices

P = diag{k1, k2, . . . , kN} , (12)

Q = diag{kℓ11 , k
ℓ2
2 , . . . , k

ℓN
N } , (13)

we can rewrite Eqs. (10) and (11) in the following matrix form:

F (in/out) = (QP )−1AQP ∓ iQBQP =
[

(QP )−1A∓ iQB
]

QP (14)

and therefore

S = [(QP )−1A+ iQB][(QP )−1A− iQB]−1

= (1 + iQBA−1QP )(1− iQBA−1QP )−1 , (15)

which gives us the well-known K-matrix representation with K = QBA−1QP . It is

seen that in contrast to the matrices A and B, the K matrix involves odd powers

of the channel momenta and therefore K(E) is not a single-valued function of the

energy.

Since the matrices A(E) and B(E) are analytic functions of the variable E, they

can be expanded in their Taylor series,

A(E) =
∞
∑

n=0

(E − E0)
nan(E0), B(E) =

∞
∑

n=0

(E − E0)
nbn(E0) , (16)

near an arbitrary point E0 within the domain of their analyticity. Here the expan-

sion coefficients an and bn are matrices of the same dimension as A and B. They

depend on the choice of the point E0.

In Ref. 16, it was shown that for a given potential the expansion coefficients

an and bn can be obtained as the asymptotic values of the solutions of certain

set of differential equations. In the present paper, we are not going to calculate

these coefficients since we assume that the potential is not known. Instead, we will

use an and bn as fitting parameters in order to reproduce experimental scattering

cross-section. As soon as the optimal expansion coefficients corresponding to the

experimental data are found, we can use them to obtain the matrices A(E) and

B(E) and through them the Jost matrix F (in)(E) given by Eq. (10). Then we can

locate the resonances as the complex roots of Eq. (9).

Although we are not going to calculate the expansion coefficients, the fact that

they are solutions of certain differential equations derived in Ref. 16 is important.

Indeed, those differential equations have real boundary conditions and all their

coefficients are real if E0 is chosen on the real axis. This means that for real E0 the
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matrices an and bn do not have imaginary parts, i.e., the total number of fitting

parameters is 2(M + 1)N2 where N is the matrix dimension (number of channels)

and M is the highest power in the truncated expansions

A(E) ≈
M
∑

n=0

(E − E0)
nan(E0), B(E) ≈

M
∑

n=0

(E − E0)
nbn(E0) . (17)

If the central point E0 of the expansion is taken not on the real axis, then the

number of the parameters we have to fit is doubled.

The approximate expansions (17) can only be accurate within a circle around

E0. In Ref. 16, it is demonstrated how the radius of such a circle increases with

the number of terms taken into account. When using this approach to extract the

resonance parameters from experimental cross-section, we therefore should not fit

the data within a too wide energy-interval. The central point E0 must be placed

somewhere in the middle of the interval where it is expected to find a resonance.

An adequate width of the interval around E0 unfortunately cannot be estimated.

It is necessary to repeat the analysis with several different widths and decide on

the basis of stability of the results thus obtained.

4. Fitting Procedure

Suppose, we have sets of experimental data for several channels, m→ n, m′ → n′,

etc.:

σmn(E
(mn)
i ) ± δ

(mn)
i ,

σm′n′(E
(m′n′)
j ) ± δ

(m′n′)
j ,

...

i = 1, 2, 3, . . . , N (mn) ,

j = 1, 2, 3, . . . , N (m′n′) .

...

Here σmn and δ(mn) are the cross-section in the channel m → n and the corre-

sponding standard deviation while the energy interval covered by the points E
(mn)
i

is around the energyE0 where we expect to find a resonance. In order to parametrize

the Jost matrix, we construct the χ2 function

χ2 =

N(mn)
∑

i=1

[

σmn(E
(mn)
i )− σfit

mn(E
(mn)
i )

δ
(mn)
i

]2

+

N(m′
n
′)

∑

j=1

[

σm′n′(E
(m′n′)
j )− σfit

m′n′(E
(m′n′)
j )

δ
(m′n′)
j

]2

+ · · · , (18)

where the fitting cross-section for the channel m→ n

σfit
mn(E) =

π

k2m
(2ℓm + 1)|Snm(E)− δnm|2 (19)

depends on the expansion coefficients of (17) via Eqs. (10), (11) and (7). These

coefficients therefore serve as the fitting parameters.
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The time-reversal invariance leads to the so-called detailed balance theorem

which means that the S-matrix is symmetric with respect to the transposition, i.e.,

Smn = Snm. If we simply minimize the χ2-function given by Eq. (18), this symmetry

is not guaranteed. If N is the number of channels (the dimension of the matrices),

then the symmetry gives us (N2 − N)/2 equations (the number of the elements

above the diagonal of the matrix) relating the variational parameters. By solving

this set of equations, we can reduce the number of such parameters. Although the

equations are not simple, this can always be done numerically for any reasonable

value of N .

There is a simpler way to make the S-matrix symmetric although it re-

quires to vary a bit more parameters. A set of the optimal parameters

a0, a1, . . . , aM , b0, b1, . . . , bM that give a symmetric S-matrix, can be obtained by

minimizing the generalized χ2-function

X 2(a0, a1, . . . , aM , b0, b1, . . . , bM ) = χ2 +
∑

m<n,j

|Smn(Ej)− Snm(Ej)|
2 , (20)

where at all experimental points the differences between the off-diagonal elements

are included.

After finding the optimal parameters, we obtain analytic expressions for the Jost

matrices and the S-matrix, valid within a circle around E0 on all the sheets of the

Riemann surface. Using these expressions, we should be able not only to locate the

nearest resonances but also to calculate the cross-sections in all the other channels

for which we do not have experimental data.

5. Examples

The proposed procedure for parametrizing experimental cross-section and thus

locating the resonances needs to be demonstrated by a couple of simple and clear

examples. In such examples, we should know the resonance parameters beforehand.

This will give us confidence in the validity of the procedure.

As examples, we choose the well-known and well studied one- and two-channel

models specified by certain potentials (see Secs. 5.1 and 5.2). We use these po-

tentials to artificially generate pseudo-data points around the energies where they

support resonances, and then try to recover these resonances using the suggested

parametrization method. Since the exact values of the resonance parameters are

known, this shows us how reliable the proposed method is.

5.1. Single-channel model

The simple potential barrier given by

V (r) = 7.5r2e−r (21)

is very often used as a testing ground for new theoretical methods.21 In this model,

the units are such that ~
2/µ = 1 and thus the energies as well as the distances

8
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single channel:

data
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t
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t

t

t
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t

t

t

t

t

t

t

t

Fig. 1. Artificial data points for the single-channel model (21).

are dimensionless. It has a rich spectrum of resonances. The first two of them with

ℓ = 0 are22

Eexact
1 = 3.426390−

i

2
0.025549 , (22)

Eexact
2 = 4.834807−

i

2
2.235753 . (23)

Let us assume that we are given experimental S-wave scattering cross-section for a

single-channel system in the energy interval 3 < E < 4.5 as shown in Fig. 1. Actu-

ally, these 15 points are generated using the potential (21), along the corresponding

exact cross-section shown in Fig. 2 (thin curve), which has a sharp zigzag near very

narrow first resonance (22).

In order to fit the data, we use the approximate expressions (17) with E0 = 3.4

and M = 5. Being substituted into Eqs. (10) and (11), they give us the Jost

functions, from which we obtain the S-matrix (7) and finally the cross-section (19).

As we mentioned before, for a real E0 the coefficients (fitting parameters) an and bn
are also real. This means that we have to adjust 12 parameters that minimize the

χ2-function of the type (18) where only single elastic channel is taken into account.

As the minimization tool, we used well-known program “MINUIT” from the

CERN library.23,24 In order to avoid the situation when we are stuck in a local

minimum, we repeated the minimization procedure several hundreds of times with

randomly chosen initial values of the parameters and took the best fits. The best

minimum we found was with χ2 = 1.5× 10−6. The result of this fitting is shown in

9
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E
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0.5
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1.5
single channel:

data fit

exact −→

↑
fit

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Fig. 2. Exact cross-section (thin curve) for the single-channel model (21) and the result of fitting
of the data (thick curve) with M = 5 and E0 = 3.4 in Eq. (17).

Fig. 2 (thick curve). There is no visible difference between the exact (thin curve) and

fitted curve not only within the interval 3 < E < 4.5 covered by the pseudo-data

points, but also at the nearby points to the left and to the right of that interval.

This is because we use proper analytic structure of the fitting S-matrix.

With the parameters thus found, we located two zeros (9) of the function (10)

nearest to the real axis. They gave us the approximate (recovered from experimental

data) resonance energies:

Efit
1 = 3.426388−

i

2
0.025531 , (24)

Efit
2 = 4.821657−

i

2
2.036732 . (25)

Comparing them with the corresponding exact values (22) and (23), we see that

the result of fitting is very accurate for the S-matrix not only on the real axis but

also in a nearby domain of the complex E-surface. Actually, when choosing the

pseudo-data points we did not expect to reproduce the second resonance which is

rather far away from the real axis.

In addition to finding the optimal values of the parameters, the minimization

program “MINUIT” provides statistical errors (standard deviations) for them. This

is done by calculating the matrix of partial derivatives of the minimized function

with respect to all the parameters.23,24 Using these statistical errors, we can esti-

mate the corresponding errors of the resonance parameters we found.
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To this end, we considered the optimal values of the parameters as their mean

values and randomly varied all the parameters around these values using a random-

number generator with a Gaussian distribution of the width equal to the statistical

errors. For each random choice of the parameters, we located zeros of the Jost

function and then calculated their mean values and the standard deviations. After

1000 variations, we obtained

Efit
1 = (3.4263± 0.0054)−

i

2
(0.026± 0.010) , (26)

Efit
2 = (3.81± 0.45)−

i

2
(1.5± 1.1) . (27)

As one would expect, the reliability of the recovery of the second resonance is not

as good as for the first one (around which the pseudo-data points were taken). We,

however, had not even expected to recover the second resonance at all.

5.2. Two-channel model

The two-channel potential,

V (r) =

(

−1.0 −7.5

−7.5 7.5

)

r2e−r , (28)

of famous Noro and Taylor model25 extends the single-channel potential of Sec. 5.1.

It is written in the same dimensionless units with equal reduced masses µ1 = µ2

and angular momenta ℓ1 = ℓ2 = 0 in both channels. The threshold energies for the

channels are E1 = 0 and E2 = 0.1.

The first three resonances of the Noro–Taylor model are given in Table 1 (the

calculations can be found, for example, in Ref. 2). Other resonances supported by

the potential (28), are too wide and therefore too far from the real axis.

Since in the previous section we already demonstrated how the method works

for a narrow resonance, considering the two-channel model, we focus our attention

on the second resonance of Table 1, which is rather wide. We took pseudo-data data

in the elastic channels 1 → 1 and 2 → 2 within the energy interval 5 < E < 9. If

one considers this segment of the real axis as the diameter of a circle in the complex

plane, then such a circle will include the resonance point which we are looking for.

Table 1. The exact resonance energies and widths of
the first three resonances generated by the potential
(28). Γ1 and Γ2 are the partial widths for the decays
into the first and the second channel, respectively.

Er Γ Γ1 Γ2

1 4.768197 0.001420 0.000051 0.001369
2 7.241200 1.511912 0.363508 1.148404
3 8.171217 6.508332 1.596520 4.911812
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Fig. 3. Artificial data points for the first elastic channel of the model (28).
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Fig. 4. Artificial data points for the second elastic channel of the model (28).

The artificial data points (25 in the 1 → 1 and 25 in the 2 → 2 channels) are shown

in Figs. 3 and 4.

In the same way as for the single-channel model, these 50 data points were fitted

using the approximate matrices (17) with M = 5 and real E0 = 7.25. In such a case

the matrices (17) are real and in total we have to adjust 48 parameters (matrix

elements of an and bn) in order to minimize the generalized χ2-function (20). After

a thousand attempts with randomly chosen initial values for an and bn, the best

value of the minimum we found was X 2 = 1.9× 10−4.

The results of this fitting are shown in Figs. 5 and 6 (thick curves). With the

rather small value of the X 2 achieved, there are no visible difference between the

exact (thin curves) and fitted curves within the interval covered by the pseudo-data

points. However, the extremely sharp (first) resonance to the left of this interval is

missing since there are no data points reflecting it.
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Fig. 5. Exact elastic cross-section 1 → 1 (thin curve) for the two-channel model (28) and the
result of fitting of the data (thick curve) with M = 5 and E0 = 7.25 in Eq. (17).
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Fig. 6. Exact elastic cross-section 2 → 2 (thin curve) for the two-channel model (28) and the
result of fitting of the data (thick curve) with M = 5 and E0 = 7.25 in Eq. (17).

Using the same approximate (fitted) Jost matrices, we calculated the cross-

sections for the transition processes 1 → 2 and 2 → 1, for which no data points

were taken. In Figs. 7 and 8, the comparison of the approximate (thick) and exact

(thin) curves shows that we are able to rather accurately predict the cross-section in

one channel of the reaction on the basis of the data available in the other channels.

Looking for the zero (nearest to E0) of the determinant of the fitted Jost matrix,

we found the following resonance:

Efit
2 = 7.250742−

i

2
1.513332 , (29)

which is very close to its exact location (see the second line of Table 1).

In order to find the partial widths, we use the method described in Ref. 2, where

it was shown that the ratio of the partial widths can be found using the matrix

13
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Fig. 7. Exact inelastic cross-section 1 → 2 (thin curve) for the two-channel model (28) and the
prediction (thick curve) based on fitting of the data in the energy interval 5 < E < 9 in the elastic
channels 1 → 1 and 2 → 2 with M = 5 and E0 = 7.25 in Eq. (17).
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Fig. 8. Exact inelastic cross-section 2 → 1 (thin curve) for the two-channel model (28) and the
prediction (thick curve) based on fitting of the data in the energy interval 5 < E < 9 in the elastic
channels 1 → 1 and 2 → 2 with M = 5 and E0 = 7.25 in Eq. (17).

elements of the Jost matrices, namely,

Γ1

Γ2
=

∣

∣

∣

∣

∣

F
(out)
11 F

(in)
22 − F

(out)
12 F

(in)
21

F
(out)
22 F

−(in)
11 F

(out)
21 F

−(in)
12

∣

∣

∣

∣

∣

E=E

. (30)

Together with the fact that Γ1 +Γ2 = Γ, the knowledge of the Jost matrices allows

us to easily find Γ1 and Γ2. For the result (29), this gives

Γfit
1 = 0.347732, Γfit

2 = 1.165600 . (31)

These values reasonably well reproduce the corresponding exact partial widths given

in Table 1.

In the same way as for the single-channel case, we randomly varied (1000 times)

the optimal parameters an and bn, using the errors provided by the “MINUIT”,

and found the following mean values of the resonance energy and widths together

with the corresponding standard deviations:

Efit
2 = (7.25± 0.29)−

i

2
(1.09± 0.54) , (32)

Γfit
1 = 0.35± 0.34, Γfit

2 = 0.74± 0.52 . (33)
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Although the third resonance is too wide and far away from the point E0, we made

an attempt to locate it using the same optimal expansion parameters. What we

have found,

Efit
3 = 8.857247−

i

2
2.847466 ,

significantly underestimates the width. This is not surprising, of course. The trun-

cated series (17) can only be accurate within certain circle around E0. In order to

recover the third resonance one has to either take more terms in the series (17) or

shift the point E0 (the center of expansion) down in the complex plane. In both

cases the number of fitting parameters would increase.

6. Conclusion

The proposed method is based on using the proper analytic structure of the

parametrized S-matrix that is used to fit experimental data. This mathematical

correctness guarantees that after fitting the data, we obtain the S-matrix that is

valid in all the channels, even in those where no data are available. This means

that we can obtain the cross-section for the channels, which are experimentally

inaccessible, using the data in the other channels.

The S-matrix properly fitted to the data for real energies is also valid at the

nearby complex energies. This enables us to extract the resonance parameters as the

real and imaginary parts of the zeros of the Jost matrix determinant that coincide

with the S-matrix poles. In addition to the total Γ, we are able to rather accurately

obtain the channel partial widths.

The most important limitation of the method described in this paper, is the fact

that in its present form the method is only applicable to the systems with short-

range interaction forces. A rigorous extension of the method that would include the

Coulomb forces, could be done in a way similar to the one described in Ref. 16. This

however would require a modified, much more complicated expression for the Jost

matrix where all the nonanalytic factors (square-root and logarithmic branching

points etc.) are explicitly factorized.

The other limitation is the nonrelativistic character of the theory used to con-

struct the S-matrix. Although the method can still be used in a very wide range

of problems dealing with low-energy atomic and molecular collisions, its possible

applications in the intermediate- and high-energy particle physics would require

relativistic corrections. This could be done in a way that is customary for those

who work with mesons, namely, via using relativistic kinematics. For example, the

nonrelativistic channel momenta (2) in the Jost matrices (10) and (11) can be

replaced with the corresponding relativistic ones,

kn =
1

~

√

2µn(Ekin − En) +

(

Ekin − En

c

)2

,

where Ekin = c
√

p2 + µ2c2 − µc2 is the kinetic (collision) energy.
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If one accepts the approximate approaches that are traditional for meson-nuclear

physics, then using such relativistic momenta in our S-matrix that has the correct

analytic structure, would be appropriate. Then in a similar simplified fashion the

Coulomb corrections could also be introduced as it is done, for example, in Ref. 26,

where theK-matrix for a short-range interaction is simply multiplied by a Coulomb-

barrier factor C2
ℓ (η). In our case, this trick is equivalent to multiplication of the

matricesA and B in Eqs. (10) and (11) by 1/Cℓ(η) and Cℓ(η), respectively. The logic

behind this is that for charged particles the Riccati–Bessel and Riccati–Neumann

functions jℓ(kr) and yℓ(kr) are replaced with the corresponding Coulomb functions

Fℓ(η, kr) and Gℓ(η, kr), which at short distances differ from jℓ and yℓ by the factors

Cℓ and C−1
ℓ , and the matrices A and B are the factors combining jℓ and yℓ into

the regular solution (see Eq. (41) of Ref. 16). Of course, this kind of relativistic and

Coulomb corrections are not rigorously justified. However, their usage in meson-

nuclear physics is based on some reasonable intuitive argumentation and proved to

be working in practical applications.
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