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ABSTRACT 
A new turbulence model K-ε-Vn for high-speed 

compressible flows is developed. It is based on modelling  of 
the rapid part of pressure-strain correlation depending on Mach 
number and on the assumption that the velocity fluctuations 
normal to streamline play a key role in turbulent mixing 
process. Simulations of a plane supersonic mixing layers and of 
axisymmetrical high-speed jets are performed and comparison 
with the experimental data  shows reasonable agreement.  

 
INTRODUCTION 

The turbulence models developed for incompressible flows 
fail to describe high-speed compressible flows  very well.  As 
known, compressibility in high-speed flows  has a stabilizing 
influence on turbulence so that the intensity of turbulent mixing  
reduces  as Mach number  increases. 

This effect plays an important role in present-day problems 
of rocket and airspace engineering.  For example, in a 
supersonic combustion ramjet reduced turbulence levels can be 
highly detrimental as they reduce the rate at which fuel and 
oxidizer mix. Compressibility changes the nature of laminar-
turbulent boundary-layer transition over hypersonic vehicles 
during re-entry. 

According to the early works of Sarkar [1], Zeman [2], 
Molchanov [3,4] and others, it was assumed that 
compressibility effects may manifest themselves via the 
additional compressible dissipation.   Compressible dissipation 
occurs at the level of small-scale turbulence. 

However, the latest investigations (e.g.  S.Girimaji [5]) 
showed that the major impact of compressibility on turbulence 
is implemented on large-scale levels and is associated with the 
fact that the action of pressure is quite different at low and 
high-speed regimes.  Pressure-strain correlation scrambles the 
streamwise and stream-normal fluctuations leading to a low 
turbulent shear stress and decreased production. 

  

NOMENCLATURE 
 
a [m/s] Speed of sound 
b [m] Mixing-layer Thickness 
K [m2/s2] Turbulent  kinetic energy 

ijΚ  [Pa/s] Pressure–strain correlation 

M [-] Mach number 
Mr [-] Relative Mach Number 
MT [-] Turbulent Mach Number 
p [Pa] Pressure 
P [Pa/s] Production 
ui [m/s] Velocity components 

nV ′′  [m/s] Velocity fluctuation normal to the streamlines 

T [K] Temperature 
xi [m] Cartesian axes  
y0 [m] Mixing-layer Centerline 
 
Special characters 

ijδ  [-] Kronecker Delta Tensor 

ηδ  [-] Spreading rate of the jet 

ε [m2/s3] Dissipation rate   

ijε  [m2/s3] Dissipation Rate Tensor 

Tµ  [Pa s] Turbulent viscosity coefficient 

ρ  [kg/m3] Density 

uσ  [m/s] Deviation of Streamwise Reynolds Stress 

vσ  [m/s] Deviation of Cross-stream Reynolds Stress 

 
Subscripts 
0   Total values of parameters 
a  Nozzle exit 
C  Centerline value 
e  External flow, ambient 
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TURBULENCE MODEL 
The transport equations for the transport of the Reynolds 

stresses i ju u′′ ′′  at high Reynolds numbers may be written as 
follows [6]: 

 

.i j k i i ijk k ij ij ij
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u u u u u T P
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Dissipative term ijρε , taking into account local isotropy, is 

modeled as 
2

3ij ijε εδ=  (2) 

 Pressure–strain correlation ijΚ  is expressed in terms of 
divergence-free tensor 
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 which is divided into the slow ( )1
ijΠ  and rapid ( )2

ijΠ parts 
( ) ( )1 2

ij ij ijΠ = Π + Π  (4) 

It is assumed that the slow part ( )1
ijΠ , which has the 

physical sense of the  tendency towards isotropy and is 
associated with small-scale turbulence, may be expressed by 
the formula, which is valid for an incompressible fluid [6]: 
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where  constant 1 1.8C =  [6]. 

 The rapid part ( )2

ijΠ  is associated with large-scale 
turbulence. So this work is based on the supposition that the 

largest contribution toward the growth inhibition of mixing 
layers comes from it.  

The results of rapid distortion theory (RDT) obtained by 
Girimaji et al. [5] show that the following formula can be used 
for ( )2

ijΠ  
( ) ( )2

1 2 ,P

ij ij ijC C P
Π Π

Π = Π −  (6) 

and that the effect of pressure has three different regimes 
depending on Mach numbers:  

1) In low speed flows pressure assumes the role of 
enforcing incompressibility and is governed by a Poisson 
equation. A standard incompressible pressure-strain correlation 
without any modification can be used (denoted as ( )P

ijΠ ). In 

this regime: 1 21, 0.C C
Π Π
= =  

2) For an intermediate Mach numbers, both inertial and 
pressure terms are of the same order of magnitude: ij ijPΠ ≈ . 
It is shown in [5] that this regime leads to a stabilization of the 
turbulent kinetic energy growth rate. In this regime: 

1 20, 1C CΠ Π→ → . 
3) At very high Mach numbers pressure plays an entirely 

negligible effect compared to inertial terms such as ijP . 
Pantano and Sarkar [7] showed that for high speeds the finite 
speed of sound causes a time delay in the transmission of 
pressure signals in the flow. Therefore in this regime we may 
neglect the dominant terms in the pressure-strain correlation 

model: ( )2 0ijΠ ≈ . In this regime: 1 20, 0C CΠ Π= = . 
The main criterion used in this work  is turbulent Mach 

number 2 /TM K a= , and the following approximation by 
cubic piecewise polynomials is proposed for the functional 
dependencies 1 2,C CΠ Π :
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where  
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For modeling  ( )P
ijΠ  the simple formula is used [6]: 

( )
2

2

3
P

ij ij ijC δΠ = − Ρ − Ρ 
 
 

, (8) 

where constant 2 0.6C =  [6]. 
By taking the trace of equation (1) we obtain the transport 

equation for turbulent kinetic energy K: 
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- generation of turbulent kinetic 

energy; it is assumed that 0p d′ ′′ ≈ .  
It is supposed that equation for turbulent dissipation rate  ε    

has the standard form and is slightly modified from its standard 
form to be consistent with considering a suppressing effect of 
compressibility on generation: 
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Thus, a closed system of equations which allow to define 
the Reynolds stress in high-speed flows by solving the 
corresponding partial differential equations is obtained. 

However, it is complicated to solve this set of equations. Six 
Reynolds stress transport equations have to be solved 
simultaneously and it is a mathematical challenge. Besides 
there is obvious difficulty in specifying the boundary 
conditions of the six Reynolds stress. Based on some 
approximation, Reynolds stress partial differential transport 
equations may be simplified into algebraic expressions. 

In this work algebraic stress model (ASM) is built based on 
the following suppositions. 

It is assumed that convection and diffusion in Reynolds 
stress transport equations for the diagonal elements of the 
tensor are proportional to the corresponding terms in transport 
equation of the turbulent kinetic energy. In non-diagonal tensor 
components equations these values are  set  to be in balance. 
Hence we obtain the following algebraic equations for 
determining Reynolds stress: 
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Further simplification is obtained by using the assumption 

that the velocity fluctuations  normal to the streamline nV ′′  play 
the key role in the mechanism of turbulent mixing process. 

Let's consider a 2D flow in which the coordinate with a 
subscript "1" is directed along the streamline and the index "2" 
denotes the coordinate normal to the streamline. Obviously, the 
following is true in this case: 
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Then, from (1):  
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For the only non-diagonal component from (11) we find: 
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Besides: 
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For 
 2

2 2 / /nX u u K V K′′ ′′ ′′= =  we obtain a quadratic 
equation from the equations (12) and (16): 
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From (15) we obtain a formula for the shear stress in the 
familiar form: 

 1
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u
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, (19) 

where the turbulent viscosity coefficient is introduced 
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( ) 2 2

1 2 2

1

1 n
T
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µ ρ

ε
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= , (20) 

It is assumed that the turbulent viscosity coefficient 
obtained via formula (20) can be applied to ALL components 
of Reynolds stress, and in general case the following formula is 
true: 
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With this approach, the equation (17) is used to calculate 
2 /nX V K′′= ; coefficient β , included in this equation is 

determined through the mean gradient of velocity 
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SIMULATION RESULTS 

Testing the model involved comparing the simulation 
results using this model with the available experimental data for 
various types of flow. The computer program UNIVERSE-
CFD, developed in Moscow Aviation Institute [8], was used for 
simulation. 

Test 1. High-speed plane mixing layers 
This test involved the comparison with the experimental 

data of Goebel, Dutton [9] and data from Ref. [5]. The 
experimental setup of a two-dimensional mixing layer consists 
of a channel with two incoming streams separated by a splitter 
plate. The top stream is labeled as primary and the lower as 
secondary. The primary stream is chosen as the high-speed 
inlet.  

Seven mixing layer cases have been examined in [9]. For 
each case, static pressures were measured, schlieren 
photographs were taken, and flowfield velocity measurements 
were obtained using an LDV system. These data have been 
used to obtain growth rates and to examine the development of 
the mean and turbulent velocity fields of compressible, 
turbulent mixing layers. The operating conditions for the seven 
cases that have been examined are listed in Table 1. As is clear 
from this table, a wide variety of conditions have been studied 
with freestream velocity ratios ranging from 0.16 to 0.79, 
freestream density ratios ranging from 0.57 to 1.55, and relative 
Mach numbers ranging from 0.40 to 1.97.  

 Table 1 
 

Case 1 1d 2 3 
r=U2/U1 0.78 0.79 0.57 0.18 

2 1/s ρ ρ=  0.76 0.76 1.55 0.57 
M1 , M2 2.01, 1.38 2.02,1.39 1.91, 1.36 1.96, 0.27 

T1,  T2 [K] 163, 214 151, 198 334, 215 161, 281 
U1,  U2 
[m/s] 

515, 404 498, 392 700, 399 499, 92 

p [Pa] 46e3 55e3 49e3 53e3 

 
 Table 1(continued) 

 
Case 3r 4 5 

r=U2/U1 0.25 0.16 0.16 
2 1/s ρ ρ=  0.58 0.6 1.14 

M1 , M2 2.22, 0.43 2.35, 0.3 2.27, 0.38 
T1,  T2 [K] 159, 275 171, 285 332, 292 

U1,  U2 [m/s] 561, 142 616, 100 830, 131 
p [Pa] 53e3 36e3 32e3 

To assess the relative performance of the new presented 
model (K-ε-Vn) against standard models calculations with the 
following three turbulence models were performed: 

1. K-ε  - standard two-equation model without the 
compressibility correction. 

2. K-ε  cc - standard two-equation model with the Sarkar 
[1] compressibility correction. 

3. K-ε-Vn - new compressible model presented in this 
paper. 

The supersonic mixing layer is characterized with relative 
Mach number: 

( )
1 2

1 2 / 2r

U U U
M

a a a

− ∆
= =

+
 (23) 

Figures 1-6 compare  normalized  similarity profiles of 
Reynolds stress, cross-stream turbulence intensity and 
streamwise turbulence intensity with the experimental data [9] 
for cases 4 and 5. The mixing-layer thickness b was taken to be 
the distance between transverse locations where the mean 
streamwise velocity was U1-0.1ΔU and  U2+0.1ΔU.  The y 
coordinate of the mixing-layer centerline is y0. The standard 
deviations of the Reynolds stresses are defined as 

 

1 2 21 ,u vu u u uσ σ′′ ′′ ′′ ′′= = . 
 

 
Figure 1 Similarity profiles of  normalized Reynolds stress for 

Case 4 
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Figure 2 Similarity profiles of  normalized cross-stream 

turbulence intensity for Case 4 

 
Figure 3 Similarity profiles of  normalized streamwise 

turbulence intensity for Case 4 
 
 

 

 
Figure 4 Similarity profiles of  normalized Reynolds stress for 

Case 5 

 
Figure 5 Similarity profiles of  normalized cross-stream 

turbulence intensity for Case 5 

 
Figure 6 Similarity profiles of  normalized streamwise 

turbulence intensity for Case 5 
 
 

 
Figure 7 Normalized mixing-layer growth rates vs relative 

Mach number  
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Figures 7-10 present  the mixing-layer growth rates 
( )/

c
db dx  and turbulence quantities 

 ( )( ) ( ) ( )2/ , / , /v uc cc
u v U U Uσ σ′′ ′′ ∆ ∆ ∆  , normalized by 

the corresponding quantities obtained without compressibility 
correction  in incompressible mixing layers at the same 
freestream velocity and density ratios, with respect to the 
relative Mach number. 

 

 
Figure 8 Normalized Reynolds shear stress vs relative Mach 

number  

 
Figure 9 Normalized cross-stream turbulence intensity vs 

relative Mach number  

 
Figure 10 Normalized streamwise turbulence intensity  vs 

relative Mach number  
 

The results clearly show: 

1) Mixing-layer growth rate reduces due to compressibility. 
K-ε-Vn yields reduced mixing-layer spreading rates at high 
relative Mach number, consistent with the experimental data 
[1,5]. Incompressible models do not capture the mixing 
inhibition. 

2) The increase of Mach number leads to reducing shear 
stress (Figure 8)  and to a considerable reduction of cross-
stream turbulence intensity (Figure 9) as well as a very slight 
change of streamwise turbulence intensity (Figure 10). All 
these mean that compressibility, in the first place, impacts on 
velocity fluctuations normal to streamline, and impacts on shear 

stress via the value 
2

nV ′′  in accordance with formula (15) ; the 
impact on velocity fluctuations along the streamline is small. 
The presented model K-ε-Vn   accounts for those facts quite 
well, however, the model of Sarkar et al. [1] does not.  

3) The incompressible models grossly overpredict the 
magnitudes of shear stress cross-stream turbulence intensity. 

 
Test 2. Fully Expanded Heated Free Jets 

( ,a e a ep p T T= = ). 
This test aimed at validating the presented turbulence model 

for the simulation of jets, whose temperature, density and 
pressure at the nozzle exit are the same as those in the ambient, 
i.e. 

, ,a e a e a eT T p pρ ρ= = =  
This condition makes an estimate of a pure effect of 

compressibility on jet parameters. Simulations with K-ε,  K-ε  
cc [1] and  K-ε-Vn turbulence models were performed and 
compared. 

Simulation results were compared with the experimental 
data of Lau et al. [10] and Krasotkin et al. [11]. 
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Figure 11 shows the axial distribution of the mean velocity 
on the jet axis for different Mach numbers 
( 0.28,aM = 1.37aM = ). The results exhibit a consistent trend 
in which the curves move downstream as the Mach number is 
increased. Simulations with K-ε-Vn turbulence model  are in a 
good agreement with the experimental data and also show the 
increase of the jet length with the increase of aM .  

 
Figure 11 Normalized centerline velocity /C au u  vs. 

normalized distance from nozzle exit / ax R . Calculation 
results (curves) compared to simulation data of Lau et al. [10] 

(symbols). 
 
Figure 12  shows radial distributions of the axial turbulence 

intensity. Calculation results using K-ε  cc  and  K-ε-Vn 
turbulence models are  in a very good agreement with the 
experimental data of Lau et al. [10]. 

 

 
Figure 12 Radial distribution of normalized streamwise 

turbulence intensity for 1.37aM =  at / 16ax R = .Calculation 
results (curves) compared to simulation data of Lau et al. [10] 

(symbols). 
 
 

It is difficult experimentally to determine the length of the 
isentropic zone with sufficient accuracy. 

For estimation of jet length it is more convenient to use 

non-dimensional coordinate 0.75 0.75 / aX X R=   - normalized 
distance from nozzle exit corresponding to the relative velocity 

/ 0.75C au u =  (Ref. [11]). It should be noted that in 
accordance with the data of Ref. [10]  the maximum of the 
turbulent fluctuations and of the gradient of the velocity Cu  is 

observed in the section 0.75X .  
Figure 13 shows dependence of the relative coordinate 

0.75X  on nozzle exit Mach number aM . The simulation 
results (curves) were compared with the experimental data of 
Refs.[ 10,11]. 

 

 
Figure 13 Relative coordinate 0.75X vs. nozzle exit Mach 

number aM . 
 

 
Figure 14 Relative coordinate 0.75X vs. nozzle exit Mach 

number aM . 
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Figure 14 shows the variation of spreading rate of the jet 

ηδ  with Mach number. Simulations with K-ε  cc [1] and  K-ε-
Vn turbulence models have indicated that the spreading rate of 
the mixing layer decreases with increasing Mach number and 
are in good agreement with the experimental data. 

 
 
Test 3.  Cold under-expanded  and over-expanded air 

jets at / 1a ep p ≠  
This test aimed at validating the presented model for under-

expanded and over-expanded air jets. 
The simulation was performed for air jets having total 

temperature 0 300T K=  and nozzle exit Mach number 

3.3aM = . The simulation results were compared with the 
experimental data of Safronov and Khotulev [12]. 

Figures 15, 16 present the simulation results and the 
experimental data for an under-expanded jet with static 
pressure ratio / 1.5a ep p = , diameter of the profiled nozzle 

53.7aD mm=  and nozzle exit half cone angle 10aθ = ° .  
The simulation was performed using a 400x100 trapezoidal 

grid. Various turbulence models were used: 
1) standard -K ε  model; 
2) -K ccε  turbulence model with compressibility correction 

of Sarkar et al.[1] ; 
3)  K-ε-Vn turbulence model presented in this paper. 

 

 
Figure 15 Centerline distribution of  normalized relative pitot 

pressure. 1 – Safronov, Khotulev experiment [12]; 2 – 
simulation with standard -K ε  model; 3 – simulation using 

present model 

 
Figure 16 Centerline distribution of  Mach number. 1 – 

Safronov, Khotulev experiment [12]; 2 – simulation with 
standard -K ε  model; 3 – simulation using present model 
 
Using standard -K ε  turbulence model considerably under-

predicts the jet length if compared with the experimental data, 
and also reduces a number of shock diamonds; all shock waves 
have significantly lower amplitude than measured. 

Using the other turbulence models (2,3) gave similar results, 
which are in a good agreement with the experimental data of 
Safronov, Khotulev [12]. The pictures only illustrate the 
simulation results using models 1) and 3).  

 

CONCLUSIONS  
 

An algebraic stress model (ASM) is developed. This model 
is based on modeling  of the rapid part of pressure-strain 
correlation depending on turbulent Mach number and on the 
assumption that the velocity fluctuations normal to streamline 
play a key role in turbulent mixing process.  

Presented K-ε-Vn  turbulence model yields reduced mixing-
layer spreading rates at high Mach number, consistent with the 
experimental data. Incompressible models do not capture the 
mixing inhibition. 

The turbulence quantities (Reynolds stress, cross-stream 
turbulence intensity and streamwise turbulence intensity)  
obtained from the presented model are in good agreement with 
data.  

The turbulent model developed in this paper allows to 
account for the fact that compressibility, in the first place, 
makes a suppressive effect on velocity fluctuations normal to 
the streamline. It leads to the increase of turbulence anisotropy 
with the increase of Mach number.  

The incompressible models grossly overpredict the 
magnitudes of Reynolds stress, cross-stream turbulence 
intensity, which leads to more rapid mixing in comparison with 
the experimental data. Besides, wave structure of supersonic 
overexpanded and underexpanded jets is significantly distorted: 
the number of barrels (diamonds) is much fewer than those in 
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the experiment. Too high turbulent viscosity results in too large 
restraining of the waves and rapid amplitude decay. 
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