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Few studies have examined immune activation profiles in patients with advanced HIV-1 subtype C infection or assessed their
potential to predict responsiveness to HAART. BioPlex, ELISA, and nephelometric procedures were used to measure plasma levels
of inflammatory biomarkers inHIV-1 subtypeC-infected patients sampled before and after 6months of successfulHAART (𝑛 = 20);
in patients failingHAART (𝑛 = 30); and in uninfected controls (𝑛 = 8). Prior toHAART, CXCL9, CXCL10, 𝛽2M, sTNF-R1, TGF-𝛽1,
IFN-𝛾, IL-6, TNF, and sCD14 were significantly elevated in HIV-1-infected patients compared to controls (𝑃 < 0.01). All of these
markers, with the exception of sTNF-R1, were also elevated in patients failing HAART (𝑃 < 0.05).The persistently elevated levels of
CXCL9, CXCL10, and 𝛽2M in patients failing therapy in the setting of amarked reduction in thesemarkers in patients on successful
HAART suggest that they may be useful not only to monitor immune activation during HAART, but also to distinguish between
good and poor responders. In the case of sCD14 and TGF-𝛽1, the levels of these biomarkers remained persistently elevated despite
HAART-induced virological suppression, a finding that is consistent with ongoingmonocyte-macrophage activation, underscoring
a potential role for adjuvant anti-inflammatory therapy.

1. Introduction

In HIV-1 infection, depletion of T cells is caused by produc-
tive virus infection and Fas-mediated apoptosis of infected
and uninfected cells [1, 2]. In addition, chronic immune
activation, especially of cells of the innate immune sys-
tem, together with accompanying, counteracting endoge-
nous anti-inflammatory mechanisms, further contributes
to T-cell depletion [3, 4]. These mechanisms include
chronic activation of plasmacytoid dendritic cells and mono-
cytes/macrophages. HIV infection of plasmacytoid den-
dritic cells causes persistent activation, resulting in exces-
sive production of proapoptotic interferon (IFN)-𝛼, as well

as immunosuppressive indoleamine-2,3-dioxygenase and
transforming growth factor (TGF)-𝛽 [4–13]. In the case of
monocytes/macrophages, translocation of microbial prod-
ucts, especially lipopolysaccharide and DNA, across the
damaged intestinal epithelium, results in persistent systemic
activation of these cells due to interaction with Toll-like
receptors 4 and 9, as well as with cytosolic pathogen nucleic
acid sensors [14–23]. The resultant production of proinflam-
matory cytokines, especially TNF-𝛼, drives T-cell activation
and activation-induced cell death [6, 21, 22]. Sustained
immune activation is associated with disease progression,
AIDS, and death [24]. While highly active antiretroviral
treatment (HAART) is able to suppress viral replication

Hindawi Publishing Corporation
Mediators of Inflammation
Volume 2014, Article ID 198413, 7 pages
http://dx.doi.org/10.1155/2014/198413

http://dx.doi.org/10.1155/2014/198413


2 Mediators of Inflammation

to levels of <25 copies/mL plasma and partially restore
circulating CD4+ T cells, it is unable to normalize immune
activation [21, 25].

Immune activation inHIV infection is associatedwith the
presence of circulating proinflammatory/anti-inflammatory
and antiviral cytokines/chemokines, as well as with other
biomarkers of immune activation, which vary qualitatively
and quantitativelywith disease progression [26–31].However,
relatively little is known about the profile of circulating
biomarkers of immune activation in the setting of advanced
HIV-1 subtype C infection, as well as the usefulness of its
measurement, not only in monitoring response to HAART,
but also as a strategy to detect virologic treatment failure.
These issues are the focus of the current study.

2. Methods

Black, adult (≥18 years) participants attending the Antiretro-
viral Clinic at a district hospital in Pretoria, South Africa,
were included in this study. Ethics approval was granted by
The Research Ethics Committee, Faculty of Health Sciences,
University of Pretoria (Ethics Committee Approval number
46/2011). All participants gave informed consent and whole
blood sampleswere collected in EDTAvacutainers, processed
within 24 hours to separate the plasma component by
centrifugation, and stored at −70∘C for up to 37 months.
CD4+ T-lymphocyte counts (CD4+) (Beckman Coulter SA
(Pty) Ltd.) andHIV-1 RNA (VL) (Nuclisens HIV-1 Viral Load
Assay v1.2 or v2.0) were measured by standard flow cyto-
metric and PCR-based procedures respectively, according to
manufacturer’s instructions.

Sixty HIV-infected participants were followed from pre-
treatment to approximately 6 months on HAART as part of
a larger study on immune reconstitution inflammatory syn-
drome (IRIS). Pre-treatment samples were taken prior to the
initiation ofHAART in patients presentingwithCD4+ counts
≤200 cells/𝜇L blood orWHO stage 4 disease. Twenty patients
were randomly selected from thosewho startedHAART,were
clinically stable, did not develop clinical signs of IRIS during
the first six months of treatment, and were virologically
suppressed (VL < 50 copies/mL plasma) at approximately
6 months of HAART (suppressed group). Drug regimens
consisted of two nucleos(t)ide reverse transcriptase inhibitors
(NRTIs) (stavudine (d4T) + lamivudine (3TC), 𝑛 = 18, or
tenofovir (TDF)+ 3TC, 𝑛 = 2) and onenonnucleoside reverse
transcriptase inhibitor (NNRTI) (efavirenz (EFV), 𝑛 = 14
or nevirapine (NVP), 𝑛 = 4). Two patients were started on
ritonavir-boosted lopinavir (LPV/r) for clinical reasons.

A second group consisted of 30 participants failing
HAART as evidenced by two successive VL results of >1000
copies/mL plasma at least eight weeks apart despite intensive
adherence counselling (failing group). Drug regimens con-
sisted of twoNRTIs (d4T + 3TC, 𝑛 = 23 or zidovudine (AZT)
+ 3TC, 𝑛 = 7) and one NNRTI (EFV, 𝑛 = 20 or NVP, 𝑛 = 10).
Participants had been referred for drug resistance testing and
study samples were taken at the time of referral. They had
been on HAART for a median time of 30 months (range 9–
97 months) and had been failing treatment for a median of
15.5 months (range 5–38 months). Five patients (17%) had

been referred from peripheral clinics and the duration of
treatment failure could not be determined. Three patients
(10%) had experienced treatment interruptions at some time
before treatment failure and 13 (43%) never had a suppressed
VL while on HAART. All patients with CD4+ ≤200 cells/𝜇L
(𝑛 = 21) were on cotrimoxazole or dapsone prophylaxis.

A third group (𝑛 = 8) of black, HIV-uninfected, healthy
control subjects was also included in the study. The median
ages of the control, suppressed, and failing groups were
29 (range 24–49), 41.5 (25–63), and 40.5 (27–55) years,
respectively, and the corresponding male : female ratios were
1 : 0.6, 1 : 4, and 1 : 4.

2.1. Circulating Biomarkers of Immune Activation. Thesewere
selected on the basis of being largely representative of T-cell,
monocyte/macrophage, dendritic cell, and natural killer cell
activation.

Circulating cytokines/chemokines were measured using
(i) the Bioplex suspension bead array system (Bio-Rad
Laboratories Inc., Hercules, CA, USA) (IL-6, IL-10, IFN-
𝛾, TNF-𝛼, CCL2/MCP-1, CCL3/MIP-1𝛼, CCL4/MIP-1𝛽, and
CXCL10/IP-10) or (ii) conventional ELISA, namely, IFN-
𝛼 (eBioscience Inc., San Diego, CA, USA); TGF-𝛽1 total
(Biolegend, San Diego, CA, USA); CXCL9/MIG and sTNF-
R1 (Raybiotech Inc., Norcross, GA, USA); and sCD14
(Abcam, Cambridge, MA, USA). C-reactive protein (CRP)
and 𝛽2-microglobulin (𝛽2M) were assayed by nephelometry
(Siemens healthcare Diagnostics, BN Prospec Nephelometer,
Newark, USA). Previously published ranges for each of these
parameters together with supporting references are shown
as supplementary data (see SupplementaryMaterial available
online at http://dx.doi.org/10.1155/2014/198413).

2.2. Data Analyses and Statistics. As participant groups
consisted of ≤30 individuals, data were considered to be
nonparametric and distribution-free statistical tests imple-
mented in Stata v11.2 (StataCorp). Continuous data were
analysed according to the median, minimum, and maximum
concentrations. Median concentrations of each parameter
were compared between cohorts using the Wilcoxon Mann-
Whitney test for independent groups and Wilcoxon signed
rank sum test for matched groups. Correlations between
parameters were determined using the Spearman correlation
test for the HIV-infected pre-HAART group (𝑛 = 20), as well
as for this group combined with the group failing HAART
(𝑛 = 50). Statistical significance was set at 𝑃 ≤ 0.05.

3. Results

3.1. Circulating CD4+ T-Lymphocyte Counts, HIV-1 Viral
Loads, Cytokines/Chemokines, 𝛽2-Microglobulin, sCD14 and
CRP in the Control, Suppressed (Pre- and Post-Therapy)
and Failing Groups. CD4+counts, HIV-1 VL, and levels of
inflammatory biomarkers are shown in Table 1. As expected,
plasma VL decreased from a median of 53,000 to <50 RNA
copies/mL plasma and there was a significant increase in the
circulating CD4+ count (83 to 208 cells/𝜇L; 𝑃 < 0.0001)
in the suppressed group. With respect to the circulating
biomarkers of immune activation, CXCL9, CXCL10, TGF-𝛽1,
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4 Mediators of Inflammation

sTNF-R1, 𝛽2M, and sCD14 were significantly elevated (𝑃 <
0.03) and CCL4 significantly decreased (𝑃 = 0.04) in the
pre-HAART group relative to the control group, while IFN-𝛾
was moderately increased but not significantly so (𝑃 = 0.07).
Following 6months ofHAART, CXCL9, CXCL10,𝛽2M, IFN-
𝛾, IL-6, TNF-𝛼, and sTNF-R1 were significantly decreased
(𝑃 < 0.01), CCL4 increased (𝑃 < 0.001), while TGF-
𝛽1 and sCD14 also remained elevated despite undetectable
plasma VL. It is difficult to attribute major significance to the
decreases in TNF-𝛼 and IL-6 as the pretherapy values for both
were low. No difference was observed in IFN-𝛼, CCL3, and
CRP either between the HIV-infected and uninfected control
group or the virologically suppressed group pre- and post-
HAART.

In the failing group, the same 5 biomarkers (CXCL9,
CXCL10, TGF-𝛽1, 𝛽2M, and sCD14) were also significantly
elevated compared with the control group (𝑃 < 0.02), the
values for CXCL10 and 𝛽2M being somewhat lower than
those of the pre-HAART group (𝑃 < 0.03), while those
of CXCL9, TGF-𝛽1, and sCD14 were essentially comparable
(𝑃 > 0.5). Although the value for CCL2 was significantly
lower and that of IL-10 higher than the corresponding values
of the control group, interpretation is difficult as these values
were low in both groups.

3.2. Analysis of Correlations between Variables. Correlations
between CD4+, VL, and the various biomarkers in the pre-
HAART group are shown in Table 2. CD4+ counts correlated
negatively and significantly with VL and with sTNF-R1 and
CCL2. Positive correlations were observed between VL and
sCD14 and 𝛽2M. Significant positive correlations were also
observed between several of the biomarkers including, but
not limited to, IFN-𝛾, CXCL10, CCL2, CCL3, and TNF-𝛼.
Although not shown, correlations for the composite group
(consisting of the pre-HAART and failing groups) were
generally comparable, albeit weaker, with the exception of
CD4+ count with VL (𝑟 = −0.64, 𝑃 < 0.001), while the
following modest correlations were found: (i) CCL4 with
CXCL9, IL6, CCL3, and IFN-𝛾 (𝑟 = 0.30, 0.43, resp.; 𝑃 <
0.03, 𝑃 < 0.001); and (ii) 𝛽2M with CD4 counts, IL-6, and
IFN-𝛾 (𝑟 = −0.28, 0.43, resp.; 𝑃 < 0.05, 𝑃 < 0.02).

4. Discussion

Our findings in patients infected with HIV-1 subtype C are
consistent with the coexistence of distinct mechanisms of
immune activation, which appear to be differentially affected
by successful HAART [21, 25]. Although only moderately
elevated pre-HAART, it is likely that IFN-𝛾, probably origi-
nating from CD4 and CD8 T cells, underpins the increases
in CXCL9 and 10, a contention supported by the strong,
positive intercorrelation between IFN-𝛾 andCCL10, as well as
that of CCL9 with CCL10. Other cell types such as dendritic
cells and monocytes may also contribute to the increases
in these cytokines pre-HAART following exposure of the
cells to alternative activators such as IFN-𝜆1 [11, 32, 33]. The
unexpectedly low level of IFN-𝛼, as well as those of CCL2
and 3, may be due to advanced immunosuppression in the

setting of high levels of TGF-𝛽1 in this group of patients [34].
In the case of 𝛽2M, CXCL 9 and 10, and TNF-R1 (a surrogate
for TNF), HAART-associated decreases most likely reflect
efficient viral suppression and consequent decreased turnover
and reactivity of both CD4+ and CD8+ T cells.

The absence of effects of HAART on plasma sCD14,
as previously reported by us and others [17, 21], as
well as the increase in CCL4, is consistent with ongoing
chronic inflammation due to sustained activation of mono-
cytes/macrophages, even in the face of virally suppressive
therapy, and may persist for several years [21, 35]. In this
setting, the persistent activation of monocytes/macrophages,
predominantly the subtype which coexpresess CD14 and
CD16, is most likely driven by the process of microbial
translocation [21, 24, 36]. The consequence is sustained gen-
eration of proinflammatory mediators and cytokine-driven
T-cell death pathways. Interestingly, Sandler et al. recently
reported significant positive correlations between plasma
sCD14, IL-6, CRP, serum amyloid A, and D-dimer in patients
infected with HIV-1 subtype B [37]. Subjects with the highest
quartile of plasma sCD14 concentrations had a 6-fold higher
risk of death than those in the lowest quartile [37].

In addition, supported by the findings of the current
study, endogenous, monocyte/macrophage-targeted, anti-
inflammatory mechanisms are also likely to contribute to
ongoing immunosuppression with TGF-𝛽1 appearing to
play a pivotal role. Notwithstanding platelets, plasmacytoid
dendritic cells, macrophages of the M2 phenotype, and
immunoregulatory CD8+ T cells, immunosuppressive and
profibrotic TGF-𝛽1 is likely to originate predominantly from
regulatory T cells [38, 39]. In this context it is noteworthy that
extensive fibrosis of theT-cell zone of lymphoid tissue appears
to be a significant factor in the failure of T-cell reconstitution
following successful HAART [13].

Persistently elevated plasma levels of TGF-𝛽1 and sCD14,
even in the setting of ostensibly successful HAART, may
therefore identify a subset of patients at highest risk of a poor
outcome.

In the group of patients failing HAART, the circulating
concentrations of CXCL9, CXCL10, and 𝛽2M were also
significantly higher than those of the control group and,
with the exception of CXCL9, significantly lower than the
pre-HAART values for the suppressed group.The circulating
concentrations of sCD14 and TGF-𝛽1 in the failing group
were comparable to those of the suppressed group both
before and after therapy. Persistent elevations, or a rebound
following an earlier decrease, in plasmaCXCL9, CXCL10, and
𝛽2M appear to be associated with a poor response toHAART,
suggesting that serial measurement of these biomarkers may
be a useful adjunctive strategy. Nevertheless, measurement
of VL clearly remains the definitive strategy in the clinical
setting.

With respect to previous studies, our findings are gen-
erally in agreement with a recent study by Kamat et al.
in which elevated circulating concentrations of CXCL9,
CXCL10, sCD14, and soluble IL-2 receptor (sIL-2R) repre-
sented a profile which distinguished viremic and aviremic
subjects infected with HIV-1 subtype B from uninfected,
healthy control subjects [30]. In agreement with the report
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of Kamat et al. [30], we also detected a significant, negative
correlation between numbers of circulating CD4+ T cells and
VL but failed to show a correlation between these disease
markers and CXCL10 in the pre-HAART group. However,
this correlation was detected when the pre-HAART and
failing groups were combined, most likely due to increased
statistical power. As mentioned above, and in agreement
with Kamat et al. [30] we also detected a significant positive
correlation between CXCL9 and CXCL10, while in contrast
to these authors, a significant, positive correlation between
CXCL10 and IFN-𝛾 was evident as can be expected in
conditions of chronic inflammation.

Notwithstanding the different viral types investigated,
several other important differences underscore the strengths
of the current study.Most importantly, the profile of biomark-
ers of immune activation measured by Kamat et al. [30],
which did not include 𝛽2M or TGF-𝛽1, was not measured
serially in a single cohort of patients pre- and post-HAART
as done in the current study, which may account for the
observed lack of effect of HAART on IFN-𝛾 in the former
study.

Limitations, however, are (i) small sample sizes; (ii)
measurement of circulating biomarkers at a single time point
(6 months) following initiation of HAART in the suppressed
group; and (iii) no pretherapy measurement of circulating
biomarkers prior to initiation of therapy in the failing group.
Nonetheless, the general agreement with previous studies,
predominantly in the setting of HIV-1 subtype B infection,
supports the reliability of our findings.

In conclusion, successful administration of HAART to
patients with HIV-1 subtype C infection is accompanied
by significant decreases in circulating biomarkers associated
with T-cell activation and turnover (IFN-𝛾, CXCL9, CXCL10,
sTNF-R1, and 𝛽2M). Serial measurement of 3 of these
(CXCL9, CXCL10, and 𝛽2M) may represent a useful adjunct
to measurement of viral loads in monitoring responses to
HAART. In addition, persistently elevated levels of sCD14
and TGF-𝛽1, despite successful HAART, are consistent with
chronic activation of monocytes/macrophages and possible
risk of a poor outcome, underscoring the adjunctive ther-
apeutic potential of monocyte/macrophage-targeted anti-
inflammatory chemotherapy in patients with advanced HIV
infection.
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