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ABSTRACT 
This paper presents an investigation on the unique flow 

characteristics associated with fluid flow through curved ducts, 
which are fundamentally different to those in straight fluid 
passages.  In curved ducts, the flow is subjected to centrifugal 
forces that induce counter-rotating vortices in the main axial 
fluid stream and give rise to spiralling fluid motion, commonly 
known as secondary flow.  The study develops a novel three-
dimensional computational fluid dynamics analysis whereby 
the laminar developing fluid flow in a curved rectangular duct 
is modelled.  The flow characteristics are identified for a range 
of flow rates and duct aspect ratios at several duct curvatures. 
The contours of secondary flow and axial velocities are 
obtained to recognise the influence of flow/geometrical 
parameters on the secondary flow.  Comparisons are made 
between the numerical predictions and the available 
experimental data.  It is observed that, with increased duct flow 
rate, the secondary flow intensifies and beyond a certain critical 
flow condition, leads to hydrodynamic instability.  The fluid 
flow structure is then significantly altered with the appearance 
of additional pair (or pairs) of vortices, termed as Dean 
Vortices, at the outer wall of the curved duct. This flow 
behaviour is also highly influenced by the duct aspect (height to 
width) ratio.  The paper develops and presents a new approach 
for predicting the onset of Dean vortex generation. 

 
INTRODUCTION 

Fluid flow through curved passages is a common 
occurrence in a vast range of industrial applications, such as in 
gas turbine blades, air conditioning, heat exchangers and rocket 
engine coolant passages.  In a curved passage, centrifugal 
forces are developed in the flow due to channel curvature 
causing a counter rotating vortex motion applied on the axial 
flow through the passage.  This creates characteristic spiralling 
fluid flow in the curved passage known as secondary flow.  At 
a certain critical flow condition and beyond, additional pairs of 

counter rotating vortices appear on the outer concave wall of 
curved fluid passages.  This flow condition is referred to as 
Dean’s Hydrodynamic Instability and the additional vortices 
are known as Dean vortices, in recognition of the pioneering 
work in this field by Dean [1]. 

Dean [1] relates the secondary flow behaviour to a single 
parameter K, called the Dean number, which is defined as 
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instability is culminated through the interaction between the 
centrifugal forces and lateral fluid pressure gradient at the outer 
wall acting towards the duct centre of curvature.  This 
instability has been illustrated with respect to duct velocity in 
the work of Moffat [2] and Eustice [3] who experimentally 
observed and verified the critical velocity requirements for 
Dean’s instability. 

White [4] performed flow visualisation on a coiled pipe and 
reported that, the flow curvature alters the laminar regime 
compared to straight channels allowing laminar-to-turbulent 
transition to occur at reduced flow velocities.  Early analytical 
and experimental investigations, such as Baylis [5], Humphery 
et al [6], concluded that Dean number was solely responsible 
for secondary flow and Dean instability in curved passages.  
However later studies with curved rectangular ducts by Cheng 
et al [7], Ghia and Shokhey [8] and Sugiyama et al [9] have 
shown that the Dean instability is also dependent on the aspect 
ratio and curvature ratio along with the Dean number. 

Literature reports many numerical studies among which 
some key studies are indicated below.  Hoon et al [10] used a 2-
dimensional numerical model for fluid and thermal behaviour 
in eccentric curved pipes and discussed the relationship among 
Dean number, friction factor and Nusselt number in the range 0 
≤ K ≤ 900 and Grashof 12.5 ≤ Gr ≤ 12500.  Yamamaoto et al 
[11] numerically examined the flow field within a helical pipe 
and demonstrated the role of centrifugal forces in the formation 
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of secondary flow.  Ko et al. used flow entropy generation as a 
technique to identify secondary flow instability and performed 
thermal optimisation on rectangular passages in both laminar 
and turbulent regimes [12,13,14]. 

Chandratilleke et al [15,16,17] report an extensive 
parametric study examining the effects of curvature ratio and 
aspect ratio as well as the wall heat flux.  The validation of 
numerical work has been performed against their own 
experimental data [15,16].  Their numerical method, that was 
effectively a 2-dimensional formulation, used toroidal 
coordinates and utilised a stream function approach with 
dynamic similarity in axial direction.  Intersecting stream 
function contours were deployed as a qualitative criterion for 
detecting occurrence flow instability and Dean vortices.  This 
approach is clearly adequate for 2-dimensional flow systems 
and cannot be extended for real flow situations.  They discussed 
results in a comprehensive range of Dean number 25 ≤ K ≤ 
500, aspect ratio 1 ≤ Ar ≤ 8 and Grashof number 12.5 ≤ Gr ≤ 
12500.  It has been illustrated that the onset of Dean instability 
would vary with the duct aspect ratio and curvature ratio while 
the application of wall heat flux radically changes the flow 
patterns.  Subsequently, other numerical work such as those 
carried out by Yanase [18] and Fellouah et al [19,20] have 
validated the results of Chandratilleke et al [16]. 

Most published work focus on 2-dimenasional numerical 
models.  Accurate 3-dimensional simulations are clearly scarce 
in literature largely due to the computational complexities 
arising from secondary flow perturbations superimposed on the 
main axial flow through curved passages.  H. Fellouah et al 
[19,20] have attempted to developed an elementary 3-
dimensional simulation covering duct curvature ratios of 5.5 ≤ γ 
≤ 20 and aspect ratios of 0.5 ≤ Ar ≤ 12.  With water and air as 
working fluids, this model showed reasonable agreement with 
their own experiments involving a semi-circular channel test 
section that permitted visualisation of vortex formation along 
channel locations for various Dean numbers.  They presented a 
quantitative criterion for identifying the Dean instability in 
curved channels using the radial gradient of the axial velocity 
in channels.  Secondary flow dynamics suggest inadequacy of 
this approach-it is not the axial flow velocity in channel but the 
radial fluid velocity component directed towards outer wall is 
responsible for hydrodynamic instability and the stagnation 
pressure build-up at the outer curved wall. 

The study presented in this paper develops a highly 
improved 3-dimensional computational model using helicity 
function that accurately describes the secondary flow vortex 
structures in the developing fluid flow through curved passages, 
thus overcoming limitations in mostly 2-dimensional previous 
studies.  It incorporates a curvilinear mesh system for much 
compliant tracking of secondary flow path, facilitating more 
effective grid definition for capturing intricate details of vortex 
generation.  In addition, a curvilinear coordinate system is 
defined along the outer duct wall permitting precise and 
efficient evaluation of local fluid pressure and its gradient in 
that vicinity.  Simulation results are validated against the 
available experimental data.  The study formulates and verifies 
a novel approach for computational schemes in identifying the 

onset of hydrodynamic flow instability in curved passages 
reflected by Dean vortex generation. 

 
NOMENCLATURE 
 
Ar [-] Aspect Ratio= a/b 
a [m] Height of cross section 
b [m] Width of cross section 

Dh [mm] Hydraulic diameter = 
)ba(

ab2
+

 

Fc [N] Centrifugal force 
g [m/s2] Gravity 
H [m/s2] Helicity () 

H* [m] Dimensionless Helicity = 
2
in

h

U
HD  

p [Pa] Static pressure 

P*  Dimensionless static pressure =
2
inU

2
1

p

ρ
 

K [m] Dean number = Re
R

D 2
1

h 






  

R [m] Radius of duct curvature 

Re  Reynolds number = 
υ

hin DU
 

s


 [m] Coordinate along wall in duct cross section 
Uin  Velocity at duct inlet (m/s) 
u, v, w  Velocities component (m/s) 

u*, v*, w*  Dimensionless velocity =
inU

w,v,u  

Vr [m/s] Axial velocity = √𝑢𝑢2 + 𝑤𝑤2 
x, y, z [m] Coordinates 
 
Special characters 
γ [-] Curvature  ratio= R/b 
θ [Deg] Angular position of cross section 
υ [m2/s] Kinematic Viscosity 
µ [Ns/m2] Dynamic viscosity 
ρ [kg/m3] Density 
ω [1/s] Vorticity 
 
Subscripts 
c  centrifugal 
h  hydraulic 
in  inlet 
r  axial 

 
MODEL DESCRIPTION AND NUMERICAL METHOD 

Fig. 1 illustrates the geometry used for the 3-dimensional 
model development.  The model consists of a semi-circular 
curved duct fitted with straight inlet and outlet passages for 
ensuring fully developed flow at entry and smooth outflow at 
exit of curved duct.  The working fluid air flows through the 
passage under steady and laminar flow conditions and, is 
assumed to be an incompressible Newtonian fluid.  The 
analysis focuses on the curved duct that is designated by 0o at 
inlet to 180o at outlet.  Fig. 1 also shows the coordinate system 
used, whose origin is pegged at curved duct outlet and the key 
geometrical parameters, duct height (a), width (b) and radius of 
curvature (R) considered in the study. 
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Figure 1  Geometry of computational model 
 
The numerical model solves the following fundamental 

governing equations: 
Time-averaged continuity equation; 

0V. =∇  (1) 
the momentum equations; 

Source
2 FVpV.V +∇+−∇=∇ µρ  (2) 

 
and the centrifugal body force term, 
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Incorporating the source term given by Equation (3), the 
momentum equations is re-written as, 
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Here, a Sign Function is included to ensure the centrifugal 
source term is applied only for the curved section of the overall 
geometry (i.e. z ≤ 0).  To be used with the dimensionless 
parameters, the characteristics length, velocity and pressure are 
chosen to be Dh, Uin and 2

in2
1 Uρ , respectively. 

In this 3-dimensional model, the flow patterns are described 
and examined by using the helicity function defined as, 
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This is then non-dimensionalised as, 
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In evaluating the local fluid pressure gradient, a curvilinear 
coordinate s


 is defined along the outer duct wall boundary.  

This selection permits very accurate and convenient 

determination of the local pressure gradient 
sd

dp
  at the wall, and 

suitable even for irregular geometries of duct cross section.  
This gradient is defined as, 

 
Equation 9 incorporates a sign convention in accounting for 

the counter-rotating secondary vortex motion where positive 
sign represents the upper half of duct and negative sign the 
lower half.  The pressure gradient is non-dimensionalised with 
the pressure and length reference parameters as, 
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In solving the numerical model, a constant velocity 
condition is applied to the inlet of the straight duct section 
attached to the curved duct.  The length of this inlet duct 
section is chosen to provide fully developed flow at entry to the 
curved duct section.  A pressure outlet condition is applied to 
the outlet of the duct geometry.  The air temperature is taken to 
be constant at 300 K over the entire solution domain.  The duct 
walls are assumed to have no slip boundary condition.  Table.1 
provides the geometrical parametric range considered with the 
values of aspect ratio Ar and curvature ratio γ. 

 
Table 1  Geometrical parametric range 

A (mm) B (mm) R (mm) Ar γ 

25 25 125 1 5 

50 25 125 2 5 

75 25 125 3 5 

100 25 125 4 5 

125 25 125 5 5 

150 25 125 6 5 

 
The solution is performed with respect to a suitably defined 

curvilinear mesh.  In capturing the intricate characteristics of 
hydrodynamic instability, a progressively reducing mesh is 
considered in the analysis, facilitating a much finer mesh near 
the outer wall where the onset of instability is anticipated.  This 
approach has not been attempted in previous studies [11-13,18-








−
=

dy
dp
dy
dp

Sd
dp
           

0

0

>

<

y

y
 (9) 

Velocity 
inlet 

Inlet Passage 

Outflow 

Outlet 
Passage 

R a 

b 

x 

z 

y 

706



    

19] arguing that a mesh size less than 1 mm did not sufficiently 
improve accuracy, but only led to increased computational 
time.  The mesh refinement approach adopted in the current 
analysis clearly demonstrated that a finer mesh near the wall is 
critical for detecting the onset of Dean vortices as accurately as 
possible.  For testing grid dependency, the study used five mesh 
schemes indicated in Table 2.  In this, A is grid width and B is 
grid height in duct cross section, C is grid axial length along the 
duct and the factor D determines the progressive reduction in 
grid width over duct cross section. 

 
Table 2  Parametric selection for mesh schemes 

Scheme 
Number of Grids 

A B C D 

Mesh1 26 51 305 1 

Mesh2 31 64 305 1 

Mesh3 43 84 305 1 

Mesh4 50 98 305 1 

Mesh5 26 51 305 1.05 

 
Fig. 2 illustrates the grid dependency test conducted using the 
velocity derivative in y-direction at the duct outer wall.  It is 
clear that the Schemes 4 and 5 having mesh size less than 1 mm 
show much better suitability than the other three schemes.  
Nonetheless, Scheme 5 is taken to be the optimum because of 
its slightly larger cell volume arising from progressively varied 
mesh size.  This approach provided a remarkable ability to 
capture the onset of vortex generation in the solution domain 
without causing excessive computational demand.  As such, the 
present study performed all computations with Scheme 5 using 
mesh size less than 1 mm, hence achieving much higher 
accuracy than any previous reported work. 

 
Figure 2  Grid independancy using with velocity derivative in 

y-direction at outer wall at curved duct exit, K=130, Ar=2 
 
RESULTS AND DISCUSSION 

Using the 3-dimensional numerical model developed, the air 
flow through a semi-circular curved rectangular duct of 25 mm 
width was analysed and the results were generated over an 
extensive range of geometrical and flow parameters.  The duct 
height and the duct radius of curvature were varied, as given by 
table 1, to obtain the aspect ratio ar in the range of 1 to 6 and 

the curvature ratio γ in range of 3 to 13.  Several fluid flow 
rates were chosen to achieve dean number k in the range of 80 
to 380.  This selection enables a direct comparison to be made 
with the available experimental data [17,19].  For analysis, the 
flow profiles were obtained at the exit plane (180o position) of 
curved duct.  The test cases indicating hydrodynamic instability 
were further refined by and running the simulations with much 
closer steps of k to establish the exact point of instability.  This 
procedure was repeatedly applied for all permutations of aspect 
ratio and curvature ratio combinations whereby the critical dean 
number for each test case was ascertained. 

For the purpose of validating results against published 
work, Fig. 3 shows the axial flow velocity in x and y directions 
predicted by the current 3-dimensional model and those from 
the 2-dimensional analyses of Ghia and Shokhey [8] and 
Fellouah et al [19].  It is seen that both magnitudes and trends 
of axial velocity are very favourably compared confirming the 
integrity of the numerical process. 

Fig. 3 also illustrates the secondary flow effect on the axial 
fluid velocity in the curved passage.  The profile (a) (along x 
axis) shows a skewed peak towards the outer wall arising from 
the centrifugal action and is characteristically different to axial 
velocity distribution in straight ducts.  This peak gradually 
spreads towards the centre with increasing flow rate because of 
the radial pressure build at the outer wall.  The profile on the 
right (along y axis) shows a dip in the centre and two marginal 
peaks on other side.  These peaks essentially correspond to the 
upper and lower “eye” of secondary vortices (Fig. 4). 

 
(a) At middle plane (y = 0) along x-axis 

 
(b) At middle plane (x = R) along y-axis 

Figure 3  Comparison of dimensionless axial velocity profile at 
curved duct exit plane, Ar=1 
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EFFECT OF FLOW RATE 
A typical flow profile in terms of helicity contours in the 

curved duct cross section is shown in Fig. 4.  The 
corresponding experimental flow pattern is also shown there for 
comparison.  It is readily noted that these patterns are 
fundamentally different from those in straight channels.  Even 
at low flow rates (or low K), the flow profile has two large 
counter-rotating vortices.  This vortex flow is developed 
consequent to the centrifugal forces arising from the duct 
stream-wise curvature. 
The centrifugal body forces due to the duct flow curvature 
essentially create two effects.  It generates a positive radial 
fluid pressure field in the duct cross-section and induces a 
lateral fluid motion driven from inner duct wall towards outer 
duct wall (left-side wall in Fig. 4).  This lateral fluid motion 
occurs against the radial pressure field generated by the

DETERMINATION OF HYDRODYNAMIC INSTABILITY 
Secondary flow Hydrodynamic Instability in curved 

passages is traditionally identified through tedious experimental 
flow visualisation techniques or by trial-and-error in numerical 
simulations.  In the latter, repeated numerical computations are 
performed in the vicinity of anticipated flow conditions by 
continually narrowing the range to obtain the critical Dean 
number K and the flow patterns within the chosen tolerance 
limits.  This involves guesswork and requires significant 
computational time.  Chandratilleke et.al [16] successfully used 
the criterion of zero-potential stream function contours to 
identify locations of Dean vortex generation, which was 
practically sufficient for 2-dimensional simulations, but is not 
applicable for 3-dimensional flows.  The work of Fellouah et al 
[19] used radial gradient of the axial velocity as a measure of 
identifying the flow instability.  It is difficult for this selection 
 

      
K=80 K=180 K=260 K=300 K=380 K=380 

Figure 4  Helicity contours at different flow rates and experimental flow pattern [17], Ar = 4, γ = 5 

 
centrifugal effect and is superimposed on the axial flow in the 
duct to create the secondary vortex flow structure.  As the axial 
flow is increased (larger K), the lateral fluid motion becomes 
stronger and the radial pressure field is intensified.  In the 
vicinity of the outer duct wall, the combined action of adverse 
radial pressure field and viscous effects slow down the lateral 
fluid motion and form a stagnant flow region.  Beyond a certain 
critical value of K, the radial pressure gradient becomes 
sufficiently strong to reverse the flow direction of the lateral 
fluid flow.  A weak local flow re-circulation is then established 
and an additional pair of vortices appears in the stagnant region 
near the outer wall.  This flow situation is known as Dean 
Hydrodynamic Instability while the vortices are termed Dean 
Vortices.  Typical helicity contours in the duct cross-section at 
hydrodynamic instability for K = 380 are shown in Fig. 4. 

to be rationalised because the axial velocity change in radial 
direction is not fundamentally connected with vortex 
generation.  This inadequacy is clearly reflected in the work of 
Fellouah et al [19], where their simulation failed to detect the 
flow instability for some basic flow conditions.  For example 
around K = 100, hydrodynamic instability is well observed in 
the current study, yet the analyses of Ghia and Shokhey [8] and 
Fellouah et al [19] did not identify this occurrence. 

As of now, a reliable technique for detecting the 
hydrodynamic instability is not known in literature for 3-
dimensional numerical simulations of flow through curved 
ducts.  Formulation of a generalised approach is made further 
complicated by the dependency of pressure profile on the duct 
cross-sectional geometry.  In addressing these issues, the 
current work reports for the first time, a reliable method for 
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identifying and predicting the hydrodynamic instability in 
curved fluid passages. 

Based on the secondary flow vortex generation mechanism 
previously discussed, the study focuses on the outer wall fluid 
pressure profile as a key influencing parameter on 
hydrodynamic instability.  The flow reversal leading to Dean 
vortex generation is fundamentally caused by the existence of 

adverse (positive) pressure gradient ( 0
sd

dp
> ) at the outer duct 

wall in the direction of secondary fluid motion where s


is the 
displacement variable in that direction of motion on the wall 
boundary.  In ascertaining this, the pressure gradient profile 
along the outer wall is obtained. 

 

 
Ar=4, γ=5 

Figure 5  Variation of dimensionless pressure gradient at 
the outer wall at duct exit (180o) 

 
For a typical case, Fig. 5 shows the variation of pressure 

gradient 
sd

dp
  evaluated from Equations 9 and 10 along the outer 

duct wall for several chosen values of Dean number K.  For low 
values of K, the pressure gradient remains negative over the 
entire outer wall.  As K increases, the inflection points of the 

profile first acquire positive values for 
sd

dp
 , creating (marked) 

regions of adverse pressure gradients at the outer wall.  These 
localities develop flow reversal and represent critical conditions 
for hydrodynamic instability with Dean vortex generation.  In 
Fig. 5, K = 155 is recognised to be the critical Dean number.  
This criterion based on adverse pressure gradient is presented 
as a reliable mechanistic technique to identify the onset 
hydrodynamic instability. 

The effect of aspect ratio is demonstrated in Fig. 6 for a 
fixed curvature ratios of 4 and 5.  It is noted that the critical 
Dean number initially increases with the duct aspect ratio and 
then falls away for higher K.  This conforms to the previously 
reported experimental and numerical observations [7,16,18].  
Fig.6 also shows a comparison of critical Dean number 
variation with aspect ratios predicted by present numerical 
model with the results of Chen et al [7].  It indicates good 
agreement although the current model predicts lower flow rates 
for setting off hydrodynamic instability. 

 

 
Figure 6  Variation of Critical Dean number with 

duct aspect ratio 
 

In reported literature, the curvature ratio is defined in two 
versions, as R/b and R/Dh, without any rationale.  In 
accommodating this, the variation of critical Dean Number with 
the duct curvature is illustrated in Fig. 7 in both versions. 
 

 
(a) With R/b 

 
(b) With R/Dh 

Figure 7  Variation of critical Dean with curvature ratio 
 
The duct curvature directly influences the centrifugal body 

forces that generate secondary flow in curved ducts.  A smaller 
curvature ratio (steep duct curvature) intensifies this effect 
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creating more vigorous secondary fluid motion.  It therefore 
leads to hydrodynamic instability at lower flow rates.  
Conversely, a duct with larger curvature requires higher axial 
flow velocities to induce flow reversal, hence indicating a 
higher critical Dean Number.  This behaviour is clearly 
reflected in Fig. 7.  It is also noted that, for a given aspect ratio, 
the critical Dean Number shows a peak that is more 
pronounced and higher for ducts with large aspect ratios.  This 
is attributed to fact that, in ducts of higher aspect ratio, the 
pressure distribution at the outer wall is more spread out and 
requires higher axial flow rate to trigger flow reversal at the 
outer wall.  Within a range of aspect ratio up to about 10, the 
definition of curvature ratio shows a marginal impact. 
 
CONCLUSIONS 

The paper presents details of a novel 3-dimensional 
numerical simulation for secondary flow within curved ducts.  
It model incorporates helicity (vortex structures) function to 
account for realistic representation of secondary vortex flow 
and as such, the model shows a much improved approach than 
previously reported largely 2-dimensional studies.  The analysis 
accurately predicts the flow behaviour in compliance with 
experimental and numerical work published in literature.  The 
results generated examine the effects of fluid flow rate, duct 
aspect ratio and the duct curvature.  For the first time in 
reported literature, the model presents a new analytical tool for 
determining the onset of hydrodynamic instability, which is 
based on adverse pressure gradient.  This approach is shown to 
be accurate and reliable in identifying Dean vortex generation. 
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