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excretion and toxicity properties of chemical compounds
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cells of the vertebrate host before the red blood cells become in-

fected.
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IDC Intraerythrocytic development cycle- A stage in malaria after the
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oocyst the encysted or encapsulated ookinete in the wall of a mosquito's

stomach; also, the analogous stage in the development of any sporo-
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Abstract

Malaria is still one of the most proli�c communicable diseases in the world with more

than 200 million infections annually, its greatest e�ect is felt in the poor nations with-in

sub-saharan Africa and south-east Asia. It is especially fatal for women and children where

out of the 660 000 fatalities in 2010, 86% were below the age of 5.

In the past decade the global fatality rate due to malaria has been signi�cantly reduced,

primarily due to proliferation of vector control using treated nets and indoor residual spraying

of DDT. There have, however, been few innovations in anti-malarial therapeutics and with

the threat of the spread of drug resistant strains a need still exists to develop novel drugs to

combat malaria infections. One of the major hinderances to drug development is the huge cost

of the drug development process, where candidate failures late in development are extremely

costly. This is where post-genomic information has the potential of adding great value. By

using all available data pertaining to a disease, one gains higher discerning power to select

good drug candidates and identify risks early in development before serious investments are

made. This need provided the motivation for the development of Discovery; a tool to aid in

the identi�cation of protein targets and viable lead compounds for the treatment of malaria.

Discovery was developed at the University of Pretoria to be a platform for a large spectrum

of biological data focused on the malaria causing Plasmodium parasite. It conglomerates

various data types into a web-based interface that allows searching using logical �lters or

by using protein or chemical start points. In 2010 it was decided to rebuild Discovery to

improve it's functionality and optimize query times. Also, since its inception various new

datasources became available speci�cally related to bio-active molecules, these include the

1
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ChEMBL database and TCAMS dataset of bio-active molecules and the focus of this project

was the integration of said datasets into Discovery. Large quantities of high quality bio-

activity data have never been available in the public domain and this has opened up the

opportunity to gain even greater insight into the activity of chemical compounds in malaria.

Due to conserved structural/functional similarities of proteins between di�erent species it

is possible to derive predictions about a malaria protein or a chemicals activity in malaria

due to experiments carried out on other organisms. These comparisons can be leveraged to

highlight potential new compounds that were previously not considered or prevent wasting

resources persuing potential compounds that pose threats of toxicity to humans. This project

has resulted in a web based system that allows one to search through the chemical space of

the malaria parasite. Allowing them to view sets of predicted protein-ligand interactions for

a given protein based on that proteins similarity to those existing in the bio-active molecule

databases.
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Chapter 1

Introduction

1.1 Malaria Endemic

1.1.1 Malaria

Plasmodium falciparum (P. falciparum) is one of �ve malaria causing parasites from the genus

Plasmodium that are able to infect humans. P. falciparum is responsible for the majority of

deaths caused by malaria in the world (Gardner et al., 2002). According to the World Health

Organisation(WHO) malaria report 2012 (Organization, WHO), deaths caused by malaria

are estimated at about 655 000 but could be as high as 900 000 due to poor surveilance

in many countries. The majority of deaths occur in Africa and are children and females.

Malaria is endemic in poorer regions in the world and is a major cause of poverty in these

nations, to the extent that the cure for malaria is being seen as a tool to alleviate the poverty

problem in these countries (Teklehaimanot and Mejia, 2008).

1.1.2 Life stages and Pathogenesis of Plasmodium falciparum

The Plasmodium parasite is transmitted through the bite of the female mosquito, Anopheles

gambiae which acts as the primary host of the parasite. The mosquito bites an individual

infected with malaria and the parasite gametocytes are taken up into the gut of the mosquito

where they develop into male and female gametes and fuse together in the gut to form a

3
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CHAPTER 1. INTRODUCTION 4

ookinete that penetrates the cell wall of the gut and forms a oocyst. When the oocyst de-

velops and ruptures, sporozoites are released and these migrate to the mosquito's salivary

glands, ready to infect another human. Upon the next bite the parasite is transferred into

it's new host through the saliva (Bledsoe, 2005).

Malaria in humans develops in two main phases, exoerythrocytic and erythrocytic phases,

meaning outside of red blood cells and internally within red blood cells respectively. Imme-

diately after infection of the human host the Plasmodium sporozoites migrate to the liver

and infect the hepatocytes.They then multiply asexually and di�erentiate into thousands of

merozoites which rupture the host cells, and move to infect red blood cells, this is the start of

the intraerythrocytic development cycle (IDC). In this stage the parasite goes through var-

ious identi�able stages in the sequence of the ring stage, the trophozoite also known as the

feeding stage, schizont also known as the reproduction stage and return to merozoite (which

occurs prior to entering the erythrocyte). Figure 1.1 gives an illustration of the cycle that

takes place within the red blood cells. During the IDC the parasite expresses a large variety

of proteins to allow it to proceed through it's various stages, this makes the IDC the focus

of research e�orts because of the large number of key cycles that need to proceed timeously

for the parasite to survive, leaving many opportunities to distrupt any of these stages as to

is the current focus of most anti-malarial drugs(Bozdech et al., 2003).

Pathogenesis due to malaria is caused by the parasite entering the erythrocytic phase

where it infects a red blood cell and reproduces asexually, then the new cells periodically

break out and infect new blood cells. A symptom of this is the patient su�ering periodic

waves of fever due to the release of merozoites and reinfection of the new cells. Malaria causes

severe anemia as well as the potential to cause cerebral malaria which is a characteristic of

P. falciparum where the infected red blood cells can pass through the blood brain barrier

which can lead to the patient su�ering from a coma and later death. The P. falciparum

cells avoid detection from the human immune system because most of the life cycle in the
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CHAPTER 1. INTRODUCTION 5

human host is spent within liver and red blood cells where it is relatively invisible to immune

surveillance. Infected blood cells that remain in circulation can be destroyed by the spleen,

but the parasite presents adhesive proteins on the membrane of the red blood cell causing it

to stick to the walls of blood vessels and these cells could then cause blockage in venules, the

blocking of these venules could cause the symptoms of cerebral malaria (Miller et al., 1994) .

Figure 1.1: An overview of the P. falciparum life cycle within the human host. (Image courtesy

of the Medical Arts and Photography Branch, NIH). The parasite is transferred between individ-

uals infected with malaria through the mosquito, sporozoites then move to the liver hepatocytes

where they develop further and multiply into merozoites, the hepatocytes rupture and release the

merozoites into the bloodstream where they infect red blood cells and enter the intraerythrocytic

development cycle and eventually develop into gametocytes which can then be taken up by another

mosquito.

1.1.3 Anti-Malarial Drugs

Current drug treatments available are in two categories, �rstly in the form of prophylactics

where an individual is treated in order to prevent infection by the parasite. The prophylactics

are further subdivided into suppressive which can only work once the parasite has reached

the erythrocytic stage and causal prophylactics that can target the liver stage of malaria

development. Suppressive prophylactics therefore have no e�ect until the liver stage is com-

plete, these drugs include chloroquine, proguanil, me�oquine, and doxycycline. The second
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category is the treatment of individuals with suspected or con�rmed infection, the drugs vary

widely in activity and mechanism but one example is pyrimethamine which prevents DNA

synthesis and can act on schizonts in both hepatic and erythrocytic phases (White, 2004).

To summarise the current drugs available for the chemotheraputic treatment of malaria

Tables 1.1 and 1.2 (Dhanawat et al., 2009) show the year in which it was �rst used, its class,

its source(either synthetic, semi synthetic or natural), remarks about the drugs and their

targets (Kappe et al., 2010).
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Table 1.1: A summary of currently available therapeutics for malaria treatment (Dhanawat et al.,

2009)
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Table 1.2: A summary of currently available therapeutics for malaria treatment continued.

1.1.4 Vaccine Development

Out of all the vaccines in development RTS,S/AS01 is the most advanced and is at least

5 years ahead of any other candidate(Schwartz et al., 2012). The �rst results of the large

scale Phase 3 clinical trial that was conducted on RTS,S/AS01 were released in 2011. The

trial showed that RTS,S/AS01 has made some progress in the development of an e�ective

prophylatic but unfortunately has not reached the e�ectiveness that would be needed for it

to be viewed as a solution to the malaria problem, the vaccine was able to reduce infection

rate by between 45 and 55% (Lell et al., 2011).
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1.2 Emergence of Resistance

Strains of Plasmodium have emerged with resistance to many of the current therapeutic drugs.

The �rst occurrence of resistance was noted in 1957 to chloroquine, in this case the para-

site developed an e�ux mechanism that expels chloroquine from the parasite before a high

enough level is reached within the parasite (Krogstad et al., 1987). Resistance is also thought

to occur as a result of point mutations. As an example Plasmodium developed resistance to

antifolate combination drugs, the most common being sulfadoxine and pyrimethamine which

is thought to have occurred through two point mutations allowing blockages of enzymes in-

volved in folate synthesis. The reason for the parasite adapting and developing resistance

to these drugs can be one or a combination of many reasons, an example being due to the

genetic �exibility and immunogenic complexity of P. falciparum, and due to a lack of control

and distribution of available drugs, for example institutes dispensing dilute versions of the

drugs or the prescriptions not being completed by the patients allow for the parasite to be

exposed to non-lethal doses of the drugs which allow for resistance to develop in the parasite

(Ridley, 2002).

1.3 Protein-ligand interactions

This project deals primarily with protein-ligand interactions and their identi�cation. The

following sections will provide some background into understanding what protein-ligand in-

teractions are and which methods researchers employ when searching for them.

Predicting protein-ligand interactions is a vital step into deciphering many biological pro-

cesses, they are essential for understanding processes like signal transduction; and they play a

vital role in drug discovery. The theory behind an interaction between a ligand and a protein

historically followed the E. Fischer �lock and key� model. The �lock� represents the protein

which interacts with a �key� which represents the ligand, the key needs to �t correctly into

the keyhole (binding site) in the correct orientation in order to exert an e�ect (Koshland,

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION 10

1995). This approach however is an oversimpli�cation of the problem and the �hand-in-glove�

analogy was then developed to better represent the dynamics in a protein-ligand interaction,

that is adding that the protein and the ligand are both �exible units and during the course

of the interaction process both the ligand and the protein adjust their conformations to cre-

ate the �best �t� (Jorgensen, 1991). This conformation changing and �tting is known as an

�induced �t�.

The usual methods for identifying novel protein-ligand interactions can be classi�ed into

two groups; namely ligand-based and structure or docking based approaches. Ligand based

approaches typically compare a ligand that is already known to interact or inhibit a pro-

tein to unknown ligands in search of new interacting molecules. These methods usually use

machine learning algorithms (Butina et al., 2002). Structure based approaches attempt to

predict how a candidate ligand will interact with a protein by using the 3D structure of the

protein to attempt to �t the ligand into its active site (Halperin et al., 2002).

In order to successfully apply a ligand-based approach, a researcher needs to have knowl-

edge of enough interacting compounds of a protein to be able to generate an accurate pre-

diction. If no ligands are known to interact with a protein it is then still feasible to use a

structure-based approach, however, if the 3D structure of the protein target is not known and

cannot be derived then none of the classic methods can be applied. Both these methodologies

require that a researcher look at a single protein target independently of other proteins, thus a

new concept called chemogenomics was developed (Caron et al., 2001). Chemogenomics aims

to mine the entire chemical space of an organism implying that a set of all small molecules

be mapped to the biological space referring to a set of all proteins or at least protein families.

A reasonable assumption to motivate chemogenomics is that some classes of molecules can

bind similar proteins, which suggest that if we have knowledge of some ligands for protein

targets, it is possible to �nd ligands for similar targets (Rognan, 2007).
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When a researcher decides to begin a drug discovery project and wants to predict protein-

ligand interactions the most important consideration when deciding on an approach to use

is the type of data available, if any. It is possible to begin a drug discovery study in a case

where a researcher has no ligand data or protein structure by performing a high throughput

screen (HTS).

HTS has come into existence due to the advances in robotics and computational tech-

niques. It allows for millions of chemical or pharmacological experiments to be conducted

very rapidly using assays where a substance be it proteins, or whole cells are exposed to

a large variety of chemical compounds and their phenotypic e�ect is measured(Sundberg,

2000). This allows for a large amount of data to be produced and chemical start points to

be identi�ed for further study. A good example of this is the TCAMS antimalarial data-

set(discussed in 1.8.1) developed by GlaxoSmithKline. This data-set was released into the

public domain where a HTS was performed on Plasmodium grown in culture and measured

the level of inhibition of 2 million compounds which led to a library of 13533 compounds

found to inhibit malaria growth (Gamo et al., 2010).

If a researcher has ligand information but no targets it is possible to perform pharma-

cophore screening methods and 3-D QSAR to try to �nd the targets of the ligands. When

a researcher has a protein structure of a potential drug target but does not have any ligand

data the most likely approach is to perform docking studies against large libraries of com-

pounds and another option is to perform a de novo design and build a chemical structure

from analyzing the binding site of a protein and predicting what an interacting ligand will

look like. And if a researcher has a protein structure and interacting ligands a structure

based drug design method can be used to perform lead optimization.
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1.4 Physical properties of protein-ligand interactions

1.4.1 Measures

It is �rstly important to note that interactions are measured by a value called a dissociation

constant which is used to measure a�nity of ligands with enzymes but relates to all interac-

tions in the same way

Ki is measured by taking the protein and compound in solution and allowing the solution

to reach equilibrium, then Ki is equal to the concentration of the ligand multiplied by the

concentration of the protein divided by the concentration of the protein-ligand-complex as

shown in this formula:

Ki =
[PROTEIN ][LIGAND]

[PROTEIN−LIGAND−COMPLEX]

Another measure commonly used is IC50 which is the concentration of the ligand that

reduces the activity of the protein to 50%

1.4.2 Interactions

Di�erent kinds of interactions exist in a protein-ligand interaction in many cases these inter-

actions occur simultaneously with di�erent degrees of importance for the interaction:

1. Hydrogen-bonds : Hydrogen (proton) donors and acceptors.

2. Ionic interactions : Depend on (permanent or induced) ionic charges of ligands and pro-

teins. Induced charges are in�uenced by the pH, pKa and pKB, electrostatic attraction.

These are very strong within distances of around 3Å.

3. Metal ion complexes : Many enzymes contain metal ions, which interact with the

protein via charge induced interactions or via speci�c molecules, e.g. thiol groups

(R-SH).
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4. Hydrophobic interactions : Lipophilic moieties of the ligand interact with non-polar

amino acids of the protein, the energy bene�t results mainly from water replacement

out of hydrophobic binding pockets.

1.4.3 Enthalpic and Entropic Contributions to Ligand-Receptor Bind-

ing

Figure 1.2 illustrates the enthalpic and entropic contributions to the interaction. In summary

after a ligand comes into contact with its target before an interaction can take place, both

the receptor and the ligand need to be stripped of their solvent shells; the water molecules

that remain form bridging hydrogen bonds; additional ions may be required for binding; the

receptor might need to change shape; and the ligands rotatable bonds need to be arranged. It

is important to state that the stability of the protein-ligand complex has a large in�uence on

the bio-activity of that compound and the energy gained during the formation of the protein-

ligand complex is the energy responsible for the stability of the complex. It is generally seen

that more lipophilic ligands have greater a�nities, this is because these compounds allow

for more hydrogen bonds to form in the solvent and easily moves from the solvent to bind

to hydrophobic receptor surfaces. Hydrophilic areas are however seen to increase instability

of the complex, due to the water molecules that surround the ligand that interrupt the

interaction, and are also seen to have discriminatory properties which contribute highly to

selectivity of the binding site (A.Bender and R.C.Glen, 2004).

1.5 Chemogenomic approaches

The term chemogenomics has been de�ned as the discovery and description of all possible

drugs to all possible drug targets (Rognan, 2007). It is closely related to the concept of chem-

ical genetics and chemical genomics in the approaches used to investigate the relationship

between biological systems with small molecules. The di�erence between these approaches

is that chemogenomics tries to emphasize the inherent relationships between targets and
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Figure 1.2: A summary of enthalpic and entropic contributions to ligand receptor binding(A.Bender

and R.C.Glen, 2004).

small molecules while chemical genomics and chemical genetics emphasize the e�ect of a

small molecule on the biological system. In recent years there has been a large increase in

the amount of small-molecule bio-activity information available publicly in electronic form

with the ability to process this data has become very rapid. Thus with all this information

available a researcher is no longer limited to considering shared features of antagonists to one

receptor but can now view characteristic features of antagonists of all known receptors and

�nd relations between them (Caron et al., 2001).

1.5.1 Describing ligand and target space

1.5.1.1 Ligand space

Chemogenomics assumes two basic principles, the �rst is that compounds that are similar

to one another will share targets and second that targets sharing similar ligands should

share similar patterns i.e. binding sites. Thus to complete a data set using a chemogenomic

approach implies that all targets that do not have ligands associated to them be linked to

the nearest neighbour target that has ligands. Similarly, all ligands that do not have a target

should be linked to the nearest neighbour ligand that has a target. The question here is not

necessarily if these assumptions are correct but rather what is the best way to measure the

distance between two targets or two ligands (Rognan, 2007).
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In order to correctly identify similar compounds one needs to select appropriate descrip-

tors. Descriptors are often classi�ed into their dimensionality ranging between 1-D and 3-D

descriptors and are summarized in Table 1.3 and Figure 1.3 (A.Bender and R.C.Glen, 2004).

The 1-D descriptors are easy to and quick to compute because they can be derived from

the chemical formula, they can be used also to compute a number of additional properties for

instance ADMET (absorption, distribution, metabolism, excretion and toxicity properties)

and even help classify ligands as drugs or non-drugs (Sadowski and Kubinyi, 1998). They are

commonly used to do very rapid comparisons and the most common descriptor is a SMILE

(Simpli�ed Molecular Input Line Entry String). The vast majority of chemical descriptors

used are 2-D topological descriptors or sketches of the structure, where a connectivity table

is generated that can represent both atomic and bond properties. These can then be used

to search for substructure and also cluster compounds into subfamilies. The other form of

2-D descriptors is �ngerprint-based methods, where a structure is coded into a bit string of

1's and 0's that represent the atoms, fragments, rings and substructures. Fingerprints have

been found to often be the most appropriate method of comparison due to its speed and

e�ectiveness (Willett, 2006).

3-D descriptors include atomic co-ordinates, 3-D pharmacophores, shapes, potentials and

�elds. These can be compared by either aligning molecules on the same Cartesian plane or

by converting the 3-D information into a bit string which is much easier and quicker than

attempting to compare the structures. Most similarity measures move to simplify the com-

parison to single indices, of which the most commonly used is the Tanimoto coe�cient. The

Tanimoto coe�cient is described below.

T c= c
a+b−c

where a is the number of bits in compound A, b is the number of bits in compound B

and c is the number of bits in both A and B. The coe�cient thus ranges between 0 and 1

where 0 represents 2 completely di�erent compounds and 1 represents identical compounds.
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Table 1.3: Examples of the di�erent ligand descriptors (Rognan, 2007).

Figure 1.3: Examples of the various molecular descriptors, the 2D chemical sketch can be repre-

sented in various ways to allow searching against it's properties. There are speci�c uses for all of

these descriptors and each has pros and cons. (Rognan, 2007)
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Figure 1.4: Representations of a protein using 1-D to 3-D properties (Rognan, 2007).

1.5.1.2 Target space

Proteins are most commonly classi�ed by their sequence(1-D) and structure (3-D), at the

sequence level a researcher has the ability to reliably cluster targets into families for example

kinases or GPCRs. Protein sequences, even in the same family, vary in length to a large

degree and that makes their alignment more di�cult especially when having to deal with

large insertions and deletions, so researchers often put focus on �nding common motifs within

sequences (Attwood et al., 2003) which are collections of residues that are speci�c for a protein

family. The structural organization of a protein is also a very important feature to consider

as it greatly e�ects the activity of the protein, structure can be represented in 2-D where the

α-helices, β-sheets, coils and random structures are mapped to the sequence and in 3-D where

a structures atomic co-ordinates are identi�ed using methods like x-ray crystallography and

NMR. The focus in most drug discovery studies is the binding site of a protein structure as

it is what determines a protein's activity with a certain ligand.
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Figure 1.5: (a) Deriving and (b) comparing protein�ligand complexes by molecular interaction

�ngerprints. `0' and `1' digits are replaced by color-coded squares for the ease of comparison (blue,

hydrophobic interactions; green, aromatic interactions; red, hydrogen bonds) (Rognan, 2007).

1.5.1.3 Target-ligand space

It is also possible to describe protein-ligand interactions for comparative purposes using in-

teractions that have been experimentally evaluated and have either a�nity data or structural

information. The drawback to this kind of data is that it is very scarce due to the scale of

the experiments to generate this type of data. A descriptor of some interest in this area

is a structural IFP (interaction �ngerprint), illustrated in Figure 1.5 which converts atomic

co-ordinates into a bit string similar to a chemical �ngerprint but carrying information on

the binding site of each residue and the type of molecular interaction taking place at that

position. It is then possible to compare series of complexes where one protein is matched to

a series of ligands or one ligand is matched to a series of proteins (Rognan, 2007).

1.5.2 Ligand-based chemogenomics approaches

This approach attempts to pool together targets at a family or subfamily level and build a

model for the ligands that will interact with that family of targets (Rognan, 2007). The basic

assumption behind this approach is that if a unknown ligand is structurally similar enough to

an already biologically annotated ligand then there is a better chance that they will exhibit
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Table 1.4: Overview of the major public bio-activity data resources available at present (Koutsoukas

et al., 2011).

similar biological properties. It is then vital to have databases of biologically annotated

ligands before it is possible to perform this kind of study. Fortunately the number of these

databases that are becoming publicly available is increasing at a rapid rate. A summary of

these databases can be seen in Table 1.4, it is important to note that these databases are

biased to pharmaceutically import target families such as GPCRs and kinases which limits

the potential of identifying interactors that fall outside of those well de�ned families. These

biologically annotated databases are a primary source of potential new biological mechanisms

that can be exploited for drug discovery and development to treat diseases.

1.5.2.1 Ligand-based in silico screening

A ligand-based in silico screening approach to target-�shing (identifying targets for unanno-

tated chemical ligands) involves 3 basic components irrespective of which method employed

(Cases et al., 2005). The �rst is to have a set of reference compounds which have either 2-D

or 3-D descriptors, secondly a procedure setup to screen by either QSAR, machine learning
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Figure 1.6: Ligand based target �shing summary. This illustrates the data required to perform a

ligand based screening (Rognan, 2007).

or pharmacophore searches and lastly a screening collection to identify new molecules likely

to share a target with the reference compounds. The process followed is to �rst categorize

the compounds from the training set by their protein target without providing a binding

site or describing the type of interaction taking place (i.e. whether it is an antagonist or

agonist), which leaves the possibility that the machine learning algorithms could generate

false rules by using incorrect data. To overcome these potential errors 3-D approaches such

as pharmacophore modeling can be used (to be discussed in detail later)(Steindl et al., 2006).

An illustration of the screening process is shown in Figure 1.6.

This technique was successfully applied by Novartis using a Bayesian statistics-based ma-

chine learning algorithm (Xia et al., 2004), where they predicted target pro�les of compounds

from the Wombat database. In their approach they created a Bayesian model for each target

to distinguish between active and inactive compounds. They calculated the probability that

a compound will be active against each target and selected the most likely target. This

method was found to correctly predict the target 77% of the time when the training set was
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from the Wombat database and the test set was from the MDDR database (Nidhi et al.,

2006). When assessing other 2-D and 3-D descriptors for the same application the 2-D de-

scriptors were found to have more predictive power than the 3-D pharmacophore approach

but 3-D descriptors are more useful when considering molecules that show little similarity to

the training set compounds.

1.5.3 Target-based chemogenomics

A large amount of potential value exists in comparing targets from the same family, espe-

cially those with structural data in order to perform proteome-wide comparative modeling

of targets with unknown structure. Target-based chemogenomic approaches are divided into

two categories, one being based on sequence information the other structure-based.

1.5.3.1 Sequence-based comparison

A sequence-based approach in principle can be used for any protein family provided that a

multiple sequence alignment of the possible targets is possible. A sequence-based approach

is generally applied when there is too little structural information available to be useful.

GPCR's make a good example for the value of this approach because of the known importance

of GPCR's in drug design and the limited number of GPCR structures available (Frimurer

et al., 2005).

Once an alignment is performed on all the sequences it is possible to identify key residues

that map to the binding site of most ligands. These residues can then be extracted and

combined into an ungapped sequence which is used to create a distance matrix based on

sequence identity, sequence similarity and physio-chemical properties,called a cavity-tree,

illustrated in Fig 1.7 (Surgand et al., 2006). A study performed by Surgand et al clustered

372 human GPCRs using this strategy and interestingly found that it produces an identical

tree to one based on the full sequence indicating that only a few residues are required to

compare targets within the same family.

The cavity trees can be applied using a simple principle called target-hopping where
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Figure 1.7: Sequence-based comparison of targets (a) Selection of key cavity-lining residues and (b)

Clustering according to residue conservation (Surgand et al., 2006).
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predicting new target ligands can be done by identifying known ligands of a similar receptor.

As an example Frimurer et al used a GPCR cavity-based tree CRTH2 receptor antagonists

were identi�ed from known angiotensin II type 1 receptor antagonists (Frimurer et al., 2005).

1.5.3.2 Domain �shing

A shortcoming of predicting targets for ligands is the restrictions to the size of the training

set and targets can only be con�dently predicted if they have orthologs with known ligands

in the database. Thus a domain �shing approach was developed by Bender and Glen (2004).

where they built protein domain-based models to predict interactions with, the assumption

being that similar ligands are not only likely to bind to the same target but also to the same

protein folds and amino acid sequences that occur in other proteins. This approach greatly

widens the net so to speak of what interactions can be predicted so it is possible to predict

interactions to targets that are very distant to those in the known interactions database.

This approach cannot make de�nitive predictions due to the complexity of protein structure

but the ability to expand the scope of the targets list outweighs the negative of not being

able to make de�nitive predictions (A.Bender et al., 2007).

1.5.3.3 Structure-based comparison

If a target family has enough good structural templates it is possible to perform structure-

based comparisons. Usually only ligand-binding sites are compared because the purpose of

this approach is to understand the activity of ligands of related targets. MIF (Molecular

Interaction Fields) is one measure that can be computed to perform structural comparisons,

a structural alignment of all targets is performed and interaction energies are generated by

placing probe atoms at each point of the 3D grid the falls in the ligand binding site and

placing those energies into a MIF vector. The MIF vector can then be placed into a global

matrix where the rows represent targets and columns represent interaction energies at a given

3D grid point. Comparing and clustering the MIF's can be done by analyzing the matrix

using a principle component analysis (PCA) (Naumann and Matter, 2002) or by calculating a
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Figure 1.8: Molecular interaction �eld (MIF)-based clustering of targets (Rognan, 2007).

MIF distance and converting the results into a tree (Hoppe et al., 2006), this is illustrated in

Figure 1.8. This type of comparison is very dependent on the structural alignment, the grid

resolution and the probe atoms used and cannot be applied to targets in di�erent families but

has been successfully applied to protein kinases (Naumann and Matter, 2002) and nuclear

hormone receptors (Hoppe et al., 2006) to identify cavity regions that can explain ligand

binding and guide the design of compound libraries towards the desirable selectivity pattern.

1.5.3.4 Target-ligand approaches

This approach tries to predict ligands that bind to a particular target by leveraging binding

information for other targets without �rst trying to de�ne a set of receptors (Rognan, 2007).

This has been attempted in numerous ways, an example being Bock and Gough (Bock and

A, 2005) who combined descriptors of protein-ligand interactions to describe putative ligand-

receptor complexes and used machine learning methods to analyze whether a receptor-ligand

pair is predicted true or not and Erhan et al. (2006) used the same principle but used

neural networks and support vector machines to perform their comparisons. They showed
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that it was possible to combine a set of receptor descriptors and a set of ligand descriptors

into a computational framework that allows for a large degree of �exibility in the choice of

descriptors

1.6 Ligand-based approaches

Chemical similarity searching with the goal of target prediction has already been outlined

in the chemogenomics approaches section and di�ers only slightly in focus to �nd new com-

pounds for a single target, or target to a single ligand. This is performed by comparing a

compound's structure to a database of ligands with known targets. The following section will

outline a few additional approaches to ligand based approaches of predicting protein ligand

interactions. These all still utilize the assumption that similar compounds will be active

against the same targets and focus around comparing compounds.

1.6.1 QSAR

Quantitative structure activity relationships (QSAR) are studies performed to understand the

quantative correlation of molecular structure to the binding constant, and thus also predict

the properties for novel compounds and help to characterize the spatial features responsible

for the changes in activity when comparing drug molecules (Durdagi et al., 2008).

1.6.1.1 Comparative Molecular Field Analysis (CoMFA)

The main focus of CoMFA is to identify a ligand that will have the best a�nity to a protein,

by analysing a set of compounds that have binding a�nity data for a protein target. In

short the approach builds statistical and graphical models that relate to the properties of a

molecule to its structure. These models are then used to �nd the activity of novel compounds

(Cramer et al., 1988). In CoMFA the molecular structures are �rst drawn in a rectanglar grid

that consists of equally spaced lattice points. The electrostatic and steric interaction energies

are then calculated by placing a probe atom at each lattice point and an activity model is
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produced. The activity model is analyzed and the most import features where steric and

electrostatic interactions in�uence the acitivty of the compound are selected and represented

on a 3-D pharmacophoric map. A problem with CoMFA is that it does not map all types of

interactions that take place

1.6.1.2 Comparative Molecular Similarity Indices Analysis (CoMSIA)

This approach is similar to CoMFA but di�ers only in that it does not map interaction

energies using a probe but rather uses distance dependent similarity indices to probe atoms

to determine the interaction type and strength. Thus it is able to take all interaction types

into consideration.

1.6.2 Structure-based virtual screening

The premise of structure based virtual screening is that the researcher have an already-

resolved 3D structure of a protein of interest. In this methodology a �docking program� is

then used to dock or �t a computer representation of a small molecule into either the whole

or selected area (active site) of the 3D structure of the protein of interest. The program will

try to �t this small molecule in all possible orientations, each of these are known as a �pose�.

The program will then try to identify the most energetically favorable pose, where each pose

is �scored� based on how it compliments the structure with regards to shape and electrostatic

properties. Poses that indicate a ligand to be a good binder are then given good scores, and

the process is repeated on all small molecules that a user is screening against and the results

are then ranked based on their scores. The ranked list is then used to select compounds that

are predicted to be bio-active against the protein for further study, the process is illustrated

in Figure 1.9. If this process manages to be performed with reasonable accuracy it will result

in a list of bio-active small molecules that greatly increase the speed of drug development

without greatly increasing the costs to the discovery project.
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Figure 1.9: Illustration of docking and scoring. R symbolizes a receptor structure, A, B and C

represent small molecules to be docked into the receptor (Kroemer, 2007).

1.6.2.1 Basic requirements

In order to perform structure-based virtual screening the receptor structure is needed. Pri-

marily a structure is resolved experimentally using either X-ray crystallography or nuclear

magnetic resonance spectroscopy(NMR).

The procedure behind X-ray crystallography Crystallography in brief consists of

three steps, the �rst being the most di�cult is to obtain an adequate crystal of the protein

in question. The crystal needs to be large, pure in composition and regular in structure with

no signi�cant cracks or imperfections. In the second step the crystal is placed in a beam

of single wavelength X-rays that produce a regular pattern of re�ections while the crystal is

slowly rotated, with each orientation the previous re�ections disappear and new ones appear

and all are recorded. Usually a structure will need multiple data-sets containing tens of

thousands of re�ections. The last step is to combine this data computationally and add

chemical information to create a re�ned model of the arrangement of atoms in the structure

(Smyth and Martin, 2000).

NMR of proteins NMR also requires multiple steps, the �rst being sample preparation

where a large quantity of puri�ed protein product needs to be produced or extracted, the
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puri�ed protein is then dissolved in a bu�er solution and adjusted to the desired solvent con-

ditions. The second step is called resonance assignment, which is to �nd out which chemical

shift corresponds to which atom, this is done using a technique called sequential walking

which combines information from many NMR experiments to validate chemical shift, the

procedure varies depending on if the protein has been labeled with carbon-13 and nitrogen-

15 or not. The next step is restraint generation, where before a structure can be generated

various experimentally determined restraints need to be created, these include restraints on

distances and angles. And lastly the structure is generated and validated by the researcher

trying to �t as many of the generated restraints as possible(Wuthrich, 1986).

Homology Modelling If the structure of a protein is not available a user can also resort

to predicting a 3D structure either through �threading� or homology modeling. The process

of threading involves comparing the protein sequence to a database of structures with known

folds and building the structure from those results. Homology modeling requires the sequence

comparison and similarity to at least one protein that has a 3D structure. Once a structure is

derived for a protein it is important to analyze it for potential binding sites which molecules

may be bound to.

Pose prediction To �nd the best pose of a molecule being docked the program usually

attempts all the possible orientations and only stores the one that is energetically the best.

With the fact that ligands are �exible the program needs to �nd the best orientation and

conformation, this increases signi�cantly the possibilities so the programs usually stop once

a certain number of trials have been completed or enough poses have been found with fa-

vorable energies. The decision to keep or reject a pose is based on a score that computes

the interaction energy of the ligand-receptor. Many programs use a crude �dock score� based

on a simple energy function to quickly evaluate poses and then recalculate a �a�nity score�

using more sophisticated calculations on a smaller set of predictions.
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Scoring or a�nity prediction For each best pose that was found for a molecule an

a�nity scoring function is applied to give a binding score of that chemical to the protein.

Those scores are then ranked and a list of potential interacting molecules is created. There

are two main categories of scoring functions that exist.

Knowledge-guided scoring functions form the �rst group and these are derived by

using statistics of observed inter-atomic contact frequencies and distances in databases of

crystal structures of protein-ligand complexes. The assumption is that only the interactions

that adhere to the frequencies in the databases favor a positive interaction taking place and

increase the overall binding activity, in contrast interactions that have a low frequency in

a database are assumed to destabilize the binding thus decrease the overall a�nity. The

various predictors created include PMF, DrugScore and SmoG, though the major di�erences

are in the size of the training sets and the molecular interactions that are taken into account

(Kroemer, 2007).

Energy component methods

form the second major division of a�nity scoring methods. These methods are based on the

assumption that the total change in free energy of the binding of a ligand to its receptor is

made up of the sum of individual contributions.

4Gbind = 4Gint+4Gsolv+4Gconf+4Gmotion

In the described formula 4Gbind represents the total change in free energy, 4Gint repre-

sents the receptor-ligand interactions, 4Gsolv represents the interactions occurring between

the ligand and receptor with the solvent, 4Gconf represents the changes in conformation of

the protein and ligand and 4Gmotion represents the change in energy caused by the motions

of the ligand and protein during the complex formation. This principle can only truly be

applied if you can separate these energies into mutually independent variables which is not

really the case with protein-ligand interactions because many of these factors are directly
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related and can a�ect the binding with both positive and negative contributions. The addi-

tivity principle has also been proven to not always be applicable in protein-ligand binding

(Dill, 1997). Despite the limitations to the accuracy of these methods they are still used

because of the quickness of their calculation which is very important when dealing with large

databases in high-throughput experiments. This method can also be further divided into two

categories those are methods that are based purely on the physical chemistry properties and

those that use experimental data to better de�ne the interactions that take place these are

called regression-based methods. These assume a linear relationship between the change in

free energy and the number of terms (eg. hydrogen bonds, ion pairs, molecular �exibility,

contact surface) that characterize the binding. These use crystal structures with binding data

to optimize coe�cients of the regression equation. Many of the most used scoring functions

are developed like this, these include LUDI (Böhm, 1994), ChemScore (Eldridge et al., 1997)

and GOLD score (Jones et al., 1995).

1.6.2.2 Challenges to Docking based methods

Despite the large strides taken in this �eld scientists still face some fundamental challenges

to docking and scoring .

Flexibility and Docking Protein �exibility is one of the more di�cult problems facing

docking algorithms. It has been found in multiple cases that proteins change their con-

formations when di�erent ligands bind to them (Teague, 2003). This means that docking

algorithms that use a rigid structure of a protein will miss the ligands that bind to alternate

conformations of the protein. Three main approaches have been used to tackle the problem

of protein �exibility, allowing the receptor or parts of the receptor to move during docking,

docking a molecule to various conformations of the protein and aggregating the results and

prior to docking, averaging the receptor representation. The implementations of these ap-

proaches often use various combinations of these approaches to handle �exibility. Despite

these approaches the handling of protein �exibility it remains a serious issue that needs to

be considered when performing any docking projects.
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Water Water molecules often mediate protein-ligand interactions thus failing to include

them in the docking calculations will result in the calculated interaction energy of the ligand

being too low. Likewise, if a docking program leaves water molecules that are observed in

the crystal structure then a ligand that would normally replace the water molecule would

not be docked correctly. To appropriately handle water molecules one would need to predict

where a water molecule would interact with the protein and ligand and after that determine

if the water molecule is actually present at that location.

Tautomers and ionization patterns Tautomers cause a problem in docking because it is

not possible to predict which tautomeric state a compound will adopt. Many databases store

acids and amines in neutral form, and many of these would be ionized in normal conditions

in a cell and therefore would need to be ionized before docking. Although this is not di�cult,

to compute selecting the correct tautomer is. It is up to the researcher to decide how to deal

with this challenge, whether to stick to one single tautomer or generate all possible tautomers

for a molecule and dock them all. The value of generating many tautomers is questionable

as it could mearly result in a large list of false positives

With all the methods described above it has been shown that there are many ways of

using biological information to �nd chemical ligands that bind to a target protein, to �nd

targets of chemicals known to inhibit an organism and to create and optimize ligands to be

e�ective inhibitors of a target protein. It is not possible to do any performance comparisons

of these methods because they do not use the same type of data and each is applied in a

di�erent context to answer di�erent scienti�c questions by providing the answer to the same

simple question �Will this compound interact with this protein?�. The choice of approach will

always be determined by what question the user is trying to answer and what information is

already available. Fortunately this �eld of science has been in development for many years

due to the commercial interest in drug discovery, thus it is possible to perform interaction

predictions with a variety of information available even if that information is very limited.
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Many of the techniques require proteins and ligands that are already well curated with inter-

action information to be useful. In recent years large quantities of these reference interactions

have become available and thus have increased greatly the value of these approaches, and

in years to come as the number of these interactions increases the power of these predictive

techniques increases. The largest amount of predictive power will be gained when interaction

data regarding less studied protein families becomes publicly available which will unlock the

ability to perform predictions on a much greater diversity of proteins thus also revealing new

potential targets.

1.7 ChEMBL

Chembl is an open access database containing binding, functional and ADMET data for a

large number of small drug-like bio-active molecules. The Chembl group is based at the

European Bioinformatics Institute(EBI) at the Wellcome Trust Genome campus in Hinxton,

England led by John.P.Overington and predominantly funded by the Wellcome Trust.

The problem that the chembl group is trying to solve is the di�culty experienced when

trying to do research into past drug discovery experiments. The nature of publications is

such that chemical structure data is usually published as images making it not possible to

search programmatically and proteins are referred to through various synonyms or abbrevia-

tions. Additionally most journals do not require the publication of the small-molecule assay

results into a public database making the results of the publications only accessible through

commercial products.

The core set of activity data that exists in the ChEMBL database was manually extracted

from full text peer reviewed publications from various journals including Journal of medicinal

chemistry, Bio-organic medicinal chemistry letters and Journal of natural products. Letters

and Journal of Natural Products. The journals were selected to capture the highest quantity

of high quality data at the lowest cost. Above the literature-derived data ChEMBL also

contains the structures and annotations of FDA-approved drugs

For each publication the following is included:
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� Details of the tested compound, what assays were performed and all target information

is abstracted.

� Small molecule structures are drawn in full, in machine readable format including those

that are only referred to by name.

� Information regarding the particular salt form being tested is captured.

� The structures are checked for potential problems e.g. unusual valence on atoms, in-

correct structures of common compounds.

� The structures are then normalized to a set of rules to create consistency within the

database. Compounds are neutralized to get the formal charge to zero where possible,

common groups are set to previously decided on representations. Stereochemistry is

con�gured to the naturally occurring con�guration unless stated otherwise in the ar-

ticle and common salts are stripped from the compounds and added separately to the

database

� All types (including ADMET, functional and binding assays) of assay detail is extracted

and activity endpoints values are normalized to improve a users ability to compare

values from di�erent assays.

� Protein targets are standardized to be consistent and detailed annotation of targets is

handled manually internally by the ChEMBL group.

As of version 16 Chembl contains information for 1,295,510 distinct compounds and 9,844

protein targets described in 50,095 publications. There is a data exchange program in place

between PubChem BioAssay (Wang et al., 2012) which houses many results primarily of high

throughput screening experiments which lack dose-response data (IC50,Ki) as experiments

are usually done with a single concentration, but have a signi�cant number of data points

so the data between these two databases is distinctly di�erent and complimentary. All

ChEMBL assays have been loaded into PubChem and a subset of assays form pubchem
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loaded into ChEMBL and clearly marked. Similarly entries have been added reciprocally

between ChEMBL and BindingDB (Chen et al., 2001).

ChEMBL uses a web based interface that can be found at https://www.ebi.ac.uk/chembl/,

this project only deals with the content of chembl so this will not be discussed further.

1.8 Malaria centered bio-activity data sets

There have been various groups in recent years that have released drug screening results

against in house chemical databases into the public domain that are generally proprietary

data. This is in an e�ort to stimulate and aid the public sector in the development of either

a cure for malaria or discovery of new anti-malarials

1.8.1 GlaxoSmithKline TCAMS data set

In 2010, GlaxoSmithKline(GSK) published the structures of 13533 chemical starting points

for antimalarial lead identi�cation that were identi�ed through in vitro screening whole cell of

1,986,056 compounds from the GSK screening library on Plasmodium falciparum 3D7 strain

and subsequently on Dd2.

1.8.1.1 A summary of the methods

The assays (384-well) were prepared with a total concentration of 2 µM of each compound

with column 6 as a positive control containing 5µM of Di-methyl sulfoxide(DMSO) and

column 18 with 50µM artemisinin and µM chloroquine as negative control. The blood cells

were added and plates were shaken for 10s to ensure mixing and then incubated at 37C

for 72h in an atmosphere of 5% CO2, 5% O2, 95% N2. The screening was completed by

evaluating the activity of LDH(Lactate Dehydrogenase) by measuring the level of absorption

of reaction mix(143 mM sodium l-lactate, 143 µM 3-acetyl pyridine adenine dinucleotide

(APAD), 178.75 µM Nitro Blue tetrazolium chloride (NBT), 286 μg ml-1 diaphorase (2.83 U

ml-1), 0.7% Tween 20, 100 mM Tris-HCl pH 8.0) after the incubation period.
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The decision to incubate for 72 hours was to guarantee that all parasites completed at

least one cell cycle and to increase the chance of detecting slow acting and 'delayed death

phenotype' inhibitors, some of which were detected, i.e. tetracyclines. Due to the large

number of hits many of the concentration curves were estimated using the LDH assay instead

of the standard hypoxanthine incorporation assay which is regarded as the standard for anti-

malarial concentration curves. These were demarcated as XC50 instead of the usual IC50. To

measure cytotoxicity the hits were screened at 5 times the screening concentration against

human hepatoma HepG2 cells (Gamo et al., 2010).

1.8.2 Novartis-GNF Malaria Box

The Novartis-GNF Malaria box is a selection of compounds from GNF's non-proprietary

chemical libraries that were screened for proliferation inhibition activity of P.falciparum

strain 3D7 in human erythrocytes. The data set contains the structures and screening results

of 5600 compounds, that were tested in dose response and con�rmed to inhibit P.falciparum

growth by at least 50% at the highest screened concentration being 12.5 μM. Activity was

also measured against the multi-drug resistant W2 strain and in addition to this a human

cell cytotoxicity screen was completed using the Huh7 human hepatocellular carcinoma cell

line to give indication as to the 'promiscuity' of the hits.

The data sets were created by testing P. falciparum strains 3D7 andW2 in an erythrocyte-

based infection assay for susceptibility to inhibition of proliferation using the malaria box

compounds mentioned above. Compounds were screened in a 12 point dose-response (1/2 log

serial dilutions) assay in 1536-well format and concentrations ranged from either 12.5 µM to

0.0001 µM. Parasite cultures (8 µL) at 0.3% parasitemia and 2.5% hematocrit were treated

with a compound for 72 hours under low oxygen conditions. After 72hr parasite growth

is determined by measuring the nucleic acid content of the parasites with the �uorescent

dye SybrGreen and plates were read on an Envision plate reader (Perkin Elmer). Current

antimalarials were used as reference compounds.

Compounds were screened against the Huh7 human hepatocellular carcinoma cell line in a
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12 point dose-response (1/2 log serial dilutions) in 1536 well format at concentrations ranging

from 100 µM to 0.0003 µM. Cells are seeded at 500 cells per 5 µL media per well. Compounds

were transferred the next day and cells are cultured for 72 hr to match the incubation length

during the P. falciparum proliferation inhibition assay. Cellular viability was assessed using

Cell Titer Glo (Promega). (K Gagaring)

1.8.3 St Judes Children's Research Hospital Malaria data set

This data set that was released by the St Judes Children's Research Hospital contains the

details of the e�ectiveness of almost 310,000 chemicals of which 1,100 are new compounds

with con�rmed activity against the malaria parasite, 172 were studied in detail which lead

to the identi�cation of more than a dozen families of possible candidates. In this study,

investigators surveyed the hospital's library of compounds looking for those e�ective against

the entire malaria parasite. Scientists tested the chemicals against the Plasmodium. The

work led St. Jude researchers to three families of molecules, including two believed to act

against new targets. Investigators hope to have a new drug in the clinic within a decade.

1.9 Discovery

Discovery is web-based system developed to be a resource for researchers to be able to mine

information on malaria proteins and predicted ligands, as well as perform comparisons to the

human and mosquito host characteristics. Protein features used include: domains, motifs,

EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions

and host-pathogen interactions among others (Joubert et al., 2009). The Discovery system

has gone through a major update to improve its functionality, it was rewritten in Java with

a focus on making it easily update-able. The reason being that the data sources Discovery

uses to make its comparisons are constantly being expanded and new entries are consistently

being added or changed, these updates are too frequent to be handled manually thus an

automated solution was required. The importance of keeping the data as current as possible
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is that new data may allow for new associations to be made with malaria proteins which

could lead to new drug targets or leads being identi�ed.

1.10 Problem Statement

The current dependence on artimisinin based combinatation therapies and the emergence of

artemisinin resistance in Asia creates the need to the continuation of the search for alternative

drug targets and lead compounds to treat malaria. However all drug development projects

require a large amount of capital input, both �nancially and man hours, making failed drug

development projects very costly as failure causes all capital invested to be lost. A great

amount of value can be realized by reducing the number of failures by improving selection

of drug targets or leads prior to committing resources. This can be achieved by aiding drug

target selection with in silico techniques.

With the increasing quantities of bio-active molecule-data available to the public an oppor-

tunity exists to leverage this data to improve the selective ability of in silico target selection.

By adding possible protein-ligand interactions to the list of post-genomic data available you

gain possible insight into a proteins activity and should a target be selected it may provide

a list of chemical compounds that can be used as start points for screening e�orts. The

problem that needs to be addressed is how to integrate this type of data with other malaria

data to make this leveraging possible.

1.11 Aims

The aim of this research project was:

� To expand on the protein-ligand interaction prediction ability in Discovery 2.0.

� To �nd and incorporate alternative bio-active molecule databases.

� To improve accessibility to malaria data using ligand-based approaches.

� To improve on the platform to do chemical based searches against malaria proteins.
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� Aid in the improved characterization of malaria proteins by predicting their chemical

inter-actors.

� Improve on the Discovery platform used for searching malaria data.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2

Methods

2.1 Overview

The goal of this project has been to expand the Discovery systems ability to identify putative

protein-ligand interactions for the malaria parasite Plasmodium proteins, previously Discov-

ery was designed to perform a protein BLAST of Plasmodium proteins against Drugbank

database that houses the protein target information of FDA approved drugs. Although this

is very useful data a limitation is that it is static and has not been updated since Drugbank

version 3.0 which contains 4,229 protein targets and are of FDA approved drugs only. With

the focus of the new version of Discovery being for it to be as up to date as possible it was

decided to search for and add additional bioactive sources to use for comparisons.

2.2 ChEMBL database integration

The ChEMBL database is available online in various formats. All compounds are available

as an .sdf �le and all protein targets can be downloaded as a .fasta �le. Alternatively

the entire database can be downloaded in Oracle, MySQL and PostgreSQL versions from

�https://www.ebi.ac.uk/chembl/downloads�.

For integration into Discovery 2.0 which uses a MySQL database, the MySQL version

39
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Figure 2.1: Flow Diagram of Protein-ligand interaction prediction in Discovery 2.0. The di�erent

sources are represented with di�erent colours, ChEMBL and it's components in yellow and Discovery

in teal with merged data represented by the gradient
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of ChEMBL was downloaded along with the .sdf and .fasta �les. The �rst aspect that was

addressed was how Discovery connect the chemical data to malaria proteins, this was done

using BLAST and domain matching which is discussed later. To prepare these associations

the ChEMBL entries were compiled into a single reference table that contained the ChEMBL

id of the target protein in one column and its associated compounds ChEMBL id in the second

column. There is a many-to-many relationship between the chembl protein ids and the

ChEMBL chemical ids as one protein can have many binding ligands and a single compound

can possibly interact with many di�erent proteins, thus the need to create a simple indexed

table storing the associations to increase the speed relevant queries.

2.2.1 Chemical Data Integration

Chembl contains 1,324,941 distinct chemical compounds with detailed information for each

record. There was limited value in adding all of this information into Discovery and a focus

was maintained on keeping the display simple and allow external links to the ChEMBL

website through the results pages, so it was decided that apart from the basic information

just the structural data of each compound and the association data is stored in Discovery.

The chemical searching in Discovery is handled by a third party tool called JQuery by

ChemAxon, thus all the chemical data was imported into the JQuery plug-in for it to create

its own indexed database for quick structure based queries.

This integration allows then the use of the Marvin sketch tool to draw compounds in the

Discovery web page query the entire chemical database.

2.2.2 Protein Data Integration

ChEMBLhas 9,844 protein targets available. The protein data was stored in the .fasta �le

and a simple table containing the proteins sequence was created in the Discovery database

for rapid access when performing the sequence alignments in the proteins page.
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2.2.3 Assay data integration

Each ChEMBL entry of every chemical or protein entry has an ChEMBL assay entry as-

sociated via a foreign key this is a reference to a document where in the interactions are

described. This data was also incorporated into Discovery where by the short description is

available and external links exist to take the user to the entry on the ChEMBL website.

2.3 Protein Matching using BLAST

BLAST is the tool used to measure the similarity between the proteins existing in the

ChEMBL targets database and the malaria related proteins.

2.3.1 BLAST

The Basic Local Alignment Search Tool (BLAST) was developed to perform rapid sequence

comparisons to identify regions of similarity in sequences and is one of the most widely used

bio-informatics tool available. BLAST approximates alignments that are optimized by a

measure of local similarity, the maximal segment pair (MSP) score. The basic algorithm

is simple and robust; it can be implemented in a number of ways and applied in a variety

of contexts including straightforward DNA and protein sequence database searches, motif

searches, gene identi�cation searches, and in the analysis of multiple regions of similarity in

long DNA sequences. (Altschul et al., 1997)

2.3.2 The BLAST Algorithm

The BLAST algorithm can be summarized as follows

� Remove low-complexity region or sequence repeats in the query sequence.

� Create a k-letter word list of the query sequence.

� List the possible matching words.
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� Organize the remaining high-scoring words into an e�cient search tree.

� Repeat step 3 to 4 for each k-letter word in the query sequence.

� Scan the database sequences for exact matches with the remaining high-scoring words.

� Extend the exact matches to high-scoring segment pair (HSP).

� List all of the HSPs in the database whose score is high enough to be considered.

� Evaluate the signi�cance of the HSP score.

� Make two or more HSP regions into a longer alignment.

� Show the gapped Smith-Waterman local alignments of the query and each of the

matched database sequences.

� Report every match whose expect score is lower than a threshold parameter E.

2.3.3 Application

In the context of Discovery and speci�cally this project there was no interest in using BLAST

on the standard BLASTp database but rather to only use the chembl targets database. To

do this the following steps were taken:

1. The latest version of blastp was downloaded from �ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/�

.

2. All the protein sequences from the CHEMBL targets database and the malaria proteins

were converted into two fasta �les.

3. Using Formatdb a custom database was created of the ChEMBL fasta �le.

4. The malaria targets were then BLASTed against the ChEMBL database and a resulting

BLAST �le was obtained containing all the BLAST hits of the respective proteins
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5. The relevant information was then parsed into a mySQL database to store the resulting

matches as well as their E-values to make it usable by the Discovery system.

6. The �le is also setup to re-run when a new version of ChEMBL is released, it will then

automatically run this procedure again and generate updated results.

2.4 Protein Matching by Domain

The concept that similar proteins are likely to have similar function is further emphasized by

the modular nature of protein sequences, small sequence fragments often occur throughout a

family of proteins and can be categorized as functional/structural or binding domains. These

domains carry the functional part of the protein, proteins may be made up of numerous

domains to allow it to exhibit a speci�c task. If this reasoning is true then there lies the

potential that proteins can be quite distant in sequence similarity but if they carry the

same functional domains they are still likely to share the same activity. This feature has

aided largely in identifying protein-protein interactions and is used here in a similar way to

�nd proteins sharing ligand interaction properties. The concept is de�ned by Jadwin et al.

(Jadwin et al., 2012) �domainomics� to draw attention to the potential of using domains and

their motifs as tools in proteomics. They propose that the accumulation of domain�motif

binding data could ultimately provide the foundation for domain-speci�c interactomes, which

will likely reveal the underlying substructure of protein networks as well as the selectivity

and plasticity of signal transduction (Jadwin et al., 2012).

2.4.1 InterPro

There has been much development in the area of protein domain identi�cation and several

signature recognition methods have evolved to address di�erent sequence analysis problems,

resulting in rather di�erent mostly independent databases. Diagnostically, these resources

have di�erent areas of optimum application owing to the di�erent strengths and weaknesses

of their underlying analysis methods. Thus, for best results, search strategies should ideally
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Figure 2.2: This �gure illustrates the three basic assay designs for studying interactions between

modular protein domains and short peptide motifs. Top: in motif scanning, a domain of interest

is used to probe a library of peptide motifs or proteins containing binding motifs, typically to

de�ne domain speci�city or identify possible binding proteins. For example, an immobilized domain

can be used as bait in pull-downs. Middle: in domain scanning, a motif of interest is used as

a probe to screen a set of domains or domain-containing proteins. Bottom: multiplex scanning

simultaneously assesses interactions between many ligands and domains, providing the speci�cities

of domains within a domain�motif interaction map. Multiplex scanning can be designed as an

expanded version of domain or motif scanning, or as a �library to library pull-down� to screen for

binding modules (Jadwin et al., 2012).
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combine all of them. This is the area which the InterPro group addressed, their mandate

was to create a layer to allows users to access all relevant domain databases and methods of

sequence analysis in one single interface (Hunter et al., 2012).

InterPro categorizes each entry into one of a number of types which tell you what you

can infer when a protein matches the entry.

� Family: A protein family is a group of proteins that share a common evolutionary

origin re�ected by their related functions, similarities in sequence, or similar primary,

secondary or tertiary structure. A match to an InterPro entry of this type indicates

membership of a protein family.

� Domain: Domains are distinct functional, structural or sequence units that may exist

in a variety of biological contexts. A match to an InterPro entry of this type indicates

the presence of a domain.

� Repeat: A match to an InterPro entry of this type identi�es a short sequence that is

typically repeated within a protein.

� Site: A match to an InterPro entry of this type indicates a short sequence that contains

one or more conserved residues. The type of sites covered by InterPro are active sites,

binding sites, post-translational modi�cation sites and conserved sites.

The InterPro database integrates PROSITE (Bucher et al., 1996), PRINTS (Scordis et al.,

1999), Pfam (Sonnhammer et al., 1998), ProDom (Corpet et al., 1998), SMART (Schultz

et al., 1998), TIGRFAMs (Haft et al., 2001), PIR superfamily, SUPERFAMILY (Eddy,

1998) Gene3D (Buchan et al., 2002), PANTHER (Mi et al., 2010) and HAMAP (Bucher

et al., 1996) databases. As previously discussed there are di�erences in the manner in which

these databases need to identify their respective domains. A brief description of the various

identi�cation methods each database uses for domain matching

PROSITE Patterns: Some amino acid patterns can be formed into regular expressions,

this applies to highly conserved sequences.
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PROSITE Pro�les: There are a number of protein families as well as functional or struc-

tural domains that cannot be detected using patterns due to their extreme sequence diver-

gence, so the use of techniques based on weight matrices (also known as pro�les) allows the

detection of such proteins or domains. A pro�le is a table of position-speci�c amino acid

weights and gap costs.

HAMAP pro�les: HAMAP pro�les function in a similar way to PROSITE pro�les but

are used speci�cally to identify protein families from Bacteria and Archaea and propagate

annotation to them.

PRINTS: The PRINTS database houses a collection of protein family �ngerprints. These

are groups of motifs that together are diagnostically more powerful than single motifs by

making use of the biological context inherent in a multiple-motif method. The �ngerprinting

method arose from the need for a reliable technique for detecting members of large, highly

divergent protein super-families.

PFAM: Pfam contains curated multiple sequence alignments for each family and corre-

sponding Hidden Markov Models (HMMs). Pro�le Hidden Markov Models are statistical

models of the primary structure consensus of a sequence family. The construction and use

of Pfam is tightly tied to the HMMER software package(Eddy, 1998).

PRODOM: ProDom is a database of protein domain families obtained by automated

analysis of the SWISS-PROT and TrEMBL protein sequences. It is useful for analysing the

domain arrangements of complex protein families and the homology relationships in modular

proteins. ProDom families are built by an automated process based on a recursive use of

PSI-BLAST homology searches.

SMART: SMART (a Simple Modular Architecture Research Tool) allows the identi�cation

and annotation of genetically mobile domains and the analysis of domain architectures. These

domains are extensively annotated with respect to phylogenetic distributions, functional class,

tertiary structures and functionally important residues. SMART alignments are optimized

manually and following construction of corresponding Hidden Markov Models (HMMs).

TIGRFAMs: TIGRFAMs are a collection of protein families featuring curated multiple
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sequence alignments, HMMs and associated information designed to support the automated

functional identi�cation of proteins by sequence homology.

PIR SuperFamily: PIR SuperFamily (PIRSF) is a classi�cation system based on evolu-

tionary relationship of whole proteins using HMMs.

SUPERFAMILY: SUPERFAMILY is a library of pro�le Hidden Markov Models that

represent all proteins of known structure, based on SCOP.

GENE3D: Gene3D is supplementary to the CATH database. This protein sequence

database contains proteins from complete genomes which have been clustered into protein

families and annotated with CATH domains, Pfam domains and functional information from

KEGG, GO, COG, A�ymetrix and STRINGS.

PANTHER: The PANTHER (Protein ANalysis THrough Evolutionary Relationships)

Classi�cation System was designed to classify proteins (and their genes) in order to facilitate

high-throughput analysis also using HMMs.

2.4.2 InterProScan

InterProScan is a tool that combines the di�erent protein signature recognition methods

described above into one resource (Quevillon et al., 2005). The September 2012 release has

23,792 entries which are comprised of 15,865 Families, 6,834 Domains, 269 Repeats and 824

Sites. InterProScan takes a protein sequence and returns a list of domains identi�ed from

the various databases.

An overview of sequence of events once a sequence is submitted is described below. As

outlined in the InterProScan documentation.

1. The sequence(s) is checked for illegal characters and reformatted if necessary. If it is a

DNA sequence, it is translated into 6 frames, according to how the user has con�gured

it. Based on the users input, the sequence �le may be split into smaller �les.

2. A CRC64 checksum is then calculated for each sequence. A checksum allows the pro-

gram to check whether that sequence is already present in the InterPro database. If it
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is, the models which match to it will already have been calculated and so, to save time

returns these results to the user, rather than having to re-run all the searches.

3. If the checksum �nds a match in the XML �le, InterProScan stores the details of the

match. If there is no match, the novel sequence is put into a �le with the extension

".nocrc" ready for searching the model databases.

4. InterProScan will then launch whatever applications have been speci�ed by the user

(e.g. a HMMer search against TIGRfams). The command-line provided for each

database search can be found in the corresponding .conf �le. This step will produce a

raw output (".output") �le in the working directory. Some databases (such as PAN-

THER and BlastProDom) also produce temporary �les in the process but these can be

disregarded.

5. Once the initial model search has completed, InterProScan will read in the raw output

and apply post-processing to �lter out incorrect hits. This �ltering steps varies from

database to database (e.g. there is none in TigrFAMs but a lot in Pfam).

6. After post-processing, the results for each chunk will be output into a �le called

merged.raw together with the precomputed match information from the checksum se-

quences.

7. All the raw �les are merged together into a single merged.raw �le in the top-most level

of the working directory for the run. This is then converted (if necessary) into whatever

format the user requested.

2.4.3 Application

The procedure to apply this sort of comparison in Discovery was to create a FASTA �le

containing the sequence information into each of protein targets existing in the CHEMBL

database and the collection of Plasmodium proteins that were already in the Discovery system

and run them through the InterProScan program and create domain pro�les for each protein
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and store them in a SQL database. A SQL query was then written to search through the

database using the domains of the query protein and return matching ChEMBL proteins

that share domains with the Plasmodium proteins.

2.5 Clinical Trials exploration

Given that the main objective of this project was to create a tool to aid in the discovery of

protein-ligand interactions there was some value in exploring the protein-ligand interactions

that are already proven to exist and are exploited as therapeutics. The purpose of adding

this type of data was to provide users with a summary of up to date clinical trials data

pertaining to malaria research but also to act as a starting point for ligand based searches.

The clinical trials data is gathered from clinicaltrials.gov website.

2.5.1 Clinical Trial

In the development of new drugs there are various phases the drug goes through before it

becomes available to public for consumption. Drugs �rst need to be identi�ed in what is

know as the pre-clinical stage where in vitro and in vivo experiments are carried out on

model organisms to identify potential candidates that show low toxicity and high e�cacy in

treating a particular disease. Subsequently to selection the drug goes through clinical trial

that can be broken down into various phases of the drug development process.

� Phase 0 : A small study usually on 10 patients to test pharmacodynamics and phar-

macokinetics of drug using subtherapeutic dosages.

� Phase 1: A study of between 20-100 patients with the aim to test if a drug is safe for

e�cacy testing and to identify safe dosages.

� Phase 2: A study on 100-300 healthy patients with the aim to determine the e�cacy

of the drug.

� Phase 3: A study on 300-3000 patients to determine the drug's therapeutic e�ect.
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� Phase 4: At this stage the drug is available on the market and this represents monitoring

of possible long term e�ects of the drug

2.5.2 Clinicaltrials.gov

ClinicalTrials.gov is a web-resources that houses information on publicly and privately sup-

ported research covering a wide range of diseases and treatments. The web site is maintained

by the National Library of Medicine(NLM) at the National Institutes of Health (NIH). Infor-

mation is supplied and updated by the principal investigator or sponsor of the clinical study

and in general studies are submitted when they begin and information is updated throughout

the study.

Clinicaltrials.gov was created as a result of the Food and Drug Administration Modern-

ization Act of 1997 (FDAMA) in the USA. FDAMA required the U.S. Department of Health

and Human Services to establish a registry of clinical trials information for both federally

and privately funded trials conducted under investigation new drug applications to test the

e�ectiveness of experimental drugs for serious or life-threatening diseases or conditions. NIH

and the Food and Drug Administration (FDA) worked together to develop the site, which

was made available to the public in February 2000. For drugs to be cleared by the FDA they

need to comply with many regulations and one currently being that they register their clini-

cal trials on this web resource, thus making it a good resource for this type of data housing

over 130,000 clinical trials taking place in more than 180 countries. This is, however, not a

exhaustive list as certain drugs are not compelled to register their trials and companies not

aiming for FDA approval also have no need to register their trials.

2.6 Discussion

The methods as described above were utilized to address the requirements of detecting

protein-ligand interactions in previously uncharacteristic proteins. The focus was to gen-

erate links between proteins that have ligand binding information with malaria proteins that
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have none. By using BLAST and InterProScan which are both tried and tested scienti�c

methods there is little learning that a researcher will need to complete before being able to

use this tool e�ectively. This will hopefully increase in the usability of the system as there

are no novel techniques or algorithms that need to be understood in order to interpret the

results that are generated.

The utilization of the clinical trials data provides an insightful look into drug research for

malaria. In context of protein-ligand interactions, it provides a list of ligand start points for

searching the chemical space of malaria by beginning with compounds that are very likely to

be interacting with malaria proteins, thus allowing users with no data to test against a small

set to work with.
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Results

The following section will illustrate the improvements made to the Discovery systems protein-

ligand interaction prediction ability as well as the changes to the interface. A brief summary

of the old system will be explained to illustrate the changes and improvements made. Subse-

quently a summary of the current data statistics will be provided to illustrate the expansion to

the knowledge base used to identifying protein-ligand interactions where little or no previous

information existed.

3.1 Discovery v1.0

The focus of this summary will be on the protein-ligand interaction searching capability of

the old system, so that a direct comparison can be made between the old and new systems.

To make it easier to compare the same proteins and compounds have been run through both

systems which will appear on each of the screen shots taken from the systems. The protein

chosen for protein searching was lactate-dehydrogenase (LDH) which is one of the proteins

used as a case study. LDH is an enzyme responsible for catalysis of the interconversion of

pyruvate and lactate, and a Plasmodium speci�c LDH exists and has been well characterized

(Makler et al., 1993). For the ligand searching spermidine was chosen, it is a molecule that is

found in ribosomes and has a strong relationship with cell survival and binds and precipitates

DNA (Wan and Wilkins, 1993). Both of these exists in most organisms and have been well

53
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Figure 3.1: A screen capture of the landing page of Discovery 1.0 with the compound spermidine

sketched with the Marvin sketch tool.

studied thus de�nitely having matches in both systems. Please note spermidine does not

show any evidence of having binding a�nity with LDH.

3.1.1 Primary search page:

Searching for interactions of a protein could be done by entering the protein descriptor of

your choice and selecting the include predicted protein-ligand interactions check box then

performing the search. A snapshot is provided in Figure 3.1 showing the layout and selection

options.

Alternatively if a user was interested in �nding potential protein matches to his ligand

he has an option to draw the molecule in the Marvin sketch tool developed by ChemAxon,

or he could provide a SMILES string for his compound or provide the compound name.

3.1.2 Results of search by protein name

When searching by protein name a list of matching proteins is provided the user to choose

from and once selected an entry from the list, the protein information page appears in Figure

3.2. The protein information page provides detailed information of a broad range of areas.

Speci�cally the ligand interactions section displays a hierarchy list that allows you to view
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Figure 3.2: The results page of a protein view with the Ligands section selected, expanding specif-

ically on the top Drugbank hit to indicate its matching compounds

the compounds either based on their sources or by listing the ligands and making the relevant

protein detail available by clicking the ligand name you are interested in. In previous version

of Discovery contains the sources KEGG, DrugBank blast, PDB Blast, SMID and MSD,

none of which appear in the new Discovery system because of the switch to the ChEMBL

database as a single source of bio-active molecule information. When drilling down through

the list certain of the results are linked to the sources website but vast majority of the results

just show the ligand name. When drilling down through the �By ligand� list the �nal step is

information regarding it's target protein or domain which is linked to the sources web page.

Almost all protein entries here have active links.

3.1.3 Results of search by ligand

When searching by ligand a user has to draw the molecule he is interested in, enter its

SMILE string or enter it in by name, then depending on what type of search was selected

ie, similarity, exact, fragment search etc, and how many results the user wants displayed. A

results page will appear as shown in Figure 3.3 indicating all the best matches in descending

order, in the spermidine case there were three matches one for Drugbank, one for KEGG and

one for PDBligands.
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Figure 3.3: The results of a ligand based search in Discovery 1.0.

Figure 3.4: The detail page after �nding a molecule of interest within Discovery 1.0.

When a user selects one of the compounds of interest, he is directed to the information

page of that ligand as illustrated in Figure 3.4. All relevant ligand information is provided for

the user to examine, and a tab appears labeled �Possible Protein Interactions� which is based

on a BLAST run against all malaria proteins using the respective protein sequence found in

the selected database that has been indicated to interact with spermidine as the query. It is

important to note here that the Drugbank and KEGG entries for spermidine had no possible

protein interactions and the PDBligand entry had 101 possible matches, thus showing one

of the limitations of using multiple bio-active molecule databases. In this case it shows that

entries exist for each that contain di�erent data which could possibly cause a user to miss

potential interactions.
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This was the extent of the �rst version of Discovery's ligand interaction section. Improve-

ments made to the system will be discussed in the following section.

3.2 Discovery v2.0

The following sections will describe Discovery 2.0's protein-ligand searching capabilities with

some comparisons drawn to the previous version. It is important to restate that the objectives

of this project were to increase the extent in which the system could identify protien-ligand

interactions through increasing available data sources and to retain the ease of use of the

platform for the user to access the biochemical data stored in Discovery.

3.2.1 Chemical Searching

In very much the same way as Discovery 1.0 there are primary approaches the user can take in

using Discovery to identify protien-ligand interactions, starting with a compound of interest

or a protein of interest. The �rst described is a ligand based approach which is appropriate

if a user has a chemical compound of interest and would like to potentially identify a protein

partner that it interacts with. On the Discovery home page there are the di�erent search

criteria available, a basic search (protein-based search) function allowing a user to search

the database by entering either the Protein ID, the Uniprot accession number or by giving

a protein alias or name. The second option is the advanced search tab where a user is able

to search the entire database by specifying �ltering criteria which then returns a subset that

meets all the criteria he requested (discussed later). The third search option available is the

chemical search page, the user can use any of 3 di�erent search criteria, either draw the 2D

chemical structure, enter in the SMILES string or otherwise enter in the compound name to

perform a text based search of the compound name. The applet used for the sketching and

searches is MarvinSketch by ChemAxon. The Marvin Applet handles many di�erent search

approaches, a comparison of available search types is visible in Figure 3.5. By de�nition, the

examined molecule is called a target, the structure we are looking for is called a query, and
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Figure 3.5: A comparison of available search types available through the ChemAxon search tool,

this shows the contrasting properties of eich of the search types available

a target molecule matching the query structure is called a hit. There are 5 subcategories of

searching available in the jQuery applet:

� Substructure Search : The most common search type performed and searches for

whether one molecular structure contains the other one as a substructure or not .

� Exact/Full Search : A full structure search �nds molecules that are equal (in size) to

the query structure. (no additional fragments or heavy atoms are allowed.) Molecular

features (by default) are evaluated the same way as described above for substructure

search.

� Exact/Full Fragment Search : search is between substructure and full search: and the

query must fully match to a fragment of the target. Other fragments may be present

in the target, they are ignored. This search type is useful to perform a "Full search"

that ignores salts or solvents beside the main structure in the target.

� Similarity Search : similarity concept is based on hashed binary chemical �ngerprints

with Tanimoto metrics and is only possible on database searches (Discovery was pre-

pared in such a way to be accessible through this search method).

� SuperStructure Search : search is the opposite of substructure search: It searches for

those target molecules which can be found in the given superstructure query (in this case
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Figure 3.6: The Chemical Search Page: Spermidine has been drawn, the SMILES string and

compound name entered, only one of these is necessary to perform a search.

the roles of the query and target molecules are simply exchanged, so query properties

should be speci�ed to the target).

Upon submitting a chemical compound to query, the resulting page (Figure 3.7) is a list of

compounds from the CHEMBL database matching the search criteria speci�ed. The resulting

list contains various information about the chemicals found to match, including: the drawn

stereotypical structure, the compound name, molecular mass, donor count, acceptor count,

Log P, Log D, Ring count, rotatable bond count, and boolean values for Lipinski's rule of

5, and lead-likeness. The information is intended to allow a researcher enough information

to deduce if the compound is similar enough for his liking. Each result also contains a link

labeled �[search for targets]� that when clicked enables a new block of information that lists all

ChEMBL targets that have interactions with the selected compound. Each of these proteins

have then links to the Discovery entry for that protein which will be described in detail in

the next section. The goal is thus to potentially aid in identifying a possible target protein

of a query compound.
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Figure 3.7: Chemical Search results page

3.2.2 Protein-Ligand interactions Display

This page is found after performing a protein search in Discovery 2.0 and the tab will only

appear if there is a BLAST or Domain match with at least one ChEMBL protein. The view

is broken down into two displays (tabs), the �rst is the �By target� tab and the second is the

�By ligand� tab. One function that can be carried out on either of the tabs is the �Get SDF�

function that allows a user to pick compounds that he is interested in and save a .sdf �le

containing those compounds locally to perform further analysis. The function works slightly

di�erently depending on whether it is triggered on the �By target� or the �By ligand� tabs.

On the �By target� tab the user selects the protein target and all its associated compounds

are added to the .sdf �le and the �By ligand� tab uses the �Ligand e�ciency index� plot to

select compound subsets.

3.2.2.1 By Target

This display shows the results of performing a protein BLAST against the ChEMBL targets

database, which is described in detail in the methods section. The user can at any point

download an sdf �le containing all or a subset of the molecules found, a subset can be selected

by protein or by ligand and even using the ligand e�ciency index to �lter compounds. The

results are ordered top down using the smallest E-value as an indicator of the best hit. There
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Figure 3.8: The Protein-Ligand interactions tab(�By target�) after selecting BLAST hit.

are 4 columns of data displayed, they are the ChEMBL protein name, the alignment score,

the E-value and the number of annotation matches the hit shares with the query protein.

Under this list is a list of all ChEMBL target proteins that have matching domains, this list

shows just two columns being the protein name as well as the number of shared domains.

The domains were identi�ed by using InterProScan as described in the methods section.

Figure 3.8 shows the result if the user selects a protein from the BLAST results section, a

sub-window will appear directly below the entry in the list and a Smith-Waterman sequence

alignment between the malaria and ChEMBL target protein is calculated and displayed with

the matching area highlighted in green, this functionality is to allow for the user to see the

actual alignment which will help determine the actual legitimacy of the hit, generally a re-

searcher will look for alignments that have longer sections of conserved areas. All compounds

associated with that ChEMBL target are then also displayed in a small display box that ap-

pears on the left. This Display box contains the 2D chemical structure, the ligand name

and its canonical smiles string. Each entry also contains a link to a list of the assays that

the compound is found in, which in turn also links back to the assay entry in the ChEMBL

database. Any compounds that occur in the St Judes, Novartis Malaria Box and TCAMS
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Figure 3.9: The Protein-Ligand interactions tab (�By target�) after selecting Domain hit.

data set will have the protein name highlighted in red.

Figure 3.9 shows the results if the user selects a protein from the �Domain matching�

section, two data boxes will appear, the �rst is a box containing all the compounds associated

with the matching protein identical to box that is displayed when a BLAST result is selected,

the second is a list of all the shared domains.

3.2.2.2 By Ligand

This tab (Figure 3.10) displays all the ligands associated with the ChEMBL targets proteins

that were identi�ed via the protein blast or matching domains, all these compounds are ac-

cessible through the �By target� view, but if a user is more familiar with chemical compounds

than proteins then this view is of signi�cantly more value. The view is once again broken

up into two lists, the �rst being all the compounds associated to proteins identi�ed through

BLAST and the second all the compounds associated to proteins that have matching do-

mains. Both lists show the chemical name and have a link to view the chemical structure

and chemical characteristics and a link to the CHEMBL database entry. What is added

to this view is a scatter plot of the logP vs. Molecular weight of all the chemicals in the
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Figure 3.10: The Protein-Ligand interactions tab (�By ligand�) after selecting a compound.

lists, these are good indicators of ligand e�ciency as hydrophobicity and molecular weight

are large contributing factors for ligand binding. This has been termed the ligand e�ciency

index. The user is able to highlight a subset of molecules by selecting ranges that he �nds

acceptable. This was added to allow a user to �lter the results to some degree, this �ltering

does not in�uence the compounds displayed but rather allows export of a �ltered sdf �le

containing all the selected compounds.

Similar to the protein view if the user clicks on a compound from the BLAST results list

the Smith-Waterman sequence alignment is displayed for the user to determine if the match

is valid or not. If a user selects a compound from the matching domains list, the list of

shared domains is displayed.The user can at any point download an sdf �le containing all or

a subset of the molecules found, a subset can be selected by protein or by ligand and even

using the ligand e�ciency index to �lter compounds.

3.2.3 Clinical Trials

This page is a conglomeration of all trials registered at clinical trials.gov (�http://clinicaltrials.gov/�)

involving malaria drugs being tested globally at various stages of development. The user can
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Figure 3.11: The Clinical trials tab.

at any point download an sdf �le containing all or a subset of the molecules found, a subset

can be selected by protein or by ligand and even using the ligand e�ciency index to �lter

compound stages of development. Discovery 2.0 runs weekly queries against clinicaltrials.gov

in order to update with recently registered trials, when a trial has been registered less than

one month prior the Clinical trials tab on the start page is highlighted in red. On the clinical

trials page the new trials are also accessible through a link that will also be highlighted red

when it contains an entry. The page is primarily broken down into the 4 developmental

phases, a link exists for each phase and when clicked it opens up a data box that lists all the

compounds that are present in the clinicaltrials.gov data, along with the number of entries

that drug occurs in the speci�c phase. The drugs are also categorized into trials where they

occur in combination therapies, and each entry when clicked will display the chemical struc-

ture and a list of all the clinical trials linked back to the clinicaltrials.gov entries. At this

point it is also possible to send the chemical structures to the sketch tool on the chemical

search page and explore the possible protein targets.
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Figure 3.12: The advanced search feature showing a protein-ligand interactions �lter.

3.2.4 Advanced Search

The advanced search is a powerful new feature released with the new Discovery system. This

provides the user a platform through which he may provide logical �lters to the main dataset

of proteins in order to generate a subset that have the characteristics he may be interested

in as illustrated in Figure 3.12. The example shows the results of providing a protein-ligand

interaction �lter using the keyword �spermidine�, this actually �lters on the keyword in the

protein name �rst then adds entries that have blast scores higher than the one speci�ed in

the �lter to the list. The objective was to add more �exibility to the search to allow for

additional proteins that may also interact with the same compounds. This is useful when

one does not have an exact protein name or compound from which to begin a search with or

is interested only in a particular property of a protein.

3.3 Data Statistics

The following are the basic statistics of the data of protein-ligand interactions presented in

the Discovery 2.0 system.
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Figure 3.13: A stacked bar chart indicating the E-value of the best hit per Plasmodium protein

that has at least one BLAST hit.

3.3.1 BLAST results

The number of Plasmodium proteins that have at least one blast hit against the ChEMBL

targets database is 2,400. This can be broken down into the di�erent species: P.falciparum:

422; P.berghei : 387; P.chabaudi : 391; P.knowlesi : 401; P.vivax : 411; P.yoelii : 388. Figure

3.13 shows a stacked bar indicating the number of proteins against the E-value of the best hit

in the result set. The general trend with each species is that more than 50% of the matches

have an E-value greater than 1e-80, and with a slightly in�ated number of proteins with an

E-value smaller than 1e-180 due to the exact matches that exist in the data, this being even

more emphasized in P. falciparum due to it being the most studied species of Plasmodium.

This chart indicates that there is a number of proteins with signi�cantly strong BLAST hits

to be considered good matches to associate ligand interactions. This number is for each of

the species is still under 10% of the organisms proteins.

Figure 3.14 shows a stacked bar representing how many blast hits were found per protein,

and clustering them in subgroups of 10. The trend shows what is to be expected, that

majority of proteins have less than ten BLAST hit matches and represent proteins that are

possibly less studied are more divergent than those that have many more hits. Those proteins

with more than 10 BLAST hits likely represent proteins that are already well characterized

and show stronger conservation between organisms.
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Figure 3.14: A stacked bar chart indicating the number of BLAST hits found per Plasmodium

protein that has at least one domain hit

3.3.2 Domain results

The total number of proteins with domain matches from all species of malaria that are in

Discovery 2.0 are 11,326. That can be broken down into the di�erent species: P. falciparum:

1,996; P. berghei :1829; P. chabaudi : 1,847; P. knowlesi : 1,895; P. vivax : 1,940; P. yoelii :

1,819. Figure 3.15 shows the number of shared domains between the Plasmodium protein and

the best CHEMBL targets match(ie the match containing the most shared domains). The

results validate the reasonable assumption that there will be a signi�cantly larger number of

proteins that have matches below 5 domains. A protein match containing only one domain

still carries the potential of having shared ligand activity, as functional domains play a strong

role in protein activity. The goal of Discovery 2.0 in the instance of a protein that has only

single domain match was to allow the possibility for the researcher to analyze that domain

and interpret for himself if that domain will play a signi�cant role in ligand activity which

he can then deduce if the chemical association is valid or not. Further �ltering of domains

was deliberately not pursued to maximize the search potential of this approach.

Figure 3.16 shows the number of proteins with shared domains for each Plasmodium

protein that has at least one match. The trend is once again as can be expected with many

proteins having fewer than 30 matches. This is a good indication of how well documented a

particular domain is which will be a good indicator of the likelihood of it being an already
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Figure 3.15: A stacked bar chart indicating the number of shared domains of the best hit

Figure 3.16: A stacked bar chart indicating the number of hits that have a shared domain for each

Plasmodium protein

explored drug target. This deduction is due to the fact that the more matches a particular

protein has the more times that particular set of domains has been through chemical assays

which implies that it had been considered as a viable drug target candidate at some point.

This does not indicate an increase in the probability of a valid protein-ligand interaction, but

rather if the protein-ligand interaction is valid, it indicates the depth of information that is

potentially available for further study.
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3.4 Discussion

The above results illustrate the current scale of protein-ligand interaction prediction in Dis-

covery 2.0 as well as provide a comparison between the old Discovery system and the new.

The �nal result was a more e�cient system that utilizes a signi�cantly larger data source to

make predictions against, this in itself led to more malaria proteins having associated ligands.

The improvements to the interface were essential to being able to browse through this data

in a logical manner due to the addition of domain based matches as well as the potential for

some proteins to have signi�cantly more hits. These improvements also extended the users

ability to perform ligand based searching, for instance if a researcher has a series of molecules

that he knows inhibit malaria but is not sure as to it's activity, he now has a decent chance

of identifying a possible protein inter-actor for that protein. This was much less likely in the

previous version of Discovery that only used the Drugbank database as a source.
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Validation

To measure the strength of Discovery 2.0 several case studies were performed on various

proteins, and a comparison was made between the chemical inter-actors that were found in

literature to interact with the proteins and the predictions made by the Discovery 2.0 system.

It is important to note again that the ChEMBL database is built directly from literature.

Due to the extremely large number of scienti�c publications it does not necessarily imply that

the articles selected are as of yet contained within ChEMBL, however should the ChEMBL

project continue the results will eventually be incorporated once they move onto various

di�erent journals. One goal in this section is to con�rm whether Discovery 2.0 can correctly

identify compounds already proven to inhibit Plasmodium proliferation, �rstly using proteins

that should have direct links to identical protein studies and secondly proteins that have high

scoring matches and lastly proteins that have low scoring matches.

4.1 Case Studies

A series of proteins were chosen for case studies. The objective was to �rstly measure the

e�ectiveness of the system in identifying already known interactions of malaria proteins, then

secondly to view the potential to expand on the already known set. Thirdly, to investigate

the systems ability to �nd interactions where limited interaction data is available for the

compound. Subsequently 2 compounds currently used as therapeutics are run through the

70
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system in an attempt to see if the protein target can be identi�ed.

4.1.1 Tanimoto Distance Signi�cance

The following case studies are conducted using Tanimoto distances between molecules. Sim-

ilarity scores of this kind can, however, be interpreted subjectively and deciding on what

score is considered to be signi�cant needs to be determined beforehand. This follows a simi-

lar procedure to that followed by Baldi et al. (2010) to try to determine what similarity score

should be considered signi�cant. To do this 40 compounds were randomly selected from the

literature sets in the coming sections and their SMILES strings obtained. The tanimoto dis-

tance was then calculated between each compound and each entry in the ChEMBL database

to determine the mean score and its distribution. This was performed on the UP bioinfor-

matics server, the results collated and presented in Figure 4.1. Baldi et al. (2010) state that

a similarity score needs to be taken in context of what type of data you are comparing and

how it is being compared. In the case of Discovery where we are actually selecting com-

pounds based on their associated protein distances and not directly based on the molecular

distances of the compounds less stringency is required when evaluating the similarity scores.

The mean value of these distributions was found to be 0.2202 with a standard deviation of

0.0785. Calculating the Z-score for a tanimoto distance of 0.4 one gets 2.290445, which can be

computed into a p-value of 0.022 and can be considered statistically signi�cant. This taken

into account along with the displayed distributions a value of 0.4 will be stated as signi�cant

throughout the case studies. This value does not play a signi�cant role in the analysis itself

and merely helps with the interpretation of the results.

4.1.2 Lactate Dehydrogenase

Lactate dehydrogenase (LDH) was the �rst protein chosen for case study because of the

wealth of knowledge already available on it's function, structure and it's signi�cance in Plas-

modium falciparum speci�cally. LDH is found in almost all animal tissues. The primary

function of LDH is the catalysis of the interconversion of pyruvate and lactate combined
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Figure 4.1: Tanimoto distance distributions of 40 randomly selected compounds, the x-axis shows

the Tanimoto score, the y-axis the number of hits with that score and the z-axis is the arbitrary

number representing the compound.

Figure 4.2: The reaction catalyzed by LDH
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with the interconversion of NADH and NAD+. Under anaerobic conditions, such as events

when there is a sudden demand for energy and low availability of oxygen, LDH converts pyru-

vate(the �nal step of glycolysis) to lactate the conversion is known as anaerobic homolactic

fermentation. In doing so LDH allows the organism to overcome temporary anaerobic condi-

tions by regenerating NAD+ which is the electron acceptor during glycolysis and storing up

lactate which is reconverted back to pyruvate when oxygen becomes available again (Everse

and Kaplan, 1973).

LDH also performs the reverse reaction in gluconeogenesis during the Cori cycle, a

metabolic pathway to produce glucose and thus ATP taking place primarily in the liver.

This takes place during strenuous muscle activity when the blood glucose level decreases.

In this situation the lactate that is produced in anaerobic conditions is converted back to

pyruvate in the cytosol and internalized by the mitochondria.In this way gluconeogenesis also

prevents lactic acidosis (Markert, 1984).

Plasmodium LDH (pLDH) is expressed at high levels in asexual stages of malaria para-

sites. pLDH activity is correlated with the level of parasitemia found in in vitro cultures of

malaria and in the plasma of infected patients as determined by microscopy (Makler et al.,

1993). pLDH isoforms are distinguishable from human isoforms on the basis of unique epi-

topes in pLDH and on enzymatic characteristics. Speci�cally pLDH has the ability to use

the NAD analog 3 acetyl pyridine adenine dinucleotide (APAD) in the conversion of lactate

to pyruvate (Jagt et al., 1981). Because of this feature pLDH can be easily distinguished

in blood samples by measuring the conversion of APAD to APADH. This characteristic has

also been used in the diagnosis of malaria because the turnover number of the pLDH in the

presence of APAD is much greater than that of the human enzyme allowing samples to be

easily distinguishable by measuring LDH activity in an assay (Hänscheid, 1999).

The protein information of plasmodium lactate dehydrogenase PF13_0141 has been sum-

marazed in 4.1.
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Category Type of
Annota-
tion

Annotation

Summary

aliases L-lactate dehydrogenase
sequence
length

316

identi�ers
-PF13_0141 (plasmodb)
-Q76NM3(Uniprot)
-pfa:PF13_0141(KEGG gene)

Pubmed
articles

-216

Function

Families -none

Domains

-L-lactate/malate dehydrogenase (IPR001557)
-Lactate dehydrogenase/glycoside hydrolase, family 4,
C-terminal (IPR015955)
-Lactate/malate dehydrogenase, C-terminal (IPR022383)
-Lactate/malate dehydrogenase, N-terminal (IPR001236)

Gene
Ontology

Molecular
functions

GO:0000166 - nucleotide binding
GO:0003824 - catalytic activity
GO:0004459 - L-lactate dehydrogenase activity

GO:0016491 - oxidoreductase activity
GO:0016616 - oxidoreductase activity, acting on the CH-OH
group of donors, NAD or NADP as acceptor

Biological
Processes

GO:0005975 - carbohydrate metabolic process
GO:0044262 - cellular carbohydrate metabolic process
GO:0055114 - oxidation-reduction process

Orthology
-
H.Sapiens
orthologs

-ENSP00000229319 -ENSP00000280704 -ENSP00000280706
-ENSP00000302393 -ENSP00000368722 -ENSP00000379385
-ENSP00000379386 -ENSP00000379516 -ENSP00000379518
-ENSP00000379524 -ENSP00000395337 -ENSP00000404535
-ENSP00000406172

-
A.Gambiae
orthologs

-AGAP004880-PA
-AGAP004880-PB
-AGAP004880-PC

Metabolic
pathways

KEGG

-Glycolysis / Gluconeogenesis
-Cysteine and methionine metabolism
-Pyruvate metabolism
-Propanoate metabolism
-Metabolic pathways
-Biosynthesis of secondary metabolites

MPMP

Established and putative Maurers clefts proteins
S-Glutathionylated proteins
Glycolysis Lactate dehydrogenase
Total palmitome of Plasmodium falciparum
Proteins targeted by the thioredoxin superfamily enzymes

EC
number

1.1.1.27 (L-lactate dehydrogenase)

Table 4.1: Summary of annotation data of Plasmodium lactate dehydrogenase (PF13_0141), ex-

cluding protein-ligand information.
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Category Result
Articles referenced for
literature
comparisons

Inhibitors of Lactate Dehydrogenase Isoforms and their
Therapeutic Potentials. (Granchi et al., 2010) .
Selective Inhibitors of Human Lactate Dehydrogenases and
Lactate Dehydrogenase from the Malarial Parasite Plasmodium
falciparum (Deck et al., 1998).
Design, Synthesis, and Biological Evaluation of Plasmodium
falciparum Lactate Dehydrogenase Inhibitors (Choi et al., 2007).

Number of ligands
extracted from
Literature

54

number of ligands
found in Discovery

156; 144 from BLAST: 12 from 2 or more domain matches.

Venn Diagram
Blue: from BLAST matches.
Green: from Domain matches with 2 or more domains.
Red: Molecules extracted from literature.

Table 4.2: A Summary of the protein-ligand interactions data of lactate dehydrogenase

(PF13_0141).
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4.1.2.1 Discovery 2.0 Compounds

A search was performed on the Discovery 2.0 start page using �lactate dehydrogenase� as a

keyword search and the Plasmodium falciparum l-lactate-dehydrogenate (PF13_0141) was

selected from the result set. After navigating to the protein-ligand interactions page, two

separate sets of compounds were gathered. First, all compounds identi�ed through BLAST

matches were downloaded using the built-in �get sdf �le� function. There were 10 matched

sequences with the lowest E-value being 3.4 ∗ 10−16, which resulted in an sdf containing 296

compounds. After all duplicates were removed we were left with 145 compounds. Second, a

similar process was followed for the matched domains section. There were 8 unique entries

that shared 5 domains, 1 that shared 2, and 85 unique entries that shared just a single

domain, this gave us an sdf �le containing 133 compounds, after duplicates were removed

there were 105 compounds remaining.

These two sets were then screened individually against the compounds found in literature

and each other for matching or similar hits, a match is categorized as something with a

Tanimoto similarity score higher than 0.9 and a similar hit is a compound with a score

higher that 0.4. The relevance of this is to illustrate that despite the matches not necessarily

being exact the system is still able to �nd compounds with some degree of similarity. The

diagram in Figure 4.2 shows a venn diagram explaining the di�erent sets of compounds

and the matches between them with the number of similar hits included in brackets. The

intersection between all three areas was inconsequential thus not calculated. The screening

was performed using the RDKit library which is a open-source chemoinformatics and machine

learning package. A series of python scripts were written to extract the SMILES strings from

each of the sets, remove all duplicate records and convert the remainder into rdkit molecule

objects that could then be used to calculate the tanimoto distance.

4.1.2.2 Literature Compounds

The compounds from the literature sources were selected by performing a search on Google

Scholar using the keywords �Plasmodium Lactate dehydrogenase inhibitors� and 3 articles
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that referred to ligand inhibition of pLDH were found and selected. All compound struc-

tures found in the articles were run through PubChem to verify their existance and gather

additional information on the molecule, in particular the SMILES string which is used to

elucidate the Tanimoto distance (Wang et al., 2009). All compounds were then summarized

into a single smiles (.smi) �le.

4.1.2.3 Remarks

In this particular example the Discovery 2.0 system successfully identi�es a signi�cant number

of the compounds collected from literature, this is not too surprising due to the depth of

information available for LDH in literature and thus the prominence of ligand information

available in ChEMBL. The BLAST searching was more successful at �nding exact matches

than the compounds found through shared domains. 2 compounds were found matching in all

three sets, which were carbamoylformic acid also called oxalamic acid and 2,3-dihydroxy-6,7-

dimethyl-4-(propan-2-yl)naphthalene-1-carboxylic acid, when searching for associated targets

both correctly detected L-lactose dehydrogenase as predicted targets. Forteen compounds

were matched between the compounds from literature and those through BLAST results.

The remainder of the compounds found with proteins with two or more domains were also

found in the BLAST results, this is to be expected as the likelihood is high that those domains

are binding domains that matched.

4.1.3 Dihydroorotate dehydrogenase

During the erythrocytic stage of the Plasmodium parasite, it undergoes active division which

results in an large increase in the need for nucleaic acids which are required for DNA, RNA,

glycoprotein and phospholipid biosynthesis. Primates have a pathway for the salvage of

pyrimidines that is absent in plasmodium, making Plasmodium entirely reliant on the de

novo production of pyrimidines pathway this pathway is thus seen as a good target for drug

development. A series of enzymes have been identi�ed to be involved in the pyrimidine

biosynthesis pathway including carbamoyl phosphate synthase, aspartate carbamoyltrans-
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Figure 4.3: Reaction catalyzed by DHOD (Patel et al., 2008).

ferase, dihydroorotase, dihydroorotate dehydrogenase, orotate phosphoribosyl transferase,

and orotidine 50-phosphate decarboxylase (Reyes et al., 1982, Jones, 1980). The focus in

this case study is dihydroorotate dehydrogenase (DHOD) which is a mitochondrially local-

ized �avozyme and functions in the pathway mentioned. DHOD catalyzes the oxidation of

L-dihydroorotate (l-DHO) to orotate as part of the fourth and rate-limiting step of the de

novo pyrimidine biosynthetic pathway as shown in Figure 4.3. Dihydroorotate dehydroge-

nase (DHODH) is a well-known protein target for P.falciparum. DHODH forms part of the

pyrimidine biosynthesis pathway, by facilitating the conversion of L-dihydroorotate (DHO)

to orotate (ORO) (Jones, 1980). Studies have shown that this enzyme possesses two distinct

binding sites, respectively for DHO/ORO and ubiquinone (Davis et al., 1996). Oxidation of

DHO to ORO is the rate-limiting step of the whole pyrimidine bio synthetic pathway.

DHOD was selected as a case study protein because it has various hits in the Discovery

protein-ligand search results and is not currently an exploited anti-malarial.

4.1.3.1 Discovery 2.0 Compounds

A search was performed on the Discovery 2.0 start page using �Dihydroorotate dehydroge-

nase� as a keyword search and the Plasmodium falciparum dihydroorotate dehydrogenase,

mitochondrial precursor (PFF0160c) was selected from the result set. Subsequently the

download sdf �le feature was used to gather a list of all compounds identi�ed. These were

then screened individually against the known compounds and the matching or signi�cant
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Category
Type of
Annota-
tion

Annotation

Summary

aliases

dihydroorotate dehydrogenase, mitochondrial precursor
DHOdehase
Dihydroorotate dehydrogenase (quinone), mitochondrial
Dihydroorotate oxidase

sequence
length

54

identi�ers
-PFF0160c (plasmodb)
-Q08210(Uniprot)
-pfa:PFF0160c(KEGG gene)

Pubmed
articles

-54

Function Domains

-DHODEHASE_2 (IPR001295)
-DHO_dh (IPR012135)
-Aldolase-type TIM barrel (IPR013785)
-Dihydroorotate dehydrogenase, class 2 (IPR005719)

Gene
Ontology

Molecular
functions

GO:0003824 - catalytic activity
GO:0004152 - dihydroorotate dehydrogenase activity
GO:0016491 - oxidoreductase activity

Cellular
Compo-
nents

GO:0005739 - mitochondrion
GO:0005743 - mitochondrial inner membrane
GO:0016020 - membrane
GO:0016021 - integral to membrane

Biological
Processes

GO:0006207 - 'de novo' pyrimidine nucleobase biosynthetic
process
GO:0006221 - pyrimidine nucleotide biosynthetic process
GO:0006222 - UMP biosynthetic process
GO:0044205 - 'de novo' UMP biosynthetic process
GO:0055114 - oxidation-reduction process

Orthology

- H.
sapiens
orthologs

-ENSP00000219240

-A.
gambiae
orthologs

-AGAP002037-PA

-P.
chambaudi

PCHAS_010280

-P. berghei -PBANKA_010210
-P.
knowlesi

-PKH_114660

-P. vivax -PVX_113330
-P. yoelii -PY02580

Metabolic
pathways

KEGG
-Pyrimidine metabolism
-Metabolic pathways

EC
number

1.3.98.1 (dihydroorotate dehydrogenase (fumarate))

Table 4.3: Summary of annotation data of plasmodium Dihydroorotate dehydrogenase (PFF0160c),

excluding protein-ligand information.
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Category Result
Articles referenced for

literature
comparisons

New inhibitors of dihydroorotate dehydrogenase (DHODH) based
on the 4-hydroxy-1,2,5-oxadiazol-3-yl (hydroxyfurazanyl) sca�old
(Lolli et al., 2012).
Identi�cation and Characterization of Small Molecule Inhibitors of
Plasmodium falciparum Dihydroorotate Dehydrogenase(Patel
et al., 2008).
Subset of 10 inhibitors described in patent Thunuguntla (2010).
Small molecule inhibitors of Plasmodium falciparum
dihydroorotate dehydrogenase (Bastos, 2011).

Number of ligands
extracted from
Literature

34

number of ligands
found in Discovery

623, 47 from domain matches, 576 from BLAST matches

Venn Diagram
Blue: from BLAST matches.
Green: from Domain matches with 2 or more domains.
Red: Molecules extracted from literature.
The numbers in brackets represent matches with a 0.4 cut-o�.

Table 4.4: A Summary of the protein-ligand-interactions data of lactate dehydrogenase

(PF13_0141).
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Figure 4.4: Le�unomide was a compound that was in the literature set and identi�ed as a match

in Discovery 2.0

hits are shown in a Venn diagram in Table 4.4. The diagram shows that the number of

matches to the literature set were low with only one molecule found matching between the

literature results and the blast results. However, when the Tanimoto score threshold for a hit

is reduced to 0.4, the number of matches with the blast set goes up to 27 and the domains

set goes up to 10. The point of making this comparison is to illustrate that some similarities

are still present between the di�erent subsets. The compound that was found to match was

le�unomide represented in Figure 4.4 which is a well known inhibitor of DHODH, it is used

as the base molecule by Lolli et al. (2012) which is one of the data sources used to compile

the literature set.

4.1.3.2 Literature Sources

Patel et al. (2008) identi�ed and characterized DHOD inhibitors using target-based HTS

to identify chemical start points for drug development. They screened compounds from

the Genzyme Corp small molecule library which comprised of 208,000 diverse, commercially

available molecules. Of these 698 compounds were found that inhibited pfDHOD at >70% at

a concentration of 10μm. These compounds were then re-screened and 55 compounds were

found that had inhibition of >50% at 1μm. Dose-e�ect curves identi�ed 38 compounds with

submicromolar IC50's . From the 38 pfDHOD inhibitors that were evaluated for antimalarial

e�cacy using P. falciparum 3D7 as the test strain, �ve compounds were found to have

submicromolar IC50 values, they were subsequently tested for inhibitory activity against
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Figure 4.5: Reaction catalyzed by ATCase

drug resistant strains HB3 and Dd2. These �ve compounds where the �rst compounds taken

for the literature set.

To expand the set of known inhibitors a subset of 10 compounds from patent data was

taken from patent documents published in 2010 (Thunuguntla, 2010) which specify a list of

characterized inhibitors of DHODH. And a further 5 were selected from another patent also

describing DHODH inhibitors (Bastos, 2011).

4.1.4 Aspartate carbamoyltransferase

Aspartate carbamoyltransferase (ATCase) is another protein in the de novo biosynthesis

pathway. It forms the �rst step and catalyzes the formation of phosphate and N-carbamoyl-L-

aspartate from carbamoyl phosphate and L-aspartate in pyrimidine biosynthesis as illustrated

in Figure 4.5.

4.1.4.1 Discovery 2.0 Compounds

A search was performed on the Discovery 2.0 start page using �Aspartate carbamoyltrans-

ferase� as a keyword search and the Plasmodium falciparum aspartate carbamoyltransferase

(MAL13P1.221) was selected from the result set. Subsequently the download sdf �le feature

was used to gather a list of all compounds identi�ed. These were then screened individually

against the known compounds and the matching or signi�cant hits are shown in the �gure

in Table 4.6. The screening was performed as described in the same way as described for the
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Category
Type of
Annota-
tion

Annotation

Summary

aliases aspartate carbamoyltransferase
sequence
length

375

identi�ers
-MAL13P1.221 (plasmodb)
-Q8IDP8(Uniprot)
-pfa:MAL13P1.221(KEGG gene)

Pubmed
articles

-2

Function

Families -none

Domains

-Aspartate/ornithine carbamoyltransferase (IPR006130)
-Aspartate carbamoyltransferase (IPR002082)
-Aspartate/ornithine carbamoyltransferase, carbamoyl-P
binding (IPR006132)
-Aspartate/ornithine carbamoyltransferase, Asp/Orn-binding
domain (IPR006131)

Gene
Ontology

Molecular
functions

GO:0004070 - aspartate carbamoyltransferase activity
GO:0016597 - amino acid binding
GO:0016740 - transferase activity
GO:0016743 - carboxyl- or carbamoyltransferase activity

Cellular
Compo-
nents

GO:0020011 - apicoplast

Biological
Processes

GO:0006207 - 'de novo' pyrimidine nucleobase biosynthetic
process
GO:0006520 - cellular amino acid metabolic process

Orthology

- H.
sapiens
orthologs

-ENSP00000405416

-P.
chambaudi

PCHAS_136230

-P. berghei -PBANKA_135770
-P.
knowlesi

-PKH_120960

-P. vivax -PVX_083135
-P. yoelii -PY06210

Metablic
pathways

KEGG
-Pyrimidine metabolism
-Alanine, aspartate and glutamate metabolism
-Metabolic pathways

MPMP

-Asparagine and Aspartate metabolism
-Nuclear genes with apicoplast signal sequences
-Total palmitome of Plasmodium falciparum
-Pyrimidine metabolism

Reactome
carbamoyl phosphate + ornithine => citrulline +
orthophosphate

EC
number

2.1.3.2

Table 4.5: Summary of annotation data of plasmodium sspartate carbamoyltransferase

(MAL13P1.221), excluding protein-ligand information.
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Category Result

Articles referenced for
literature

comparisons

Aspartate carbamoyltransferase of Plasmodium falciparum as a
potential drug target for designing anti-malarial chemotherapeutic
agents (A.Banerjee et al., 2012).

Number of ligands
extracted from
Literature

10

number of ligands
found in Discovery

11, 3 from domain matches, 8 from BLAST matches.

Venn Diagram

Blue: from BLAST matches.
Green: from Domain matches with 2 or more domains.
Red: Molecules extracted from literature.
The numbers in brackets represent matches with a 0.4 cut-o�.

Table 4.6: A summary of the protein-ligand-interactions data of aspartate carbamoyltransferase

(MAL13P1.221).

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. VALIDATION 85

LDH case study.

4.1.4.2 Literature compounds

Banjeree et al. (2012) characterized aspartate carbamoyltransferase in silico, they derived the

tertiary (3D) structure of the enzyme by using the structure of aspartate carbamoyltransferase

of Pyrococcus abyssi (PDB ID: 1ML4) as template by comparative modeling and validated

by various structural quality validation tools. Once the model was found to be stable in

simulations a number of inhibitor molecules were docked to the models active site and the

binding a�nities recorded. Only 10 molecules were recorded in the publication

4.1.4.3 Remarks

The number of matches found in this case study was very small with only one match existing

between the compound that was found in the literature and those identi�ed through blast.

The compound that was found to match is presented along with the BLAST hit result in

Figure 4.6 the Tanimoto distance between the two molecules was 0.637. On visual comparison

the di�erence is the positional change of the COOH group and a missing amine group. When

cross referencing this molecule back through the Discovery 2.0 chemical search feature (Figure

4.7) it is found that the molecule is 2-Amino-5-(2-phosphono-acetylamino)-pentanoic acid.

The molecule is described in 16 assays in ChEMBL (CHEMBL1160567), 3 Binding and 13

Functional, on the protein ornithine transcarbamoylase which is the blast hit protein. The

results in the �gure indicate that the blast e-value is 1.93E-15 which is not a particularly

strong hit however the two proteins share 3 domains. This information adds con�dence that

this compound will bind to ATCase. The drug identi�ed also has a link to Drugbank3.0 (

DB02011 or EXPT02497) which has an entry marking this compound as experimental, and

it does not contain the typical depth of information as a regular entry in Drugbank does.
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Figure 4.6: The 2D structure of the molecule found in Discovery(a) and the one predicted through

docking methods and found in literature(b).

Figure 4.7: Cross-Reference of matching ligand in Aspartate carbamoyltransferase
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4.1.5 Sulfadoxine

In this case study the intention is to test out the Discovery chemical search function e�ec-

tiveness, the simplest way to do this is take one of the currently used anti-malarial drugs

that have a known target and run it through the chemical search feature. In this case study

we accessed the clinical trials page shown in Figure 4.8 to search for compounds that are

currently being going through stage 4 trials because phase 4 trial drugs are already commer-

cially available and being used to treat malaria infection. Sulfadoxine was chosen from the

available list and the compound sent to the chemical search page and an exact match query

performed, the result is shown in Figure 4.9. When selecting the �search for targets button�

a long list of possible protein targets is listed, when speci�cally looking for Plasmodium pro-

teins you �nd �PF08_0095� which is the PlasmoDB id for Dihydropteroate synthase which is

the protein believed to be inhibited by sulfadoxine (Brooks et al., 1994, Triglia and Cowman,

1994). This was veri�ed by running the query in reverse by selecting the protein search page

and entering �PF08_0095� and searching through the protein-ligand interactions section and

�nding sulfadoxine as well as similar molecules in the results.

4.1.6 Pyrimethamine

In a similar fashion to Sulfadoxine, Pyrimethamine was also ported from the clinical trials

page to the chemical search feature, and an exact search conducted. The list of interac-

tors is signi�cantly shorted to Sulphadoxine and the system correctly identi�es PFD0830w

bi-functional dihydrofolate reductase-thymidylate synthase(DHFR) as one of the possible

interactors. This is a well studied interaction and Pyrimethamine is a proven inhibitor of

DHFR (Bzik et al., 1987).

4.2 Discussion

The above case studies illustrate the accuracy that Discovery has in predicting real protein-

ligand interactions. It also clearly illustrates how the predictive ability varies between proteins
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Figure 4.8: Clinical-trials showing sulfadoxine-pyrimethamine combination. This snapshot shows

all clinical trial being conducted on this speci�ca combination of drugs. It also allows the user the

�send to chemical search� link which navigate the user to the chemical search page and populates

the selected molecule into the Marvin sketch plug-in

Figure 4.9: Sulfadoxine as viewable via the Discovery2.0 interface

Figure 4.10: Pyrimethamine as viewable via the Discovery2.0 interface.
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that have been well studied against those that have not, as it highlights the bias to gather

more data on already identi�ed targets as opposed to performing more broad studies. This

discrepancy may be addressed in future as ChEMBL incorporates larger data sets and more

large scale experiments are published and become publicly available.

Discovery does however still manage to successfully �nd matches even in such cases were

little data is available, which was one of the main objectives. Discovery is also able to

successfully identify a protein target of a chemical using the chemical search tool. This may

potentially be one of the more interesting features as it may lead to the identi�cation of novel

biological process or pathways in the Plasmodium parasite that were previously unknown.
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Concluding Discussion

The Discovery 2.0 system has successfully incorporated the ChEMBL database to be the

primary source of bio-active molecule information. By incorporating the ChEMBL database

into Discovery we have increased the available bio-active molecules from 6811(Drugbank 3.0)

to 1,324,941 distinct compounds and the number of associated protein targets from 4294 to

9,844 as of ChEMBL_16. With the continuation of the ChEMBL project and the Discovery

system setup to automatically incorporate new versions of the ChEMBL database, we will

have a continuously expanding data source that is externally maintained and funded.

This addition allows Discovery to leverage bio-active data of other organisms to increase

our understanding of the malaria parasite. This in combination with the high quantity of

data that is hosted within Discovery enables users to utilize a single source to carry out a

their malaria data mining needs.

In the case studies we evaluate the accuracy by using literature studies and comparing

known interactions with those predicted in Discovery. It does perform well in this regard,

however because there is no way to evaluate putative interactions on undocumented proteins

and performing the test screens was not in the scope of this study it was not possible to

evaluate the error rate of the hits.

Discovery has been upgraded both in technical design and available features. With the

conversion from the python platform to Java and the rework done to the database design,

the web interface and data queries are notably quicker than Discovery 1.0 and the interface

90
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allows for information to be presented to the user in a far more dynamic way. Discovery

2.0 has also been updated to automatically collect the most recent available data from the

various sources to ensure that it is always up to date and populated with the most accurate

information available. Discovery allows researchers to interact with malaria data from either

chemical or protein data as start points, it also allows gathering of batch results based on

logical �lters via the advanced search feature. This provides a platform for researchers to use

to quickly gather large quantities of relevant biological data about malaria.

Discovery 2.0 provides a logical interface that can be used to search for and gather relevant

biological data for use of drug target and lead compound selection, Discovery is also able to

predict possible interacting ligands and make that list available to the user for download.

Such a list can be used for screening purposes or even pharmacophore identi�cation.

Comparing Discovery to another similar malaria centered web resources, one being �Plas-

moDB� (Aurrecoechea et al., 2009).Currently PlasmoDB does not have any linked protein-

ligand information with it's system, and despite that you are able to search for compounds

there is no way to link them to speci�c proteins in their current system. PlasmodDB does

however contain a much broader set of data types that include SNPs, Mass spec data, and

even population data for malaria parasites, all of which are very useful and complimentary

to Discovery.

Another such resource is TDRTargets (Magari�uos et al., 2012) which implemented a simi-

lar approach to gathering protein-ligand interactions, they also utilize the ChEMBL database,

and use two methods of identifying interactions, �rstly through orthology and secondly using

BLAST. They have applied this to multiple species not just Plasmodium and have developed

a weighting algorithm to act as a form of advanced searching that allows the customized

ranking of results. The greatest di�erence between Discovery and TDRTargets currently

is Discovery's focus on the malaria parasite, and in context of protein-ligand interactions

prediction using the domain matching approach Discovery has a greater number malaria

proteins that now have associated chemical data. The quality of these hits may not always

be that high due to the bias in research mentioned but it does however provide a potential
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new insight into a proteins activity.

Discovery is used by searching through the biological data of the malaria proteins based

on what the user perceives as the strongest describing factors of a good protein target, the

factors can be: speci�c times of expression of a protein; the metabolic pathway in which it

functions; its orthology with human proteins; or with the new functionality added whether

or not protein-ligand interactions exist based on current knowledge. Using a broad range of

characteristics it becomes easier to discern between good targets and bad and has the poten-

tial of saving precious time and resources by not pursuing a target that can be invalidated

in silico.

In conclusion the Discovery resource is available at �http://discovery.bi.up.ac.za/� and is

ready to be used in the e�ort to �nd alternative therapeutics to treat malaria infection. Its

incorporation of various data types and external links to various external resources make it

a particularly useful platform to search through the malaria related biological information.
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