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ABSTRACT 
Steady laminar forced convection heat transfer in the 

thermal entrance region of a circular pipe including viscous 
dissipation has been studied assuming the flow to be 
hydrodynamically fully developed and thermally developing. 
The circular pipe is subjected to constant wall temperature. 
Two entry temperatures have been considered. 1) A 
temperature that varies with the radial coordinate obtained in an 
adiabatic pipe due to viscous dissipation while the flow is 
hydrodynamically developing. This temperature is termed as 
the dissipative entry temperature. 2) A uniform temperature 
equal to the bulk mean value of the dissipative entry 
temperature. It has been shown that the difference in the 
Nusselt numbers and heat transfer obtained with these two 
entry temperatures is insignificant. Thus, the simplicity of 
classical assumption of uniform entry temperature can be 
retained when the entry temperature has been chosen as the 
bulk mean of the dissipative entry temperature. 

 
INTRODUCTION 

Laminar forced convection heat transfer through circular 
pipes has been the subject of several investigations owing to its 
present day applications in fuel cells, catalytic reactors and 
solar receivers or absorbers. Inclusion of the effect of viscous 
dissipation is warranted when studies deal with fluid flow for 
high Prandtl number. After the pioneering work done by Graetz 
[1, 2] and Nusselt [3], excellent accounts of the developments 
till 1978 are available in Shah and London [4]. Similar account 
is also available in Kakac, Shah and Aung [5]. 

Laminar forced convection through circular pipe including 
viscous dissipation effects subjected to prescribed wall 
temperature can be found in [6]. Similar studies when the pipe 
is subjected to constant heat flux are available in [7-12]. Studies 
reported in [13] deal with both types of boundary conditions 
and convective boundary conditions has been addressed in [14, 
15]. Laminar forced convection including axial conduction has 
been examined in [16-20]. Jambal et al. [21] examined the 

laminar forced convection through circular pipes for power law 
fluids and the solutions for Newtonian fluids are obtained as a 
special case.  

In order to assess the commonly employed assumption of 
the fluid entering a pipe with fully developed velocity profile 
and uniform entry temperature, when viscous dissipation is 
included, Barletta and Magyari [22, 23] introduced the concept 
of adiabatic preparatory zone. In the adiabatic preparatory zone, 
the flow develops hydrodynamically and gets heated only due 
to viscous dissipation, since the duct is kept adiabatic. The 
hydrodynamically fully developed flow with the temperature 
generated in the adiabatic preparatory zone now enters the duct 
where forced convection in the thermally developing zone 
occurs. This entry temperature, a function of the radial 
coordinate is termed the dissipative entry temperature in the 
present article. Barletta and Magyari [22] gave an analytical 
expression for this temperature. Further, Barletta and Magyari 
[22] examined the influence of this dissipative entry 
temperature on local Nusselt numbers only. They compared the 
results obtained with those obtained with the conventional 
uniform temperature that existed at the entry to the hypothetical 
adiabatic preparatory zone, i.e. a temperature no different had 
the flow developed with no dissipation. This is misleading the 
difference in the Nusselt numbers is not only due to the entry 
temperature but also essentially due to differing Brinkman 
numbers.  

The present article is an attempt to evaluate the effect of 
the dissipative entry temperature not only on local Nusselt 
numbers but also on temperature profiles, local wall heat 
transfer and energy gain (or loss) by the fluid up to a desired 
axial distance in the thermally developing region of circular 
pipes kept at constant temperature. It is proposed that two entry 
temperatures be considered, a) the dissipative entry temperature 
and b) the bulk mean of the dissipative entry temperature. To 
the best knowledge of the authors, the wall heat transfer and the 
energy gain (or loss) by the fluid in the developing region of 
the circular pipes including viscous dissipation have not been 
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presented in the literature. Numerical solutions to the governing 
equations have been obtained employing the Successive 
Accelerated Replacement (SAR) scheme which ha been 
described in Satyamurty [24], and extensively used in [25, 26]. 
Recently this scheme has been employed for the present class 
of problems by Satyamurty and Bhargavi [27] and Ramjee and 
Satyamurty [28]. 

NOMENCLATURE 
 
a [m] radius of the circular pipe 
Ac [m2] cross sectional area of the circular pipe 
Br [-] Brinkman number, Eq. (14) 
Cp [J/kgK] specific heat of the fluid 
hx [W/m2K] local wall heat transfer coefficient 
k [W/mK] thermally conductivity of the fluid 
m&  [kg/s] mass flow rate of the fluid, Eq. (27) 

M [-] position of the node along axial direction used in the 
numerical scheme 

MD [-] number of divisions along axial direction used in the 
numerical scheme 

N [-] position of the node along the radial direction used in 
the numerical scheme 

ND [-] number of divisions along radial direction used in the 
numerical scheme 

Nux [-] local Nusselt number  
Pe [-] Peclet number, Eq. (11) 

Qxw 
[W] dimensional heat transferred from (or to) the wall up to 

a distance x,  Eq. (25) 

Qxf 
[W] heat gain (or loss) by the fluid up to a distance x, Eq. 

(29) 

xwQ  [-] non-dimensional heat transferred from (or to) the wall, 
Eqs. (26) and (28) 

xfQ  [-] non-dimensional heat gain (or loss) by the fluid, Eqs. 
(30) and (31), W 

r [-] radial coordinate 
R [-] non-dimensional radial coordinate 
Re [-] Reynolds number of the fluid 
T [K] temperature of the fluid 
Tent [K] fluid entry temperature 
Tde(r) [K] dissipative entry temperature of the fluid, Eq. (7) 
Tb [K] bulk mean temperature of the fluid, Eq. (22) 
Tw [K] wall temperature 

T0, a 
[K] wall temperature at r = a at the end of the adiabatic 

preparatory zone 

deT  [K] bulk mean temperature of the dissipative entry 
temperature, Eq. (8) 

u [m/s] fully developed velocity of the fluid, Eq. (2) 
uavg [m/s] average velocity of the fluid 
U [-] non-dimensional fully developed velocity of the fluid 
x [-] axial coordinate 
X [-] non-dimensional axial coordinate 
X* [-] non-dimensional normalized axial distance, X/Pe 
 
Special characters 
α [m2/s] thermal diffusivity of the fluid 
ε [-] error tolerance limit 
θ [-] non-dimensional temperature of the fluid, Eq. (10) 
θent [-] non-dimensional fluid entry temperature 

θde(R) [-] non-dimensional dissipative entry temperature of the 
fluid, Eq. (19) 

*
deθ  [-] non-dimensional bulk mean temperature of the 

dissipative entry temperature of the fluid, Eq. (20) 
*θ  [-] non-dimensional bulk mean temperature of the fluid, 

Eq. (23) 
µ [Ns/m2] dynamic viscosity of the fluid 
ν [m2/s] kinematic viscosity of the fluid 
ρ [kg/m3] density of the fluid 
φ [-] variable used to describe the numerical scheme 

φ%  
[-] error in the governing equation due to guessed profiles 

for the variable  
ω [-] acceleration factor in the numerical scheme 
 
Subscripts 
1 [-] when the fluid enters with dissipative entry 

temperature, Tde(r)   
2 [-] when the fluid enters with a temperature equal to the  

bulk mean temperature of the dissipative entry 
temperature, deT   

MATHEMATICAL FORMULATION 
The physical model that of a circular pipe of radius, a, along 

with the coordinate system in dimensional and non-dimensional 
form are shown in Figure 1 (a) and (b) respectively. r is the 
radial coordinate and x is the axial coordinate. The circular pipe 
is subjected to a constant wall temperature of Tw. The fluid 
enters the pipe with a fully developed velocity of u(r) and one 
of the entry temperatures: a) dissipative entry temperature as 
obtained in [22], Tde(r) or, b) uniform temperature, deT , equal to 
the bulk mean temperature of the dissipative entry temperature, 
Tde(r). These are indicated by Tent in Figure 1. 

 
(a) Dimensional 

 

 
(b) Non-dimensional 

Figure 1 Physical model and coordinate system 

The flow is assumed to be steady, incompressible and 
laminar and the fluid properties are constant. Further, the flow 
is hydrodynamically fully developed and enters the pipe with 
one of the entry temperatures described above. Let T1 (x, r) and 
T2 (x, r) be the dimensional temperatures at any (x, r) 
corresponding to the two entry temperatures, Tde(r) 
and deT described above. Neglecting axial conduction and 
including viscous dissipation, the conservation of thermal 
energy equation in the thermally developing region, is given by,  

2
1,2 1,2

P

T Tk u
C u r

x r r r r
ρ µ

∂ ∂ ∂ ∂ = +   ∂ ∂ ∂ ∂  
   (1) 

In Eq. (1), ρ, Cp, k, and µ are the density, specific heat, 
thermal conductivity and dynamic viscosity of the fluid 
respectively.  

Thermally developing region 

X 
R R = 0 

R = 0.5 

θ = 0 

∂θ/∂R = 0 

θent  U, 

Thermally developing region 

x 
r 

a 

Tw 

∂T /∂r = 0 

Tent u, 
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In Eq. (1), u (r), the fully developed Hagen-Poiseuille 
velocity, is given by, 

( )2
2 1-avgu u r a =        (2) 

In Eq. (2), uavg is average velocity of the fluid. Eq. (1) is 
subjected to the following boundary conditions, 

1,2  at  for 0wT T r a x= = >      (3) 

( )1,2 0 at 0 for 0T r r x∂ ∂ = = >     (4) 

The entry temperature, Tent, is one of,   

( ) ,  at 0 for 0ent deT T r x r a= = ≤ ≤ , OR   (5) 

,  at 0 for 0ent deT T x r a= = ≤ ≤     (6) 
In Eq. (6), Tde(r) adapted from Barletta and Magyari [22], 

is given by, 

( )

2 4 2

0, 4 2

2
( ) 2 1m

de a
u r r

T r T
k a a

µ  
= − − + 

  
   (7) 

In Eq. (7), T(0, a), is the temperature at r = a and x = 0, i.e., 
at the beginning of the thermally developing region. In 
principle, T(0, a), can be perceived to be dependent on the length 
of the adiabatic duct needed for the flow to become fully 
developed. However, T(0, a) has not been related to the 
development length in [22]. The scope of the present article, as 
a first step, is to examine the influence of the entry temperature 
not only on the local Nusselt number, but also on temperature 
profiles, wall heat transfer and the energy gain or loss by the 
fluid. 

In Eq. (6), deT , the bulk mean temperature of Tde(r), is 
obtained from, 

0 0

. .
a a

de deT T ur dr ur dr= ∫ ∫      (8) 

Using Eqs. (2) and (7), in Eq. (8), 
2

0,
avg

de a

u
T T

k

µ
= −       (9) 

Eq. (1) is rendered non-dimensional with the following 
non-dimensional variables,  

( ) ( ) ( )* 2 2;  ; avgx aPe r a u uX R U=  =  =

( ) ( )1,2 1,2 0, w a wT T T Tθ = − −      (10) 

In Eq. (10), Pe, the Peclect number, product of the 
Reynolds number based upon hydraulic diameter (= 2a) and the 
Prandtl number, is given by, 

2 ,  2  and avg avgPe RePr u a Re u a Prα ν ν α= = = =  (11) 

In Eq. (11), ν and α are the kinematic viscosity and thermal 
diffusivity of the fluid. Introducing the non-dimensional 
variables defined in Eq. (10), Eq. (1), takes the following form. 

2
1,2 1,2

*

1 U
U R Br

R R R RX

θ θ∂ ∂ ∂ ∂ = +   ∂ ∂ ∂∂   
   (12) 

It may be noted that θ1 and θ2 are the non-dimensional 
temperatures obtained with the entry temperatures Tde(r) 
and deT respectively. In Eq. (12), U, the non-dimensional fully 
developed velocity, is given by, 

( ) 22 1- 4U R R =         (13) 

In Eq. (12), Br is the Brinkman number defined by, 

( )2
0, avg a wBr u k T Tµ  = −       (14) 

With reference to T(0, a), Br < 0 represents fluid getting 
heated in the pipe and Br > 0 represents fluid getting cooled in 
the pipe. 

Boundary conditions given by Eqs. (3) to (6), take the non-
dimensional form as, 

*
1,2 0 at 0.5 for 0R Xθ = = >     (15) 

( ) *
1,2 0 at 0 for 0R R Xθ∂ ∂ = = >     (16) 

a) When the fluid enters with Tde, 

( ) *
1

0,

( )
,  at 0 for 0 0.5de w

de
a w

T r T
r X R

T T
θ θ

−
= = = ≤ ≤

−
 (17) 

b) When the fluid enters with deT ,  

* *
2

0,

,  at 0 for 0 0.5de w
de

a w

T T
X R

T T
θ θ

−
= = = = ≤ ≤

−
  (18) 

Using Eq. (7) for Tde, into Eq. (17) for θde(r), it is obtained 
as, 

( ) ( )4 21 2 16 8 1de r Br R Rθ = − − +     (19) 

Introducing the non-dimensional variables defined in Eq. 
(10), into Eq. (9), the non-dimensional bulk mean 
temperature, *

deθ , of Eq. (18) has been obtained from,  

( )
0.5 0.5

*

0 0

. . 1de deUR dR UR dR Brθ θ= = −∫ ∫    (20) 

 
Nusselt Number 

The local heat transfer coefficients, h1,2x, corresponding to 
the two entry temperatures Tde(r) and deT  are defined by,  

( ) ( )1,2 1,2 1,2 x w ba
k T r h T T∂ ∂ = −     (21) 

In Eq. (21), Tb1,2 are the bulk mean temperatures of the 
fluid at any x corresponding to the two entry temperatures 
Tde(r) and deT . T1,2b, are evaluated from,  

1,2 1,2
0 0

. .
a a

bT uT r dr ur dr= ∫ ∫      (22) 

The corresponding non-dimensional bulk mean 
temperatures, *

1,2θ , are obtained from,  

( )
( ) ( )

0.5 0.5
1,2* *

1,2 1,2
0 0

1 . .b w
de

de w

T T
U R dR UR dR

T T
θ θ θ

−  
= =  

−  
∫ ∫  (23) 

In Eq. (23), *
deθ is given by Eq. (20) 

On non-dimensionalizing Eq. (21), the local Nusselt 
numbers become,  

( ) ( ) ( )( )* *
1 ,2 1 ,2 1,2 1,2 0.5

2 1 1x x x x de R
Nu h a k Rθ θ θ

=
= = − ∂ ∂  (24) 

Instead of the more common expression like Nux = (hx2a/k) 
= - (1/θ*) (∂θ/∂R)|R = 0.5 , appearance of two terms *

deθ and *
1,2θ in 

Eq. (23) is a consequence of non-dimensionalizing T1,2 with 

( )0,a wT T− and 1,2bT  with ( )ae wT T− .  
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Heat Transfer 
Wall heat transfer from (or, to) the pipe wall to (or, from) 

the fluid, Q1,2xw, for the two entry temperatures, up to a desired 
axial distance, x, can be obtained from, 

( )1,2 1,2
0

2
x

xw a
Q a k T r dxπ

 
= ∂ ∂  

 
∫     (25) 

The non-dimensional wall heat transfer, 1xwQ , when the 
fluid enters with Tde(r), has been defined and obtained from,  

( )
*

*1
1 1* 0.5

0

4
( )

X
xw

xw R
p w de de

Q
Q R dX

mC T T
θ

θ =
= = ∂ ∂

− ∫&
  (26) 

In Eq. (26), m& , the mass flow rate of the fluid, is given by, 

( )2
c avg avgm A u a uρ ρ π= =&      (27) 

Similarly, the non-dimensional wall heat transfer, 2xwQ , 

when the fluid enters with deT , has been defined and obtained 
from,  

( )
*

*2
2 2* 0.5

0

4
( )

X
xw

xw R
p w de ae

Q
Q R dX

mC T T
θ

θ =
= = ∂ ∂

− ∫&
  (28) 

Energy Gained (or Lost) by the Fluid 
Energy gained (or lost) by the fluid, Q1,2xf, corresponding 

to the two entry temperatures, up to any desired x can be 
obtained from, 

( )1,2 1,2 1,2 0
|xf P b x b x

Q mC T T
=

= −&     (29) 

The non-dimensional energy gained by the fluid, 1xfQ , 

when the fluid enters with Tde(r), has been defined and obtained 
from, 

( )
( )
( )

11 *
1 1

|
1P b x dexf

xf
P w de P w de

mC T TQ
Q

mC T T mC T T
θ

−
= = = −

− −

&

& &
 (30) 

The non-dimensional energy gained by the fluid, 2xfQ , 

when the fluid enters with deT , has been defined and obtained 
from, 

( )
( )
( )

22 *
2 2

|
1P b x dexf

xf
P w de P w de

mC T TQ
Q

mC T T mC T T
θ

−
= = = −

− −

&

& &
 (31) 

In Eqs. (29) and (30), *
1θ and *

2θ are given in Eq. (23). 
 
NUMERICAL SCHEME 

Numerical solutions to Eq. (12) have been obtained using 
Successive Accelerated Replacement (SAR) scheme [25-28] as 
described below in brief. The scheme is basically the 
successive over relaxation (Gauss-Seidel) method, see, Antia, 
p.677 [29], though the terminology of SAR has been used by 
Dellinger [30].  

The basic philosophy of the SAR scheme [25-28] is to 
guess an initial profile for each variable such that the boundary 
conditions are satisfied. Let the partial differential equation 
governing a variable, φ (X, R), expressed in finite difference 
form be given by ,M Nφ% = 0, where M, and N represent the nodal 

points when the non-dimensional axial distance and radius of 

the annulus are divided into a finite number of intervals MD 
and ND respectively. The guessed profile for the variable φ at 
any mesh point generally will not satisfy the equation. Let the 
error in the equation at (M, N) and kth iteration be ,

k
M Nφ% . Then 

the (k+1)th approximation to the variable φ is obtained from, 

,1
, ,

, ,

k
M Nk k

M N M N k
M N M N

φ
φ φ ω

φ φ
+

 
= −   ∂ ∂ 

%

%
    (32) 

In Eq. (32), ω is an acceleration factor which varies 
between 0 and 2. ω < 1 represents under relaxation and ω > 1 
represents over relaxation. The procedure of correcting the 
variable φ at each mesh point in the entire region of interest is 
repeated until a set of convergence criteria is satisfied. For 
example the change in the variable at any mesh point between 
kth and (k+1)th approximation satisfies, 

( )1
, ,1 k k

M N M Nφ φ ε+− <      (33) 

In Eq. (33), ε is a prescribed small positive number. 
To correct the guessed profile, each dependent variable has 

to be associated with one equation. It is natural to associate the 
variable with the equation, which contains the highest order 
derivative in that variable. Eq. (12) shall be associated to obtain 
the numerical solutions for θ1 and θ2.  
 
RESULTS AND DISCUSSION 

Numerical solutions to Eq. (12), with the boundary 
conditions given by Eqs. (15) to (17) along with Eq. (19), when 
the fluid enters with the dissipative entry temperature, Tde(r) 
{referred as Case 1}, have been obtained employing the SAR 
scheme [25-28] as described above, for Br = -0.1 and 0.1. 
Similarly, numerical solutions have also been obtained for Eq. 
(12), with the boundary conditions given by Eqs. (15), (16) and 
(18) along with Eq. (20) for the case when the fluid enters with 
a uniform temperature equal to the bulk mean temperature deT , 
of the dissipative entry  temperature, {referred as Case 2}, for 
Br = -0.1 and 0.1. Several numerical trials have been conducted  
to determine suitable values for, the number of grids in X* and 
R directions, ω and ε. ω < 1, which represents under-relaxation 
has been chosen, and a value of 0.8 has been found to be 
satisfactory. ε = 10-5, MD = 1000 and ND = 80 have been found 
to be satisfactory, determined by comparing the present values 
with the values of the Nusselt number available in Shah and 
London [4], p. 103, for the case of uniform entry temperature 
neglecting viscous dissipation.  
 
Temperature profiles 

Variation of non-dimensional temperature, θ1 {i.e. for Case 
1}, with non-dimensional radius, R, at different non-
dimensional axial distance, X*, for Br = -0.1 and 0.1 are shown 
in Figure 2 (a) and (b).  Similarly, the θ2 {i.e. for Case 2}, 
profiles for Br = -0.1 and 0.1 are shown in Figure 3 (a) and (b). 

It can be observed by comparing  Figure 2 (a) and (b) with 
Figure 3 (a) and (b) respectively, that the difference between θ1 
and θ2 is insignificant when X* > 0.02 for all R. From Figure 2 
(a) and Figure 3 (a) it can be observed, θ1 > θ2 for lower X* 
when Br = -0.1. Similarly, when Br = 0.1, it can be noticed that, 
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(a) Br = -0.1 
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(b) Br = 0.1 

Figure 2 Variation of θ1 with R for different X*. 
  
θ1 < θ2 from Figure 3 (b) and Figure 3 (b) for lower X*.  Very 
near the entry, when the fluid enters with Tde(r), for Br < 0, the 
fluid gets less heated since the difference between the wall 
temperature and T0, a that exists near the entry, close to the pipe 
wall, is smaller compared to when the fluid enters with a 
uniform temperature of deT . This makes θ1 > θ2 when Br < 0 
near the entry.  A similar argument establishes that θ1 < θ2 near 
the entry when Br > 0. The effect of the difference in the entry 
temperatures diminishes at larger axial distance, particularly 
because of heat addition by viscous dissipation. 
 It is to be borne in mind, that, when, Tw > T0,,a ,  Br < 0. 
Br < 0 represents the fluid getting heated for both the cases of 
entry temperature since, Tw > T0,,a > deT . Br > 0 may not 
represent cooling for the two cases of entry temperature 
since deT may be lower than Tw, making, deT < Tw < T0, a. Hence, 
θ1 and θ2 profiles may differ at larger X* also for large positive 
values of Br.  
Bulk mean temperature 

Numerical solutions obtained for θ1 and θ2 have been used 
in Eq. (23), to obtain *

1θ and *
2θ , the non-dimensional bulk mean  

temperatures, when the fluid enters with Tde(r) and deT . 
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(a) Br = -0.1  
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2

R

 
(b) Br = 0.1 

Figure 3 Variation of θ2 with R for different X*. 
 

Variation of the non-dimensional bulk mean 
temperatures, *

1,2θ for the two cases considered, with non-

dimensional axial distance, X*, is shown in Figure 4 (a) for Br = 
-0.1 and in (b) for Br = 0.1. 

*
1θ and *

2θ  for all values of X* differ by less than 2 %. The 

discernable difference between 1θ and 2θ that has been noted 

for small X* is not seen between *
1θ and *

2θ ; *
1θ and *

2θ  being 
averaged quantities that depend only on X* and do not depend 
on R. However a qualitative difference is that, *

1θ > *
2θ  for Br < 0 

and *
1θ < *

2θ  for Br > 0. These inequalities follow from the 

argument given when 1θ and 2θ profiles shown in Figure 2 and 
Figure 3 have been discussed.  
 Nusselt number 

From the numerical solutions obtained for θ1,
*
1θ , θ2 and *

2θ , 

along with *
deθ , the Nusselt numbers  Nu1x and Nu2x have been 

calculated using Eq. (24). Nu1x and Nu2x respectively 
correspond to the two cases of entry temperature Tde (r) and 

deT . 
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(a) Br = -0.1 
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(b) Br = 0.1 

Figure 4 Variation of *
1,2θ with X* for Cases 1 and 2 

 
Variation of Nu1,2x with X* is shown in Figure 5 for (a) Br = 

-0.1 and (b) Br = 0.1. It can be observed from Figure 5, that, 
Nu1x and Nu2x do not differ much except for lower X*. Both 
Nu1x and Nu2x display an unbounded swing for Br < 0 at some 
X* = *

swX  indicating that 1bT  and 2bT → Tw. It can be seen from 

Figure 5 (a) that *
swX is practically the same for the two entry 

temperatures. The trend of Nu1x and Nu2x variation with X* 
shown in Figure 5 (b) for Br > 0, is along the expected lines as 
reported in Barletta and Magyari [22] for pipes, or Aydin and 
Avci [19] for channels. Both Nu1x and Nu2x for Br < 0 and Br > 
0 tend to the limiting value of 9.6 for large X* which is also the 
value available in [22]. 

 
Heat Transfer 

From the numerical solutions, heat transferred from (or to) 
the wall, 1xwQ and 2xwQ have been calculated using Eqs. (26) and 

(28) when the fluid enters with Tde(r) or deT .  

Variation of 1,2xwQ with X* is shown in Figure 6 for (a) Br = 

-0.1 and (b) Br = 0.1. 

0.001 0.010 0.100
-20

-10

0

10

20

30

Nu
2x

Nu
1x

N
u 1,

2 
x

X*

 
(a) Br = - 0.1 

0.001 0.010 0.100
0

5

10

15

20

Nu
2x

Nu
1x

N
u 1,

2 
x

X*

 
(b) Br = 0.1 

Figure 5 Variation of Nu1,2x with X* for Cases 1 and 2 
 

As noted with reference to the bulk mean temperatures 
*
1θ and *

2θ for the two cases of entry temperature, there is no 

significant difference between 1xwQ  and 2xwQ . It can be noticed 

that the small difference, between 1xwQ  and 2xwQ is such, that, 

1xwQ < 2xwQ  when Br < 0 and 1xwQ > 2xwQ  when Br > 0 which is 

opposite to the trend in the bulk mean temperatures, *
1θ > *

2θ  for 

Br < 0 and *
1θ < *

2θ  for Br > 0. This is to be expected when it is 

realized that the energy gained or lost by the fluid 1,2xfQ  are 

given by *
1,21 θ− .  

A clear difference in the trends of variation of 1,2xwQ for Br 

< 0 as shown in Figure 6 (a) and in Figure 6 (b) for Br > 0 can 
be noted. 1,2xwQ monotonically increase with X* when Br > 0, 

representing the case of fluid getting cooled. This calls for a 
continuous removal of heat from the wall, even after the fluid 
reached a limiting temperature above the wall temperature. At 
this stage, the heat removal rate is equal to the energy generated 
by viscous  dissipation.  Where  as, when Br < 0, the  fluid  gets 
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(b) Br = 0.1 

Figure 6 Variation of 1,2xQ with X* for Cases 1 and 2 

 
heated to a limiting temperature higher than the wall 
temperature. This excess temperature depends on the energy 
generated due to dissipation. This amount of energy needs to be 
removed from the wall, to keep the wall at constant 
temperature. It is because of this change in the direction of heat 
flow, 1,2xwQ starts decreasing from some X* when Br < 0. This 

X* of course will be higher than *
swX where the Nusselt number 

displays an unbounded swing.  
Though, it is straight forward to calculate 1,2xfQ {Eqs. (30) 

and (31)} from the values of *
1θ  and *

2θ  which can be obtained 
from Figure 4, variation of Q1xf and Q2xf with X*, is shown in 
Figure 7 for a) Br = -0.1 and b) Br = 0.1. 

1xfQ and 2xfQ also replicate the qualitative differences 

shown by 1xwQ and 2xwQ in Figure 6. 1xfQ < 2xfQ when Br < 0 and 

1xfQ > 2xfQ when Br > 0. Unlike 1,2xwQ , 1,2xfQ monotonically 

increases with X* until the fluid reaches the limiting 
temperature beyond which 1,2xfQ remain unchanged. By 

comparing Figure 6 (a) and (b) with Figure 7 (a) and (b) 
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Figure 7 Variation of 1,2xfQ with X* for Cases 1 and 2 
 

respectively, it can be noted that 1,2xfQ > 1,2xwQ when Br < 0 

whereas, 1,2xwQ > 1,2xfQ for Br > 0. This implies that the fluid 

gets heated more than the energy transferred from the wall due 
to viscous dissipation, whereas, the fluid gets less cooled than 
the energy removed from the wall due to viscous dissipation. 

CONCLUSION 
The influence of dissipative entry temperature {the 

temperature attained in an adiabatic preparatory zone as 
described by Barletta and Magyari [22]} on temperature 
profiles, local Nusselt numbers has been examined. In addition, 
the plots presented in the present study for the wall heat transfer 
and energy gained or lost by the fluid can be conveniently used 
for calculating the same instead of an average Nusselt number.  

Dissipative entry temperature that depends on the radial 
coordinate can be replaced by a uniform entry temperature 
equal to the bulk mean temperature of the dissipative entry 
temperature. This retains the validity and simplicity of 
assuming the entry temperature to be uniform. However, the 
Brinkman number needs to be based on the bulk mean 
temperature of the dissipative entry temperature.        
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