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Abstract 

This paper examines the existence of long memory in daily stock market returns 

from Brazil, Russia, India, China, and South Africa (BRICS) countries and also 

attempts to shed light on the efficacy of Autoregressive Fractionally Integrated 

Moving Average (ARFIMA) models in predicting stock returns. We present 

evidence which suggests that ARFIMA models estimated using a variety of 

estimation procedures yield better forecasting results than the non-ARFIMA (AR, 

MA, ARMA and GARCH) models with regard to prediction of stock returns. These 

findings hold consistently the different countries whose economies differ in size, 

nature and sophistication.  
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1. Introduction 

 

The potential presence of long memory in financial time series has been one of 

the popular research topics in finance in recent years. This is particularly so 

since the seminal contributions of Clive W.J. Granger (Granger, 1980; Granger 

and Joyeux, 1980). Theoretical and empirical evidence in the field of finance 

regarding the presence of long-memory in stock returns in particular is varied.
1
 

Consequently, modeling long-memory properties in stock market returns and 

volatility has stimulated a lot of research interest in recent years. This is not 

surprising given the important implications long memory has for financial 
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markets. A long memory process is a process where a past event has a decaying 

effect on future events. The presence of long-memory in stock returns and 

volatility implies that there exists a dependency between distant observations. 

From a statistical perspective, long-memory in these series is associated with a 

high autocorrelation function, which decays hyperbolically and eventually dies 

out. Conversely, if correlations between distant observations become negligible, 

the series is said to exhibit short-memory and possesses exponentially decaying 

summable correlations. Hence, the autocorrelation function for a stationary 

process shows an exponential decay and for a non-stationary process it shows an 

infinite persistence. Technically, a long memory process can be characterized by a 

fractionally integrated process (i.e. the degree of integration is less than one but 

greater than zero). Hence, the impacts of a shock persist over a long period of 

time (Kasman and Torun, 2007). 

 

From an economic perspective, long-memory or long range dependence means  

that the information from “today” is not immediately absorbed by the prices in 

the market and investors react with delay to any such information. The existence 

of correlation between distant observations in the stock markets are of great 

interest to potential investors first taking into account their returns and second 

because they can be used for  portfolio diversification and  construction of trading 

strategies (Bardo•, 2008). The major economic ramification for the presence of 

long-memory is the contradiction of the weak-form of market efficiency of Fama 

(1970) which allows investors and portfolio managers to make predictions and to 

construct speculative strategies. The price of an asset determined in an efficient 

market is assumed to follow a martingale process in which the current price 

change is unaffected by its previous value. By implication, the process should 

have no memory at all. This implies the absence of exploitable excess profit 

opportunities. However, when return series exhibit long memory, it indicates 

that observed returns are not independent over time. If returns are not 

independent, past returns can help predict future returns, thereby violating the 

market efficiency hypothesis.  Consequently, pricing financial assets with 

martingale methods may not be appropriate if the underlying continuous 

stochastic process exhibits long-memory. Thus, investigating this long-memory 

property is critical for derivative market players, risk managers and asset 

allocation decisions makers, whose interest is to try and accurately predict stock 

market movements. Hence, the establishment of robust models that serve this 

purpose becomes a major research issue and is also an objective of the current 

study. 

The use of long-memory models in predicting stock returns as done by Diebold 

and Inoue (2001), Engle and Smith (1999), and Granger and Hyung (1999), has 

resulted in what has been termed “spurious long-memory”.
2
 As pointed out by 
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these studies, spurious long-memory arises in many contexts. For instance, due 

to the presence of stochastic structural breaks in linear and nonlinear models, in 

the context of regime switching models, and when forming models using 

variables that are simple non-linear transformations of underlying ‘‘short-

memory’’ variables. It can also arise if one relies on any of the standard short-

memory tests, even if the data generating process does not possess any of the 

aforementioned properties (Bhardwaj and Swanson, 2003, 2006). The existence of 

spurious long-memory feature in financial time series has been widely studied. 

The bulk of existing empirical work has largely focused on the developed 

financial markets, while less attention has been accorded to emerging securities 

markets. More importantly for this study, there is limited empirical evidence of 

the usefulness of long-memory models for predicting stock returns. Granger 

(1999) acknowledges the importance of outliers, breaks, and undesirable 

distributional properties in the context of long-memory models, and concludes 

that there is the likelihood of I(d) processes falling into the ‘‘empty box’’ category.
3
  

Bhardwaj and Swanson (2006) challenged this evidence by showing that 

ARFIMA models estimated using a variety of standard estimation procedures 

yield ‘‘approximations’’ to the true unknown underlying DGP. These in turn can 

sometimes provide significantly better out-of-sample predictions than simple 

linear non-ARFIMA models such MA, ARMA GARCH among others, when 

evaluated on the basis of point MSFE’s as well as on the predictive accuracy tests 

and t-tests. In this study, we attempt to provide further evidence by assessing the 

performance of alternative models of predicting stock returns in the context of 

the emerging economies in general, and those of Brazil, Russia, India, China and 

South Africa (BRICS) in particular.
4
  

 

Stock markets in emerging countries have become an important source for global 

portfolio diversification. However, there are challenges with regard to predicting 

stock returns of emerging stock market returns. Emerging markets are generally 

characterized by lower levels of liquidity and at the same time by a higher 

volatility than developed financial markets (Barkoulas et al., 2000; Kasman et al, 

2009). High volatility in these markets is often marked by frequent and erratic 

changes, which are usually driven by various local events (such as political 

developments) rather than by the events of global importance (Bekaer and 

Harvey, 1997; Aggarwal et al., 1999). These different features may contribute to 

different dynamics underlying the returns and volatility, making these markets 

an interesting sphere of research. Understanding of the dynamic behavior of 

stock returns in these markets is crucial for portfolio managers, policy makers, 

and researchers. Therefore, the current paper attempts to add to the limited 

volume of literature on the usefulness of long-memory models in predicting stock 

                                                                                                                                                                                              

 
3
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the properties of the data (Bhardwaj and Swanson, 2006).  
4
The only related studies for emerging markets are Kasman, et al. (2009) who focused on the Central and 

Eastern European (CEE) countries alone and Sivakumar and  Mohandas (2009) who focused on India. 
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returns by presenting ex ante forecasting evidence based on data sets from 

BRICS.  

 

Specifically, we compare the ARFIMA and the non-ARFIMA (AR, MA, ARMA 

and GARCH) models with the view to providing evidence on the possible presence 

of long-term memory in the BRICS financial markets and testing which of these 

models yields robust results to this effect. We employ a variety of estimation 

methods and forecast evaluation techniques to realize these objectives. Evidence 

based on our analysis of the data sets from the BRICS suggests that ARFIMA 

models estimated using a variety of standard estimation procedures yield better 

approximations than non-ARFIMA models on the basis of point mean square 

forecast errors (MSFEs). This is in contrast to the findings of Granger (1999) but 

consistent with Bhardwaj and Swanson (2006).  

 

 

2. Literature Review 

 

A number of empirical studies on the presence of the long-memory in stock 

market returns have employed ARFIMA models in their analysis. However, the 

results of the empirical studies have been rather mixed. Starting with the 

pioneering work of Hurst (1951) and Greene and Fielitz (1977), Aydogan and 

Booth (1988) test for long-memory using the rescaled range. Fama and French 

(1988), Porterba and Summers (1988), Diebold and Rudebusch (1989, 1991a, b) 

all find no evidence of long-memory. Similarly, Lo (1991), using a modified 

rescaled range (R/S) statistic equally found no evidence of long-memory in a 

sample of US stock returns.  

 

 

With respect to studies which have been carried out on emerging markets, 

evidence has been found supporting the presence of long-memory in some 

emerging markets. This is consistent with the lower levels of efficiency found in 

emerging markets. Assaf and Cavalcante (2005), Bellalah et al., (2005), Kilic 

(2004), and Wright (2002) apply a FIGARCH model to determine long-run 

dependency in the volatility of five emerging markets of Egypt, Brazil, Kuwait, 

Tunisia, Turkey and United States. In all cases the FIGARCH estimations yield 

a significant long-memory parameter, confirming the presence of long-memory in 

the volatility of these markets. However, no evidence of long-memory is found for 

the case of Vougas (2004) who finds weak evidence in the Greek markets when 

employing an ARFIMA-GARCH model, estimated via maximum conditional 

likelihood. 

 

On the otherhand, a study by Cavalcante and Assaf (2002) examined the 

Brazilian stock market and concluded that volatility in these markets is 

characterized by the presence of long-memory. They  find weak evidence of the 

existence of long-memory in the returns series of this market. However, Cajueiro 

and Tabak (2005) were predisposed to conclude that the presence of long-memory 
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in the time series from financial assets is a stylized fact. Examining a sample of 

individual shares listed on the Brazilian stock market they find that specific 

variables from the firms explain, at least partially, long-memory in this market.  

 

Tu, Wong and Chang (2008) using financial market data from Hong Kong, 

Singapore, Australia, Korea, Malaysia, Thailand, Philippines, Indonesia, China 

and Japan assess the performance of variance at risk (VaR) models that take into 

account skewness in the process of innovations. They employ an APARCH model 

based on the skewed t-distribution. They find the performance of this model to be 

inadequate in all cases. Babikir et al., (2012) examined the relationship between 

structural breaks and GARCH models of stock returns volatility of South Africa. 

Using a GARCH(1,1), high level of persistence in the parameter estimates was 

noticed due to the presence of structural breaks in the unconditional variance of 

stock returns. They also found that the combination of forecasts from different 

benchmark and computing models that allow for breaks in volatility improved 

the accuracy of volatility forecasting.  

 

Bonga-Bonga and Makakabule (2010) used a Smooth Transition Regression 

(STR) to model the South African stock returns. Their results showed asymmetric 

behaviour of South African stock returns in the stock market. The study also put 

forward that the STR outperforms the OLS and random walk models in an out-

of-sample forecast. On the other hand, Makhwiting and Sigauke (2011) studied 

results for modelling the daily returns of the Johannesburg Stock Exchange 

(JSE) where returns are characterized by an ARMA(0,1) process implying that 

shocks to the unconditional mean dissipate after just one period. 

 

In Batra (2004) asymmetric GARCH (E-GARCH) models were used for 

estimation and concluded that the Indian stock returns had highly persistent 

volatilities for the period 1979-2003. Additionally, Maheshchandra (2012) applied 

ARFIMA and FIGARCH models to examine the presence of long-memory for 

Indian stock returns for the period 2008-2011. The results suggest that there was 

no long-memory when using ARFIMA model while there was strong evidence of 

the presence of long-memory when using ARMA-FIGARCH(1,d,1).   

 

In their study of the Brazilian stock market, Carvalho et al., (2006) showed that 

Brazilian stock volatility is lognormal with GARCH models and that there was 

no presence of long-memory using daily data of stock returns for the period 2001-

2003. For the case of China, Liu et al., (2009) used the GARCH-SGED model 

which yielded more precise volatility forecasts than those obtained using the 

GARCH-N model for stock markets when the Shangai and Shenzen indices were 

considered. After applying the co-integration term on the forecasting model, Yoo 

(2011)  concluded that the BRICK (Brazil, Russia, India, China and Korea) stock 

markets were not conditioned on developed stock markets as many investors 

thought.  
 



Page | 5  

 

Jefferis and thupayagale (2008) examine long memory in equity returns and 

volatility for stock markets in Botswana, South Africa and Zimbabwe using the 

ARFIMA-FIGARCH model in order to assess the efficiency of these markets in 

processing information. They could not establish a consistent result for the three 

countries. They find significant long memory in the equity returns of Botswana; 

while, in South Africa this result is not statistically different from zero. For 

Zimbabwe returns are characterised by an anti-persistent process. Furthermore, 

all the markets investigated provide evidence of long memory in volatility with 

the exception of Botswana. 

 

Kasman et al. (2009) investigate the presence of long memory in eight Central 

and Eastern European (CEE) countries' stock market, using the ARFIMA, GPH, 

FIGARCH and HYGARCH models. The results of these models indicate strong 

evidence of long memory both in conditional mean and conditional variance. 

Moreover, the ARFIMA–FIGARCH model provides the better out-of-sample 

forecast for the sampled stock markets. Sivakumar and  Mohandas (2009) 

investigate the forecasting ability of ARFIMA-FIGARCH model using Indian 

stock returns. The performance of this model is compared with traditional Box 

and Jenkins ARIMA models. Their results illustrate the need for hybrid modeling 

as ARFIMA–FIGARCH performed better than the traditional models. 

 

From the literature surveyed, one can deduce the following: first there are 

several methods for determining the existence of long-memory in returns, among 

which are ARFIMA models. Second, research has yielded mixed results in the 

case of emerging markets. Third, there is a dearth of studies on predictive ability 

of ARFIMA models especially for the BRICS.Consequently, the current study is 

set out to compare the non-ARFIMA and ARFIMA models with the view to 

putting forward additional evidence on the possible presence of long-term 

memory in the BRICS financial markets and testing which of these models yields 

robust results to this effect.  

 

 

3. Methodology 

 

In this section, we present the ARFIMA processes and the estimation and testing 

techniques used to  investigate the predictability of stock returns.  

 

3.1 ARFIMA: Long-memory estimation 

 

A typical Autoregressive Fractionally Integrated Moving Average (ARFIMA) 

process is   given as: 

 

 tt

d
LyLL εγ )())(( Ψ=−1        (1) 

where, L is the lag operator and the standard difference operator )( L−1  of an 

ARIMA process is replaced with a fractional difference operator
dL)( −1 , where d  

denotes the degree of fractional integration or simply thefractional differencing 
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parameter, tε  is independently and identically distributed and the process is 

covariance stationary for 5050 .. <<− d ; with mean reversion when 1<d . This 

model is a generalisation of the fractional white-noise process as described in 

Granger (1980), Granger and Joyeux (1980), and Hosking (1981), where, for the 

purpose of analyzing the properties of the process, )(LΨ  is set equal to unity.
5
 

Given that many time series exhibit gradually decaying autocorrelations, the 

merits of using ARFIMA models with hyperbolic autocorrelation decay patterns 

in financial time series modeling are many. The vital role of the hyperbolic decay 

property can be easily be illustrated by noting that 
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for any 1−>d . For 0>d , the difference filter can also be developed further using 

a hyper geometric function as below:  
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It is should be noted that the plausible reason for the emergence of a various 

range of techniques for estimation and testing of long-memory models is due to 

the lack of a full proof of good method of estimation. Many of the tests used for 

long-memory have been shown via finite sample experiments to perform quite 

poorly. Much of this evidence has been reported in the context of comparing one 

or two classes of estimators/tests, such as rescaled range (RR)-type estimators. In 

the current study, we employ a variety of estimators and tests. Specifically, we 

consider four widely used estimation methods and five different long-memory 

tests following Bhardwaj and Swanson (2006). 

 

3.2 Long-memory Model Estimation 

 

3.2.1 GPH estimator 

 

The GPH estimation procedure is a two-step procedure, which begins with the 

estimation of d and is based on the following log-periodogram regression:
6
 

 ,

2
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where 

                                                             
5
 See Baillie (1996) for a series of surveys on the properties of the ARFIMA process. 

6
 The regression model is usually estimated using ordinary least squares. 
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Note that the critical assumption for this estimator is that the spectrum of the 

ARFIMA (p,d,q) process is the same as that of an ARFIMA (0,d,0) process (the 

spectrum of the ARFIMA (p,d,q) process in equation (1), under some regularity 

conditions, is given by )sin)()( jz(where  , ω
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ARMA process). We use Tm =  as is done in Diebold and Rudebusch (1989), 

although the choice of m when tε  is autocorrelated can significantly impact the 

empirical results (see Sowell, 1992 for discussion). Robinson (1995a) shows that 

( 1) N(0,→−
∧

− )()/( . ddm GPH
502 24π  for 5050 .. <<− d  and for mlj ,....,=  in the equation 

(5) for ω  above, where l is analogous to the usual lag truncation parameter.  

 

As is also the case with the next two estimators, the second step of the GPH 

estimation procedure involves fitting an ARMA model to the filtered data, given 

the estimate of d . Agiakloglou et al., (1992) show that the GPH estimator has 

substantial finite sample bias, and is inefficient when tε  is a persistent AR or MA 

process. Previous studies have assumed normality of the filtered data in order to 

use standard estimation and inference procedures in the analysis of the final 

ARFIMA model (see e.g. Diebold and Rudebusch, 1989, 1991a). Many versions of 

this estimator have continued to be widely used in the empirical studies.
7
 

 

3.2.2 WHI estimator 

 

Another semi-parametric estimator is the Whittle estimator which is commonly 

used to estimate d . The most robust of these is the one suggested by Künsch 

(1987) and modified by Robinson (1995b). It is another periodogram-based 

estimator, and the crucial assumption is that for fractionally integrated series, 

the autocorrelation )(ρ at lag l is proportional to 12 −d
l . This implies that the 

spectral density which is the Fourier transform of the autocovariance γ is 

proportional to d

j

2−)(ω . The local Whittle estimator of d say WHId
∧

, is obtained by 

maximizing the local Whittle log likelihood at Fourier frequencies close to zero, 

given by: 

                                                             
7
 For a recent overview of frequency domain estimators, see Robinson (2003, Chapter 1). 
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maximising the following function: 
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Robinson (1995b) shows that for estimates of d  obtained in this way, 

1) N(0,→−
∧

)()( .
ddm WHI

50
4 for ... 5050 <<− d  Taqqu and Teverovsy (1997) study the 

robustness of standard, local, and aggregated Whittle estimators to non-normal 

innovations, and find that the local Whittle estimator performs well in finite 

samples. Similarly, Shimotsu and Phillips (2002) develop an exact local Whittle 

estimator that applies throughout the stationary and non-stationary regions of d ; 

while Andrews and Sun (2002) develop an adaptive local polynomial Whittle 

estimator in order to address the slow rate of convergence and associated large 

finite sample bias associated with the local Whittle estimator. In this paper, we 

use the local Whittle estimator discussed in Taqqu and Teverovsky (1997). 

 

3.2.3 RR Estimator 

 

The rescaled range estimator was initially suggested as a test for long-term 

dependence in the time series. The statistic is calculated by dividing range with 

standard deviation. In particular, define: 

  ,
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8
 See Hurst (1951) and Lo (1991). 
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Lo (1991) shows that TQT ˆ5.0−  is asymptotically distributed as the range of a 

standard Brownian bridge. It is worth noting however that there are known 

limitations to testing for long-memory using TQT ˆ5.0− , specifically in the presence of 

data generated by a short-memory process combined with a long-memory 

component (see for example, Cheung 1993). In cognizance of this, Lo (1991) 

proposes the modified RR test, whereby 2ˆ
Tσ  is replaced by a heteroskedastic and 

autocorrelation consistent variance estimator which is expressed as: 
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where  

 .,)( Tq
q

j
qw j <

+
−=        

1
1  

It is known from Phillips (1987) that 2ˆ
Tσ  is consistent when )( .2500 Tq = ; at least in 

the context of unit root tests, although choosing q in the current context can be a 

challenge. This statistic still weakly converges to the range of a Brownian bridge. 

 

3.2.4 AML Estimator 

 

The fourth estimator that we employ is the approximate maximum likelihood 

estimator of Beran (1995). For any ARFIMA model given by Equation (1) 

δ+= md  where 0.5) 0.5,( −∈δ and m  is an integer (which is taken as known) 

denoting the number of times the series must be differenced in order to attain 

stationarity, say: 

.)( t

m

t yLx −= 1        (11) 

To form the estimator, a value of d is fixed, and an ARMA model is fitted to the 

filtered tx data yielding a sequence of residuals. This is repeated over a fine grid 

of δ+= md ; and AMLd
∧

is the value which minimizes the sum squared residuals. 

The choice of m is critical, given that the method only yields asymptotically 

normal estimates of the parameters of the ARFIMA model if 0.5) 0.5,( −∈δ
9
.  

 

In summary, three of the estimation methods described in the preceding 

paragraphs for ARFIMA models require first estimating d . Thereafter, an ARMA 

model is fitted to the filtered data by using maximum likelihood to estimate 

                                                             
9
 See Robinson (2003) for an extensive exposition of the AML estimator. 
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parameters, and via the use of the Schwarz Information Criterion for lag 

selection.  

 

3.3 Short-memory tests 

 

Four of the five tests that we use when evaluating our time series are based on 

the above discussion, including the GPH, RR, MRR, and WHI tests, where the 

MRR is the modified RR test due to Lo (1991). Notice that of these, only the GPH 

and WHI tests are based directly upon examination of the d  estimator, while the 

RR and MRR tests do not involve first estimating d. The fifth test that we use is 

the non-parametric short-memory test of Leybourne et al. (2003). Their test is 

based on the rate of decay of the auto-covariance function. Specifically, the null 

hypothesis of the test is that the data are short-memory (i.e. ∞<∑
∞

=0j

jγ ; where 

jγ is the auto-covariance of ty at lag j ) and the test is based on the notion that 

one can distinguish between short and long-memory via knowledge of the rate at 

which 0→jγ  as ∞→j . The test statistics is given as: 

 ,
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context, 1) N(0, →kTS  under the null hypothesis.   

  

 

3.4 Predictive accuracy and testing 

 

Most often, the ultimate goal of an empirical investigation is the specification of 

predictive models, then a natural tool for testing for the presence of long-memory 

is the predictive accuracy test. In this case, if an ARFIMA model can be shown to 

yield predictions that are superior to those from a variety of alternative linear 

(and non-linear) models, then one has direct evidence of long-memory, at least in 

the sense that the long-memory model is the best available ‘‘approximation’’ to 

the true underlying DGP. Conversely, even if one finds evidence of long-memory 

via application of the tests discussed above, then there is little use specifying 

long-memory models if they do not out predict simpler alternatives. There is a 

rich recent literature on predictive accuracy testing, most of which draws in one 

way or another on Granger and Newbold (1986), where simple tests comparing 

mean-square forecast errors (MSFEs) of pairs of alternative models under 
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assumptions of normality are outlined. Perhaps the most important of the 

predictive accuracy tests that have been developed over the last 20 years is the 

Diebold and Mariano (DM, 1995) test. The statistic is:  
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where R denotes the estimation period, P is the prediction period, f is a generic 

loss function, 1≥h  is the estimate horizon, htv +

∧

,0  and htv +

∧

,1 are −h step ahead 

prediction errors for the models 0 and 1 (where model 0 is assumed to be the 

ARFIMA model), constructed using estimators, and  2ˆ
Pσ  is defined as: 
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where .(, ).2500
1

1 Pl
l

j
w P

P

j =
+

−=     The hypotheses of interest are the following: 

0100 =− ++

∧

))()((: ,, htht vfvfEH   

.))()((: ,, 010 ≠− ++

∧

hthtA vfvfEH  

The DM test, when constructed as outlined above for non-nested models, has a 

standard normal limiting distribution under the null hypothesis.
10

 West (1996) 

shows that when the out-of-sample period grows at a rate not slower than the 

rate at which the estimation period grows (i.e. ,π→
R

P
 with ∞≤< π0 ), parameter 

estimation error generally affects the limiting distribution of the DM test in 

stationary contexts. On the other hand, if 0=π  then the parameter estimation 

error has no effect. Additionally, Clark and McCracken (2001) point out the 

importance of addressing the issue of nestedness when applying DM and related 

tests.
11
Although, the DM test does not have a normal limiting distribution under 

the null of non-causality when nested models are compared, the statistic can still 

                                                             

10
 We assume quadratic loss in our applications, so that

2

00 htht vvf ++ = ,, )( ; for example. 
11
Chao et al., (2001) address not only nestedness, by using a consistent specification testing approach to 

predictive accuracy testing, but also allow for misspecification amongst competing models; an important 

feature if one is to presume that all models are approximations, and hence all models may be (dynamically) 

misspecified. White (2000) further extends the Diebold and Mariano framework by allowing for the joint 

comparison of multiple models, while Corradi and Swanson (2005a,b,c) extend White (2000) to predictive 

density evaluation with parameter estimation error. 
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be used as an important diagnostic in predictive accuracy analyses. Furthermore, 

the non-standard limit distribution is approximated by a standard normal in 

many contexts (see McCracken, 1999 for tabulated critical values). In this regard, 

we use critical values obtained from the 1) N(0, distribution when carrying out DM 

tests. 

 

Note that McCracken (1999) and Clark and McCracken (2001) assume 

stationarity and correct specification under the null hypothesis, and that 

estimation is done using ordinary least squares. If we make the assumption of 

correct specification under the null, it implies that the ARFIMA model and the 

non-ARFIMA models are the same. Hence 0=d ; so that only the common ARMA 

components in the models remain, and therefore, the errors are short-memory.  

 

We also evaluate forecasts from ARFIMA and Non-ARFIMA models using Clark 

and McCracken (2001) encompassing test which is designed for comparing nested 

models. The test statistic is given as: 
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1
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−
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T

Rt tcPc  The test has the same 

hypotheses as the DM test, except that the alternative is  

.))()((: ,, 00 >− ++

∧

htkhtA vfvfEH  If 0=π , the limiting distribution is 1) N(0,  for 1.h =  

The limiting distribution for 1,h >  is non-standard. However, as long as the 

Newey and West (1987)-type estimator (of the generic form given above for the 

DM test) is used when 1,h >  then the tabulated critical values are quite close to 

the 1) N(0, values and hence we use the standard normal distribution as a 

benchmark guide for all horizons.
12
 

 

3.5 Predictive model selection  

 

In this paper, forecasts are 1-step, 5-steps and 20-steps ahead, when daily stock 

market data are examined, corresponding to 1-day, 1-week and 1-month ahead 

predictions. Estimation is carried out as discussed above for ARFIMA models, 

and using maximum likelihood for non-ARFIMA models. More precisely, each 

sample of T observations is first split in half. The first-half of the sample is then 

used to produce 0:25T rolling (and recursive) predictions (the other 0:25T 

observations are used as the initial sample for model estimation) based on rolling 

(and recursively) estimated models (i.e. parameters are updated before each new 

prediction is constructed).  

 

                                                             
12 See Clark and McCracken (2001) for an extended discussion. 
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These predictions are then used to select a ‘‘best’’ ARFIMA and a ‘‘best’’ non-

ARFIMA model, based on point out-of-sample mean-square forecast error 

comparison. At this juncture, the specifications of the ARFIMA and non-ARFIMA 

models to be used in later predictive evaluation are fixed. Parameters in the 

models may be updated, however. In particular, recursive and rolling ex ante 

predictions of the observations in the second half of the sample are then 

constructed, with parameters in the ARFIMA and non-ARFIMA ‘‘best’’ models 

updated before each new forecast is constructed. Additionally, different models 

are constructed for each forecast horizon, as opposed to estimating a single model 

and iterating forward when constructing multiple step ahead forecasts. Reported 

DM and encompassing t tests are thus based on the second-half of the sample, 

and involve comparing only two models.  

 

With regard to model selection, Inoue and Kilian (2003), suggest the use of the 

Schwarz Information Criterion (SIC) for choosing the best forecasting model, 

while Hansen et al., (2004) HLN propose a model confidence set approach to the 

same problem. It is worth noting that the BIC-based approach of Inoue and 

Kilian (2003) is not applicable under near stationarity and non-linearity, and is 

not consistent when non-nested models are being compared. Hansen et al., (2004) 

takes a different approach on the other hand, as they are concerned with 

narrowing down from a larger set of models to a smaller set that encompasses the 

best forecasting model. When their approach is used, for example, it is found that 

ARFIMA volatility models do not outperform simpler non-ARFIMA volatility 

models. In this study, we use SIC for model selection. 

 

 

4. Data and Empirical evidence 

 

The data have been sourced from the websites of the stock exchanges in each 

country considered. The data is the daily index representing a significant portion 

of the capitalisation of each stock exchange. From this daily stock returns were 

calculated. The data starts in September 1995 and terminates over the period of 

30 July 2012 to 6 September 2012 for the different countries. For Brazil, the 

Ibovespa is used and represents more than 80 per cent of the number of trades 

and financial value traded, as well as representing over 70 per cent of the total 

market capitalisation of the stock exchange. Russia’s All RTS index is used which 

comprises 50 preferred and common shares chosen according to capitalisation. 

The Bombay sensitive index has been chosen in the case of India which tracks 30 

stocks and is weighted according to market capitalisation. China’s Shanghai 

stock exchange A-share index is included; this index comprises stocks listed as A 

shares. Finally the FTSE/JSE All Share index is used to represent South Africa’s 

stock returns; it comprises the top 99 per cent of eligible listed companies and is 

weighted according to market capitalisation. 

 

The empirical estimation is based on the following models: 
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 ARFIMA (p,d,q): tt

d LyLL εβγ )())(( Ψ+=−1   

where d  takes fractional values. 

 Random Walk with a Drift: ttt yy εβ ++= −1  

 AR(p): ttyL εβγ +=)(  

 MA(q): tt Ly εβ )(Ψ+=  

 ARMA(p,q): tt LyL εβγ )()( Ψ+=  

ARIMA(p,d,q): tt

d LyLL εβγ )())(( Ψ+=−1 , where d can take integer values; 

GARCH: ttyL εβγ +=)(  where ttt vh 50.=ε  with 
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 and where 1−tξ is the usual filtration of 

the data. 

In these models, tε  is the disturbance term ,...)( p

p LLLL φφφγ −−−−= 2

211  and 

,...)( q

q LLLL θθθ −−−−=Ψ 2

211  where L is the lag operator. All models (except 

ARFIMA models) are estimated using (quasi) maximum likelihood, with values of 

p and q chosen via use of the Schwarz Information Criterion (SIC), and integer 

values of d in ARIMA models selected via application of the augmented Dickey–

Fuller test at a 5% level. Errors in the GARCH models are assumed to be 

normally distributed. ARFIMA models are estimated using the four estimation 

techniques discussed above (GPH, RR, WHI, and AML).  

 

 

 

The results are presented in Table 1 with the number of observations used in 

each set of analysis included in brackets below the name of the relevant country. 

The analysis chooses the best ARFIMA and non-ARFIMA models given the data, 

these are reported in the third and fifth columns of Table 1. The GPH and AML 

estimators were most often chosen for the ARFIMA models, whilst the AR-

GARCH(1) and random walk models dominated the best non-ARFIMA models. 

The only exception in the case of the non-ARFIMA models was the 20-day ahead 

rolling model for South Africa where an AR-GARCH (10) was chosen, , thus 

having significantly more autoregressive terms than chosen for any other returns 

series. These results are ex-ante estimates as described earlier. The size of d for 

Russia, India and China is frequently greater than 0.5, especially at horizons of 

5- and 20-days ahead irrespective of the estimation scheme (i.e. rolling or 

recursive).This falls largely in line with results presented in Table 2 of Bhardwaj 
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and Swanson (2006). The standard errors obtained from the re-estimation of d for 

each forecast and reported in parenthesis in column four are relatively small. 

Additionally, all the forecasts for South Africa and Brazil fall below 0.5, and the 

rolling estimates are particularly low at less than 0.1, implying the presence of 

covariance stationarity in this process.  

 

The results of the DM test, reported in the sixth column of Table 1 give the 

results of a test that compares the MSFE of the best ARFIMA model with the 

best non-ARFIMA model. Negative values of the DM statistics indicate that the 

point MSFE associated with the ARFIMA model is lower than that for the Non-

Africa model since the former is taken as model zero. The results for every 

country are negative, which offhand suggest that the MSFE for the ARFIMA 

models are consistently lower than the non-ARFIMA models, adding further 

support to the use of ARFIMA models for stock market return forecasting. Most 

of the test statistics are significant at all conventional levels
13

. These are the DM 

test statistics for India’s 5-day ahead recursive and rolling forecasts and South 

Africa’s 20-day ahead rolling forecast. Thus, other than the exceptional cases 

identified, according to the DM test the ARFIMA models are preferred. In terms 

of the forecast encompassing (ENC-t) test, which tests as to whether the non-

ARFIMA model is nested within the ARFIMA model, the findings suggest that 

there is little reason to reject the null hypothesis of nestedness in most cases. 

There are two exceptions where the null is not accepted (suggesting that the non-

ARFIMA is the more accurate forecasting model) and that is for the 5-day ahead 

rolling models for Brazil and the 20-day ahead models recursive models for South 

Africa. Thus, the results point to a great extent to the existence of a long-memory 

process in the absolute daily returns of the stock markets considered and that an 

ARFIMA model has a role to play in forecasting exercises for stock returns at the 

1-, 5- and 20-day ahead horizons.  

 

The final column compares the forecast errors of the ARFIMA and non-ARFIMA 

models. Thus, any figure greater than one suggests that the MSFE for the 

ARFIMA models is higher than for the non-ARFIMA models and vice versa. The 

results suggest that for all models at all horizons for all countries, that the best 

ARFIMA model produces a lower MSFE than the best non-ARFIMA model. This 

lends further support to the evidence that ARFIMA models are better predictors 

than the non-ARFIMA options.  

 

 

 

 

 

 

 

                                                             
13
 The normal distribution, N(0,1), has been used as a rough guide for significance in the case of 

the DM and ENC-t statistics.  
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Table 1:   Analysis of absolute returns for Brazil, Russia, India, China and South 

Africa 

 
 
 

Conclusion 

 

This paper investigates the existence of long-memory processes in the absolute 

returns of indices for the Brazilian, Russian, Indian, Chinese and South African 

stock markets. In order to verify whether the true data generating process is 

better represented by ARFIMA or non-ARFIMA models, the study further 

compared the forecasts generated by these set of models. The best ARFIMA and 

best non-ARFIMA were first selected using part of the data. The remaining part 

ARF IMA 

m odel
d

(Std 

er r or )

Non-ARF IMA 

m odel

MSF E 

rat io
DM ENC-t

Br azil 1-day ah ead, r ecur sive AML(1,1) 0.3770 0.0199 GARCH(1,1) 0.0192 -2.4281 ** -1.5147

(4173) 5-day ah ead, r ecur sive AML(1,1) 0.3770 0.0199 RW 0.5692 -7.4267 *** 0.7984

20-day ahead, r ecur sive AML(1,1) 0.3770 0.0199 GARCH(1,1) 0.0138 -1.9397 * -3.6880

1-day ah ead, r ollin g AML(1,1) -0.0053 0.2259 GARCH(1,1) 0.0198 -2.4687 ** 0.1836

5-day ah ead, r ollin g AML(1,1) -0.0053 0.2259 RW 0.5726 -7.4583 *** 1.2997 *

20-day ahead, rolling AML(1,1) -0.0053 0.2259 GARCH(1,1) 0.0144 -1.9793 ** -0.4706

Russia 1-day ah ead, r ecur sive AML(2,1) 0.1501 0.0203 GARCH(1,1) 0.0289 -2.9199 *** -1.8090

(4240) 5-day ah ead, r ecur sive GP H(1,1) 0.6629 0.0464 GARCH(1,1) 0.0194 -2.3574 ** -0.9369

20-day ahead, r ecur sive GP H(1,1) 0.6629 0.0464 GARCH(1,1) 0.0215 -2.4350 ** -1.5285

1-day ah ead, r ollin g GP H(1,1) 0.7364 0.0897 GARCH(1,1) 0.0300 -2.9600 *** 0.2044

5-day ah ead, r ollin g GP H(1,1) 0.7364 0.0897 GARCH(1,1) 0.0206 -2.4194 ** 0.1602

20-day ahead, rolling WHI(1,1) 0.6205 0.0192 GARCH(1,1) 0.0224 -2.4824 ** -0.9490

In dia 1-day ah ead, r ecur sive GP H(1,1) 0.5383 0.0392 RW 0.5456 -7.0939 *** -1.7616

(4214) 5-day ah ead, r ecur sive GP H(1,1) 0.5383 0.0392 GARCH(1,1) 0.0194 -1.5157 -1.6006

20-day ahead, r ecur sive GP H(1,1) 0.5383 0.0392 RW 0.5666 -5.6930 *** 0.3456

1-day ah ead, r ollin g GP H(1,1) 0.6371 0.0620 GARCH(1,1) 0.0258 -1.9965 ** -1.0815

5-day ah ead, r ollin g GP H(1,1) 0.6371 0.0620 GARCH(1,1) 0.0175 -1.6148 -1.8913

20-day ahead, rolling GP H(1,1) 0.6371 0.0620 RW 0.5701 -5.6747 *** -0.0101

China 1-day ah ead, r ecur sive AML(0,3) 0.2866 0.0217 GARCH(1,1) 0.0190 -2.5017 ** -0.1928

(4119) 5-day ah ead, r ecur sive WHI(2,1) 0.5333 0.0068 RW 0.5125 -7.8821 *** -1.6206

20-day ahead, r ecur sive GP H(2,1) 0.5862 0.0468 RW 0.5458 -8.0691 *** 0.8741

1-day ah ead, r ollin g AML(0,3) 0.3661 0.0217 GARCH(1,1) 0.0235 -2.4255 ** -1.1795

5-day ah ead, r ollin g GP H(2,1) 0.6288 0.0068 GARCH(1,1) 0.0155 -1.9475 * -0.7882

20-day ahead, rolling WHI(2,1) 0.5655 0.0468 RW 0.5474 -8.0705 *** 0.6950

South  Afr ica 1-day ah ead, r ecur sive AML(4,1) 0.2586 0.0563 RW 0.5119 -7.0051 *** -3.5658

(4250) 5-day ah ead, r ecur sive AML(4,1) 0.2586 0.0563 RW 0.5712 -9.4633 *** 1.0349

20-day ahead, r ecur sive AML(4,1) 0.2586 0.0563 RW 0.5650 -6.6615 *** 1.5153 *

1-day ah ead, r ollin g AML(4,1) 0.0363 0.1399 RW 0.5067 -6.9875 *** -1.5163

5-day ah ead, r ollin g AML(4,1) 0.0363 0.1399 RW 0.5692 -9.4958 *** 1.0624

20-day ahead, rolling AML(4,1) 0.0363 0.1399 GARCH(1,1) 0.0004 -1.4076 -1.3305

***, **, *
r epr esen t sign ificance of the test sta t ist ics at the 1, 5 an d 10 per cent levels r espect ively. These are based on th e

stan dar d norm al dist r ibu t ion . In the case of the DM stat ist ic, a two-tailed test is conducted such th at th e cr it ica l

valu es ar e 2.54, 1,96 and 1,65 respect ively. Th e ENC-t test is a one-ta iled test with cr it ical values 2.33, 1,65 and 1.29

respect ively. Th e MSF E r at io calcu lates the r at io between the MSF E for  th e ARF IMA m odel r ela t ive to the n on -
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of the data was used to produce ex-ante forecast from the best selected models 

using both recursive and rolling estimation schemes. We also employ a variety of 

estimators and forecast evaluation tests.   

Our results provide strong evidence supporting the existence of long-memory in 

daily stock returns for the BRICS countries over different horizons. This is 

inconsistent with the weak-form market efficiency, implying that the BRICS 

stock index consists of the impact of news and shocks occurred in the recent past. 

Hence, speculative earnings could be gained via predicting stock prices. . The 

evidence also suggests that the ARFIMA models are better at forecasting daily 

stock market returns than the non-ARFIMA models. These findings hold true 

across all the BRICS countries whose economies differ in size, nature and 

sophistication, based on a number of tests. Thus, the usefulness of ARFIMA 

models, specifically for the purposes of forecasting at a number of horizons is 

further supported with the evidence presented in this paper. These findings 

would be helpful to the investors, financial managers, and regulators dealing 

with the BRICS stock markets. Understand the sources of long memory in the 

stock market could also assist the regulators in improving its efficiency. 
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