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Abstract 

 

We use several models using classical and Bayesian methods to forecast employment for eight 

sectors of the US economy. In addition to using standard vector-autoregressive and Bayesian 

vector autoregressive models, we also augment these models to include the information content 

of 143 additional monthly series in some models. Several approaches exist for incorporating 

information from a large number of series. We consider two multivariate approaches – extracting 

common factors (principal components) and Bayesian shrinkage. After extracting the common 

factors, we use Bayesian factor-augmented vector autoregressive and vector error-correction 

models, as well as Bayesian shrinkage in a large-scale Bayesian vector autoregressive models. 

For an in-sample period of January 1972 to December 1989 and an out-of-sample period of 

January 1990 to March 2010, we compare the forecast performance of the alternative models. 

More specifically, we perform ex-post and ex-ante out-of-sample forecasts from January 1990 

through March 2009 and from April 2009 through March 2010, respectively. We find that factor 

augmented models, especially error-correction versions, generally prove the best in out-of-

sample forecast performance, implying that in addition to macroeconomic variables, 

incorporating long-run relationships along with short-run dynamics play an important role in 

forecasting employment. Forecast combination models, however, based on the simple average 

forecasts of the various models used, outperform the best performing individual models for six of 

the eight sectoral employment series.  
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1. Introduction 

Unlike the standard post-WWII recession, analysts called the recoveries from recession in the 

early 1990s and 2000s “jobless” recoveries. Most analysts also predict a jobless recovery from 

the recent Great Recession. Pundits argue that the midterm election results of 2010 depended in 

great measure on the state of the national and local economies, the lack of employment growth, 

and the stubbornly high unemployment rate. Macroeconomists debate whether the Great 

Recession largely reflects insufficient aggregate demand or structural issues. Simplifying, we can 

argue that if the problem largely reflects insufficient aggregate demand, then different sectors of 

the economy will experience similar difficulties. But, if the problem contains important structural 

problems, then different sectors will experience different difficulties.  

The most recent Great Recession did affect employment in sectors differently. More 

specifically, the largest percentage employment loss from peak to trough occurred in the 

construction sector with a loss of 27.7 percent or 2.14 million jobs and the smallest percentage 

loss occurred in the leisure and hospitality sector with a loss of 4.1 percent or 551 thousand jobs. 

Thus, monitoring employment movements across sectors provides an important way to measure 

differences in macroeconomic effects across these sectors. Rapach and Strauss (2008) note 

“forecasting employment growth has received little attention ... relative to such macroeconomic 

stalwarts as inflation, GDP growth, and the unemployment rate.” (p. 75). But, forecasting total 

employment, which Rapach and Strauss (2008, 2010) do, may hide potentially important 

differences as some sectors expand and others contract in response to technological change, 

shifts in demand, and so on. We go one step further and argue that forecasting employment at the 

sectoral level needs more attention. 

When forecasting macroeconomic variables such as employment, researchers may 
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improve their forecasts by using other macroeconomic variables such as industrial production, 

personal income, manufacturers‟ orders, initial claims for unemployment insurance, building 

starts, and so on as they may provide leading information about the future movements in the 

macroeconomy. Several approaches to variable selection exist. One approach uses economic 

theory and the intuitive, subjective judgment of the researcher to select the variables used in the 

forecasting exercise. A second approach, an agnostic view, collects a large set of variables that 

can potentially improve the forecasting performance and lets the data speak for themselves. We 

adopt this second approach and gather a large dataset of 143 variables plus the eight sectoral 

employment series.
1
  

In sum, this paper considers the ability of different time-series models to forecast sectoral 

employment. Our main focus considers how the researcher can use large datasets to forecast, 

using factor analysis or Bayesian shrinkage of the parameter estimates in large-scale vector 

autoregressive (VAR) models. We consider employment from eight sectors -- mining and 

logging; construction; manufacturing; trade, transportation, and utilities; financial activities; 

professional and business services; leisure and hospitality; and other services.  

More specifically, we compare the out-of-sample forecasting performance of various 

time-series models – autoregressive (AR), vector AR (VAR), Bayesian AR (BAR), Bayesian 

VAR (BVAR), vector error-correction (VEC), Bayesian VEC (BVEC), Bayesian factor-

augmented AR (BFAAR), Bayesian factor augmented VAR (BFAVAR), Bayesian factor 

augmented VEC (BFAVEC), and medium-scale and large-scale BVAR (MBVAR and LBVAR) 

models, as well as combination forecasts of the simple average across all the individual 

forecasting models. Ignoring the combination forecasts, a factor-augmented model performs the 

                                                 
1
 One referee suggests a third approach to select variables -- a statistical procedure using general-to-specific 

modeling. That is, one includes variables and their lags generally based on their in-sample significance or out-of-

sample performance. Since we use as many as 143 predictors, this approach is difficult to implement in practice.  
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best in six of the eight employment series, using the average root-mean-squared-error (RMSE) 

criterion. The LBVAR models outperform the factor-augmented models for two employment 

series – construction, and professional and business services. Finally, the models that exclude the 

information from the large set of data generally come in a distant third in forecast performance 

and only prove the best forecasting models on a few occasions, implying that the macroeconomic 

fundamentals partly drive employment. Finally, the combination forecasts perform the best for 

six of the eight employment series. The exceptions include the BFAAR and BFAVEC models 

that provide the best forecasts for trade, transportation, and utilities, and other services 

employment, respectively. 

We organize the rest of the paper as follows. Section 2 provides a brief review of the 

literature on using large datasets in forecasting models. Section 3 discusses the literature on 

forecasting employment. Section 4 specifies the various time-series models estimated and used 

for forecasting. Section 5 discusses the data and the results. Section 6 concludes. 

2. Forecasting with Large Datasets 

We consider a set of reduced-form multivariate time-series models in the forecasting exercise. 

Reduced-form models typically forecast better than structural models.
2
 An important issue 

involves documenting whether additional information improves the forecasting performance 

over a simple univariate autoregressive or autoregressive-moving-average representation.  

One approach uses an autoregressive distributed lag (ARDL) model (Stock and Watson 

1999, 2003, 2004), also called a transfer-function model (Enders 2004, Ch. 5). That is, the 

researcher runs a transfer-function model, where the variable to forecast enters as an 

autoregressive process and one driver variable enters as a distributed lag. The researcher 

                                                 
2
 Some recent work suggests that a few DSGE models can out-perform reduced-form time-series models in out-of-

sample forecasting. See Christofffel et al. (2010) and Gupta et al. (2011). 
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compares the baseline model, the pure autoregressive specification forecasts with the forecasts 

for the transfer-function (ARDL) specification. Researchers extend this further and repeat the 

process for a whole set of potential driver variables. Now, one can aggregate across the 

individual forecasts to generate a combined forecast. Combination forecasts range from simple 

means or medians to more complicated principal-components- or mean-square-forecast-error-

weighted forecasts. 

The VAR or VEC models do not impose exogeneity assumptions on the included 

predictor variables. Unlike the single-equation bivariate ARDL or transfer-function model, the 

VAR or VEC approaches assume that lagged values of each variable may provide valuable 

information in forecasting each endogenous variable. VAR and VEC models, however, come 

with their own issues such as over-parameterization, since the estimated number of parameters 

increases dramatically with additional variables or additional lags in the system. One solution to 

the over-parameterization problem extracts common factors from a large dataset, which then get 

added to much smaller VAR or VEC specifications (Bernanke, Boivin, and Eliazs 2005, Stock 

and Watson 2002a, 2005). Adding a few common factors from the large dataset to smaller VAR 

and VEC systems economizes on the number of new parameters to estimate. 

Bayesian VAR (BVAR) or VEC (BVEC) models may overcome the over-

parameterization problem by limiting the uncertainty in the prior distributions of all parameters 

in the system. Since the Bayesian approach can address the over-parameterization problem 

through Bayesian shrinkage, researchers can estimate BVAR or BVEC systems that include a 

large number of additional explanatory variables, obviating the need to extract common factors. 

Nothing prevents, however, the extraction of common factors (principal components) from the 

large set of macroeconomic variables to include in factor-augmented VAR (FAVAR) or VEC 
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(FAVEC) systems and imposing Bayesian priors, which we also do. 

In this paper, we consider the multivariate reduced-form time-series models that 

incorporate the information from a large dataset using factor analysis and Bayesian shrinkage. 

These methods provide the natural extension of the VAR, VEC, BVAR, and BVEC models.  

3. Forecasting Employment 

As noted in the introduction, little work exists on forecasting national employment trends. Much 

forecasting of employment does exist, however, at the regional level. Regional economists use 

employment, since other macroeconomic indicators such as GDP or industrial production either 

do not exist at the regional level, do not provide sufficient disaggregation, or appear too 

infrequently. As a result, regional economists use employment trends by sector to help 

understand the growth of the regional economy. 

Regional economists developed the ideas of economic base and shift-share analysis to 

track and predict regional growth, using employment data. The popularity of these analyses 

comes from the simplicity of execution and the easily accessible data to execute the analysis. 

Lane (1966) and Williamson (1975) provide some history and background on economic base 

analysis, whereas Stevens and Moore (1980) provide a critical review of shift-share analysis as a 

forecasting tool. Since these analyses do not consider structural issues, but instead rely on simple 

constructs from the employment data itself, we can consider the approaches as a rudimentary 

time-series forecasting technique. 

In another related line of research, regional economists consider the relative advantages 

and disadvantages of forecasting regional economic activity, including employment, using time-

series and structural models. Early efforts compare the forecasting performance of structural and 

autoregressive integrated moving average (ARIMA) models (Taylor 1982, Glennon, Lane, and 
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Johnson 1987). 

More recently, a few economists consider the performance of different models in 

forecasting employment at the national level. For example, Stock and Watson (2002b) forecast 

eight monthly macroeconomic time-series variables, including nonagricultural employment, 

from 1970 through 1998. They use a larger dataset of 215 additional potential predictors, 

extracting principal components, to see if forecasting accuracy improves over simpler time-series 

models. They conclude that these new forecasts outperform univariate ARs, small VARs, and 

leading indicator models. 

Rapach and Strauss (2008) forecast employment growth, using monthly seasonally 

adjusted civilian employment from the Conference Board dataset and an autoregressive 

distributed lag (ARDL) model framework, containing 30 determinants, to forecast national 

employment growth. Given the difficulty in determining a priori the particular variables that 

prove the most important in forecasting employment growth, the authors also use various 

methods to combine the individual ARDL model forecasts, which result in better forecasts of 

employment growth. The combining method based on principal components does the best, while 

those methods that rely on simple averaging, clusters, and discounted mean square forecast error 

also produce forecasts better than the individual ARDL without combining. In an earlier paper, 

Rapach and Strauss (2005) obtain similar results when forecasting the employment growth in 

Missouri, using an ARDL approach based on 22 regional and national predictors. They observe 

that combining methods based on Bayesian shrinkage techniques produce substantially more 

accurate out-of-sample forecasts than those from a benchmark AR model. 

Rapach and Strauss (2010) forecast national employment growth, using the same dataset 

as in Rapach and Strauss (2008), by applying bootstrap aggregating (bagging) to a general-to-
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specific procedure based on a general dynamic linear regression model. When they compared 

bagging to the forecast combination approaches, the authors find bagging forecasts often deliver 

the lowest forecast errors. Further, the authors note that incorporating information from both 

bagging and combination forecasts (based on principal components) often leads to further gains 

in forecast accuracy. 

More recently, Rapach and Strauss (2012) forecast state employment growth using 

several distinct econometric approaches, such as combinations of individual ARDL models, 

general-to-specific modeling coupled with bagging, and factor models. As in their earlier studies, 

the results show that these forecasting approaches consistently deliver sizable reductions in 

forecast errors relative to the benchmark AR model across states. Further, they observe 

forecasting improvements on amalgamating these approaches, especially during national 

business-cycle recessions. 

Banbura et al., (2010) show that a VAR model with Bayesian shrinkage, incorporating a 

large number of explanatory variables, often produces better forecasts for non-farm employment 

than those from small-scale VAR and FAVAR models.  

Against this backdrop, our paper extends the above mentioned studies, in the sense that 

we use a variety of large-scale models that allow a wider possible set of fundamentals to affect 

the dynamic movement of employment. Note that the motivation to use a large dataset (143 

explanatory variables), rather than 20 to 30 variables used as predictors in the ARDL model, 

received support since the models based on the large dataset almost always outperform medium-

scale models that used 20 variables in forecasting employment.
3
 

 

                                                 
3
 See Subsection 5.2 for further details. 
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4. VAR, VEC, BVAR, BVEC, FAVAR, FAVEC, BFAVAR, BFAVEC, and LBVAR 

Specifications and Estimation
4
 

4.1  VAR, VEC, BVAR, BVEC, and LBVAR: 

Following Sims (1980), we can write an unrestricted VAR model as follows: 

0 ( )   t t tY A A L Y ,        (1) 

where Y equals a ( 1n ) vector of variables to forecast; 
0A  equals an ( 1n ) vector of constant 

terms; A(L) equals an ( n n ) polynomial matrix in the backshift operator L with lag length p,
5
 

and   equals an ( 1n ) vector of error terms. In our case, we assume that   is an n-dimensional 

Gaussian white-noise process with covariance matrix . 

The VAR method typically uses equal lag lengths for all variables, which implies that the 

researcher must estimate many parameters, including many that prove statistically insignificant. 

This over-parameterization problem results in a loss of degrees of freedom, leading to inefficient 

estimates, and possibly large out-of-sample forecasting errors. Some researchers exclude lags 

with statistically insignificant coefficients. Alternatively, researchers use near VAR models, 

which specify unequal lag lengths for the variables and equations. 

If non-stationary variables in a standard VAR model are cointegrated, then this generates 

a VEC model that incorporates the long-run information. While including short-run dynamic 

adjustment, the VEC model also incorporates the cointegration relationship so that it restricts the 

movement of endogenous variables to converge to their long-run relationships. The error 

correction term, gradually corrects through a series of partial short-run adjustments. 

More explicitly, assume that tY  includes n time-series variables integrated of order one, 

                                                 
4
 The discussion in this section relies heavily on LeSage (1999), Gupta and Miller (2012a, 2012b), and Das et al., 

(2009). 

5
 That is, A(L) = 

2

1 2 ... p

pA L A L A L   ; 
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(i.e., I(1)).
6
 The error-correction counterpart of the VAR model in equation (1) converts into a 

VEC model as follows:
7
 

1

1
1

p

t t i t i t
i

Y Y Y 


 


      ,       (2) 

where 
1 1

[ ]and .
p p

i i j
i j i

I A A
  

        

Litterman (1981), Doan et al., (1984), Todd (1984), Litterman (1986), and Spencer 

(1993) use the Bayesian shrinkage for a VAR model to overcome the over-parameterization 

problem. Rather than eliminating lags or variables, the Bayesian shrinkage is tantamount to 

imposing inexact restrictions on the coefficients across different lag lengths, assuming that the 

coefficients of longer lags may more likely  equal zero than the coefficients on shorter lags. If, 

however, stronger effects come from longer lags, the data can override this initial restriction. 

Researchers impose the constraints by specifying normal prior distributions with zero means and 

small standard deviations for most coefficients, where the standard deviation decreases as the lag 

length increases and implies that the zero-mean prior holds with more certainty. The first own-

lag coefficient in each equation proves the exception with a unitary mean. Finally, Litterman 

(1981) and the other authors impose a diffuse prior for the constant. We employ this “Minnesota 

prior” in our analysis, where we implement Bayesian variants of the classical VAR models. 

Formally, the means of the Minnesota prior take the following form: 

2~ (1, )
ii N    and 2~ (0, )

jj N   ,      (3) 

where i  denotes the coefficients associated with the lagged dependent variables in each 

equation of the VAR model (i.e., the first own-lag coefficient), while j  denotes any other 

                                                 
6

 See Lesage (1999) and references cited therein for further details regarding the non-stationary of most 

macroeconomic time series. 

7
 See, Dickey et al. (1991) and Johansen (1995) for further technical details. 



 11 

coefficient. In sum, the prior specification reduces to a random-walk with drift model for each 

variable, if we set all prior variances to zero. The prior variances, 2

i
  and 2

j
 , specify 

uncertainty about the prior means, i  = 1, and j  = 0.  

Doan et al., (1984) propose a formula to generate prior standard deviations that depend 

on a small numbers of hyper-parameters: w, d, and a weighting matrix f(i, j) to reduce the over-

parameterization in the VAR models. This approach specifies individual prior variances for a 

large number of coefficients, using only a few hyper-parameters. The specification of the 

standard deviation of the prior distribution imposed on variable j in equation i at lag m, for all i, j 

and m, equals S1(i, j, m), defined as follows: 

1

ˆ
( , , ) [ ( ) ( , )]

ˆ
i

j

S i j m w g m f i j



   ,      (4) 

where f(i, j) = 1, if i = j and ijk  otherwise, with ( 0 1ijk  ), and g(m) = dm , with d > 0. ˆ
i  

equals the estimated standard error of the univariate autoregression for variable i. The ratio 

ˆ
ˆ

i

j




 accounts for the different scale and variability of the data. The term w indicates the overall 

tightness, with the prior getting tighter as the value falls. The parameter g(m) measures the 

tightness on lag m with respect to lag 1, and is a harmonic function (i.e., m
-d

) with decay factor d, 

which tightens the prior at longer lags. The parameter f(i, j) governs the tightness of variable j in 

equation i relative to variable i.
8
 Note that, following LeSage (1990), in the Bayesian versions of 

the VEC models, we impose no priors on the error-correction terms.  

We also follow Banbura, Giannone, and Reichlin (2010) and set the value of the overall 

tightness parameter to obtain a desired average fit for the eight employment variables of interest 

                                                 

8
 For an illustration, see Dua and Ray (1995). We use ijk = 0.5. 
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in the in-sample period (1972:1 to 1989:12). We then retain the optimal value of w(Fit) (= 

0.0230), with d =2.0, for the LBVAR model with 151 variables obtained in this fashion for the 

entire evaluation period. The values of w for the eight variable BVAR and one variable Bayesian 

Autoregressive (BAR) models, given d = 2, equal 0.2366 and 1.8250, respectively. While, the 

corresponding value of w for the BVEC with eight employment series equals 0.2419. In addition 

to these models, we also consider a medium-scale BVAR (MBVAR) model based on 20 

macroeconomic variables, besides the 8 employment series. Note that the 20 variables chosen 

match those used by Banbura et al., (2010) in their medium-scale BVAR, and are a subset of the 

143 variables used in our large-scale models. The optimal value of w(Fit) equals 0.0681 for the 

MBVAR model. Specifically, for a desired Fit of 0.50, we choose w as follows: 

8

0
1

1
( ) arg min

8

w

i

w i
i

MSE
w Fit Fit

MSE

   ,      (5) 

where w

iMSE =
0 2

2

, 1| , 1

0

1
( )

1

T
w

i t t i t
t p

y y
T p



 



 

. That is, we evaluate the one-step-ahead mean 

squared error (MSE) using the training sample t = 1, ..., 0T -1, where 0T  is the beginning of the 

ex-post out-of-sample period and p is the order of the VAR. The value 0

iMSE  is the MSE of 

variable i with the prior restriction imposed exactly (w=0).
9
  

We estimate the BVAR models using Theil's (1971) mixed estimation technique. The 

number of observations and degrees of freedom increase artificially by one for each restriction 

imposed on the parameter estimates. Thus, the loss of degrees of freedom from over-

                                                 
9
 In addition to using a Fit of 0.50, we also experiment with a Fit as the average relative MSE from an OLS-

estimated VAR containing the eight sectoral employment variables, i.e., 
8

0
1

1

8





 
i

i
i

MSE
Fit

MSE
, as well as a Fit value of 

0.25. In both cases, the forecasting performances of the alternative Bayesian models deteriorate. These results are 

available upon request from the authors. 
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parameterization in the classical VAR models does not emerge as a concern in BVAR 

specifications, which compensates through the tightness of the prior. 

4.2 FAVAR and BFAVAR: 

We assume that our data conform to a factor structure and adopt a factor model. The factor 

model expresses individual times series as the sum of two unobserved components: a common 

component driven by a small number of common factors and an idiosyncratic component for 

each variable. Using the factor model, we extract a few factors from the large data set of national 

and regional variables of the US economy. These factors summarize information from the large 

dataset.  

Suppose that tZ  equals a 1n  covariance stationary vector standardized to possess a 

mean zero and a variance equal to one, obtained from the original 1n  vector of I(1) variables 

tY . Under factor models, we write tZ  as the sum of two orthogonal components as follows: 

ttt fZ  ,         (6) 

where tf  equals a 1r  vector of static factors,  equals an n r  matrix of factor loadings, and 

t  equals a 1n  vector of idiosyncratic components. In a factor model, tf  and t  are mutually 

orthogonal stationary processes, while, tt f  is the common component.  

Since common factors are latent, we must estimate them. This paper adopts the Stock and 

Watson (2002b) method, which employs the static principal component (PC) approach on tZ
10

. 

The factor estimates, therefore, equal the first principal components of tZ , (i.e., 
^

ˆ   t
f Zt , 

where ̂  equals the n r  matrix of the eigenvectors corresponding to the r  largest eigenvalues 

                                                 
10

 We can estimate factors using the generalized principal component approach as in Forni, Hallin, Lippi, and 

Reichlin (2005) or static factor based on principal component as in Stock and Watson (2002b). See Stock and 

Watson (2005) for a review literature on factor analysis. 
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of the sample covariance matrix ̂ ).  

We use Bai and Ng (2002) criterion to determine the number of stationary static factors. 

We, then, add three extracted factors to the 8-variable VAR model to create a factor-augmented 

VAR (FAVAR) model in the process. We choose the three common factors (principal 

components) from the dataset of 143 variables, since the fourth factor explains less that 5-percent 

of the total variation. We also choose three common factors from the medium-scale dataset of 20 

predictors as well, since it covers all the sectors of the economy as the large data set does. 

Furthermore, we estimate idiosyncratic component (see below) with AR(p) processes as 

suggested by Boivin and Ng (2005). 

For forecasting purposes, we use an 8-variable VAR augmented by extracted common 

factors using the Stock and Watson (2002a) approach. This approach is similar to the univariate 

Static and Unrestricted (SU) approach of Bovin and Ng (2005). Therefore, the forecasting 

equation to predict tY  is given by 

ˆ ˆ ˆ( ) ( )t h t tY L Y L f   ,       (7) 

where h equals the forecasting horizon, ˆ ( )L  and ˆ ( )L  equal lag polynomials, which we 

estimate with and without shrinkage. As Boivin and Ng (2005) clearly note, VAR models are 

special cases of equation (7). With known factors and the parameters, the FAVAR approach 

should produce smaller mean squared errors relative to VAR models. In practice, however, one 

does not observe the factors and we must estimate them. Moreover, the forecasting equation 

should reflect a correct specification. We consider the following specifications: 

- MBFA(V)AR: Bayesian restrictions on lags of the employment in 1 (8) sector(s) and the 

three common factors (principal components) extracted from the medium-

scale model of 20 predictors, based on the priors outlined above. The 
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values of w obtained for the MBFAAR and MBFAVAR, given d=2, were 

0.5710 and 0.2015, respectively; and 

- BFA(V)AR:  the FA(V)AR specification with Bayesian restrictions on lags of the 

employment in 1 (8) sector(s) and the three common factors (principal 

components) extracted from the large dataset of 143 variables, based on 

the priors outlined above. The values of w obtained for the BFAAR and 

BFAVAR, given d=2, were 0.4672 and 0.1699, respectively. 

4.3 FAVEC and BFAVEC: 

For the FAVEC models, we follow the procedure proposed by Banerjee and Marcellino (2009) 

and Banerjee, Marcellino, and Masten (2010).
11

 We begin  with a set of n I(1) variables ( tY ). The 

unrestricted VAR model appears in equation (1) above. We can rewrite this equation in its error-

correction and common-trend specifications, respectively, as follows::
12

 

1t t tY Y v
            (8) 

and 

t t tY F u   ,
13

        (9) 

where  
1

,
p

s n
n n r n r ns

A A I  
   

    

1 1 1 1... ,t t p t p tv Y Y           
1

,
p

i s

s i

A
 

    





1

1

,
p

i

iI  

                                                 
11

 See these papers for more details on the model and the estimation. 

12
 When we extract the common factors (principal components) for the MBFAVAR and BFAVAR models, we 

transform all variables to induce stationarity. Now, we transform all variables to induce non-stationarity. That is, for 

stationary variables, we accumulate to make them I(1). We also extract three common factors from the non-

stationary variables, excluding the stationary variables. The findings prove similar to the three factors extracted 

when we accumulate the I(0) variables to make them I(1). 

13
 Banerjee, Marcellino, and Masten (2010) note that to extract common factors Ft, one must standardized variables 

Yt (mean zero, variance one). 
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1( ) ,
n r

   


       

1 1

,
t

t s
r s

F
 

     and .)( tt LCu   

In these two specifications,    denotes the ( )n r n   matrix of cointegrating vectors with rank 

n r , where n r  is the number of cointegrating vectors. Thus, r  equals the number of )1(I  

common stochastic trends or factors, 0 r n  , contained in the 1r  vector tF  and the matrix 

   is invertible, since each variable is )1(I .   denotes the loading matrix, which also 

exhibits reduced rank n r  and determines how the cointegrating vectors enter into each 

individual element ,i tY  of the 1n  vector tY
14

. tu  denotes an n -dimensional vector of stationary 

and, in general, moving average errors. 

We can rewrite equation (9) in first differences as: 

t t tY F u   .
15

       (10) 

Here, ∆ut and vt can correlate over time and across variables. 

The literature on cointegration focuses mainly on equation (8), also known as the VEC 

model, while Banerjee and Marcellino (2009) reconcile the factor analysis in equation (10) and 

the cointegration concept in equation (8). In other words, the error-correction model experiences 

practical difficulties (i.e., the curse of dimensionality) when faced with so many cointegrating 

vectors. Hence, if important information does not enter the VEC model, then the model results in 

biased coefficients caused by omitted variables. In this case, the FAVEC model improves on the 

standard VEC model. Banerjee, Marcellino, and Masten (2010) demonstrate that the information 

set in the FAVEC model improves the forecasting performance of models, especially at the 

longer horizon.  

                                                 
14

 Note that as ,n and the number of factors r remains fixed, the number of cointegrating relations .n r   

15
 Bai and Ng (2004) and Bai (2004) allow for the possibility that ut or some elements of  ut are I(1). 
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By including the error-correction terms in the FAVAR model, the FAVEC model 

enhances the former model, especially in the presence of cointegration. The FAVEC model 

naturally generalizes the FAVAR model developed by Bernanke, Boivin, and Eliazs (2005) and 

Stock and Watson (2005).  

Assume that we only want to forecast a few variables in the entire economy. We, 

therefore, divide our panel into two parts, An  including the variables of interest, A

tY  and 

B An n n   containing the remaining variables, B

tY . Equation (8) becomes: 

A AA

t t

tB BB

t t

Y
F

Y





    
     

    
       (11) 

where A  is An r  matrix and B  is Bn r . The dimension of A  does not change as n  

increases while the dimension of B  increases with n . Banerjee and Marcellino (2009) argue 

that to preserve a factor structure asymptotically, driven by r common factors, it is necessary that 

the rank of B , Br r , whereas the rank of A , Ar r . That is, a smaller or equal number of 

trends drive A

tY . Assume from equation (11) that 
tF  are uncorrelated random walks and A

tY  and 

tF  are cointegrated.  

From the Granger representation theorem, there exists an error correction specification as 

follows: 

1

1

A A AA

t t t

B

t t t

Y Y

F F










      
       

       
      (12) 

We can extend equation (12) by adding additional lags to account for correlation in the errors as 

follows: 

1 1

1

1 1

AA A A AA
t qt At t t t

qB
t qt t t t

YY Y Y u
A A

FF F F u






 

 

          
                         

  (13) 
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where the errors  ', 'A

t tu u  are i.i.d. Equation (13) is a FAVEC model. 

Banerjee and Marcellino (2009) show that An  cointegrating relationships must exist in 

equation (13), given that equation (13) includes An r  dependent variables and that A

tY  is driven 

by 
tF  or a subset of 

tF , and that elements of 
tF  are uncorrelated random walks.  

Since A  is An r , but can have a reduced rank of Ar , A An r  cointegrating 

relationships exist, including A

tY  variables only. Banerjee and Marcellino (2009) demonstrate 

that this emerges from a standard VEC model. The remaining Ar  cointegrating relationships 

involve A

tY  and 
tF .  

Equation (13) improves on the factor and FAVAR models, if the data generating process 

displays a common trend, given that the error-correction terms do not appear in equation (7). 

That is, the FAVAR does not account for the long-run information and, hence, 0A B   . The 

FAVAR model does not account for cointegration and, therefore, it is misspecified in the 

presence of long-run relationships. It follows that the FAVEC model nests the VEC, FAVAR, 

and VAR models and, hence, it more likely outperforms these other models in forecasting, since 

the trend and the information content in the data set matter. 

- MBFAVEC:  includes the employment in 8 sectors, three common static factor 

(principal component) extracted from 20 predictors, and the error-

correction terms, with Bayesian restrictions on lags of the model based on 

the priors outlined above. The value of w for the MBFAVEC model, given 

d=2, equals 0.2138 ; and 

- BFAVEC:  Bayesian restrictions on lags of the model based on the priors outlined 

above, with the model including the employment in 8 sectors, three 
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common static factors (principal components) extracted from 143 

predictors, and the error-correction terms. The value of w for the 

BFAVEC model, given d=2, equals 0.1782. 

Note that even though the Bai (2004) approach suggests 4 static common factors for the large 

dataset, we use 3 factors, as for the FAVAR models. Using the cumulative variance share of 

common component, we find that that the fourth factor explains only 3 percent of the variation, 

which is less than our pre-specified cut-off limit of 5 percent.  

5. Data Description, Model Estimation, and Results 

5.1  Data 

While the small-scale VARs, both the classical and Bayesian variants, only include employment 

data for the eight sectors, the large-scale BVAR and factor models also include the 143 monthly 

national and regional series. Besides, the large-scale BVAR and factor models, we also estimate 

medium-scale BVAR and factor models based on 20 variables, which is a subset of the variables 

included in the large dataset. Seasonally adjusted employment data come from the Bureau of 

Labor Statistics. For the remaining 143 seasonally adjusted national and regional variables, we 

collected the data from various sources such as the Conference Board, the Global Insight 

database, the FREDII database of the St. Louis Federal Reserve Bank, the US Census Bureau, 

and the National Association of Realtors.  

We transformed all data to induce stationarity for the FAVAR-type models before 

extracting the three factors. We can use non-stationary data, however, with the BVAR. Sims et 

al. (1990) indicate that with the Bayesian approach entirely based on the likelihood function, the 

associated inferences do not require special treatment for non-stationarity, since the likelihood 

function exhibits the same Gaussian shape regardless of the presence of non-stationarity. 
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Following Banbura, Giannone, and Reichlin (2010) for the variables in the panel that exhibit 

mean-reversion, however, we set a white-noise prior (i.e., i  = 0); otherwise, we impose the 

random walk prior (i.e., i  = 1). Note that when considering the medium-scale or the large-scale 

BVAR models based on 28 or 151 variables, given that the system defined by equation (1) 

contains both I(1) and I(0) variables, we use the random-walk prior or white-noise prior 

accordingly. As for the BFAVEC (MBFAVEC) model based on 151 (28) variables, we begin 

with 115 (15) I(1) variables, not counting the eight employment series, and we then cumulate the 

remaining 28 (5) I(0) variables to transform them into non-stationary variables, before extracting 

the three (one) common factor(s). Appendix A lists these variables as well as the transformations 

used prior to analyzing the data. The italicized variables in Appendix A correspond to the ones 

used in the medium-scale BVAR and factor models.  

The real activity group consists of variables such as industrial production, capacity 

utilization, retail sales, real personal consumption, real personal income, new orders, inventories, 

new housing starts (national and regional), housing sales (national and regional), employment, 

average working hours, and so on. The price and inflation group consists of variables such as the 

consumer price index, the producer price index, real housing prices (national and regional), the 

personal consumption expenditure deflator, average hourly earnings, exchange rates, and so on. 

The monetary sector group consists of variables such as monetary aggregates, various interest 

rates, credit outstanding, and so on. 

5.2 Estimation and Results 

In this section, we first select the best model for forecasting each sector‟s employment, using the 

minimum average root mean squared error (RMSE) across the one-, two-, … , and twelve-

month-ahead ex-post out-of-sample forecasts. Then, second, we consider ex-ante out-of-sample 
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forecasts based on the best performing individual model and a forecast combination model.
16

 

Note that we consider 13 types of individual forecasting models. The ex-post forecasting exercise 

allows us to choose the best individual model to use for the ex-ante forecasting exercise. This 

particular individual model, in turn, also serves as a competing model to the forecast 

combination model when comparing ex-ante forecasts to the actual data. Forecasting, ex-post or 

ex-ante, without competing models is less informative.   

The data sample for all eight employment series runs from January 1972 (1972:1) 

through March 2009 (2009:3). First, the cointegration tests amongst the eight employment series 

for the (B)VEC models as well as amongst the eight employment series and the one and three 

common static factors for the MBFAVEC and BFAVEC models, use data from 1972:1 through 

1989:12. Further, this sample provides the base for estimating all of the various specifications 

considered for possible out-of-sample forecasting experiments. Second, the ex-post out-of-

sample forecasting experiments cover 1990:1 through 2009:3. Third, we keep the number of 

factors extracted for the FAVAR and FAVEC models fixed over the forecasting period, but 

recursively update their estimates. Fourth, as each forecasting recursion also includes model 

selection, we choose the number of cointegrating vectors for the BVEC, MBFAVEC, and 

BFAVEC models by using the trace test proposed by Johansen (1991). Fifth, we base the lag-

length for the various models at each recursive estimation on the unanimity of at least two of the 

following five lag length selection criteria: the sequential modified likelihood ratio (LR) test 

statistic (each test at the 5-percent level), the final prediction error (FPE), the Akaike information 

criterion (AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information 

                                                 
16

 Ex-post forecasts use actual values of the variables used in the forecasting equation to generate the forecasts 

whereas the ex-ante forecasts use forecasted values. The ex-ante forecasts give an objective statistical method 

(approach) to choose the best performing models, which, in turn, we use to predict the turning points. 
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criterion (HQIC).
17

 Finally, for the large-scale BVAR, we use the lag-length chosen for the eight 

variable small-scale VAR containing only the eight sectoral employment series. 

5.2.1 One- to Twelve-Month-Ahead Ex-Post Forecast Accuracy 

Given the different forecasting models specified in Section 4, we estimate these alternative 

small- and large-scale models for the eight employment series in our sample over the period 

1972:1 to 1989:12 using monthly data. We then compute ex-post out-of-sample one-, two-, …, 

and twelve-month-ahead forecasts for the period of 1990:1 to 2009:3, and compare the forecast 

accuracy relative to the forecasts generated by the benchmark random-walk (RW) with drift and 

estimated in levels. Note that the choice of the in-sample period, especially the starting date, 

depends on data availability. The starting point of this out-of-sample period precedes by a few 

months the recession in the 1990 and the jobless recovery that followed that recession as well as 

the recession in the 2001.  

We estimate the RW and classical VAR models, the small-scale BAR, BVAR, and 

BVEC models, the medium-scale and large-scale BVAR models, and the Bayesian FA(V)AR 

and FAVEC models over the period 1972:1 to 1989:12, and then forecast from 1990:1 through 

2009:3.
18

 Depending on the number of lags selected, specific initial months feed the lags. We re-

estimate the models each month over the ex-post out-of-sample forecast horizon in order to 

update the estimate of the coefficients, before producing the one-, two-, …, and twelve-month-

                                                 
17

 After determining the in-sample lag length for the VEC- and FAVEC-type models, we apply the trace test of 

cointegration to the eight employment series, and the eight employment series and the three factors for the medium 

and large FAVEC models. The tests suggest 5, 8, and 8 cointegrating vectors, respectively, implying 3 common 

trends in all the cases. Note that, at each recursion, we choose the number of cointegrating vectors for the BVEC, 

MBFAVEC, and BFAVEC models by using the trace test. Hence, we update the number of cointegrating relations 

over the ex-post out-of-sample period. Interestingly, at the end of the out-of-sample period, we find that the number 

of cointegrating vectors falls to 3 in the BVEC model, while the number stays at 8 and 8, respectively, for the 

MBFAVEC and BFAVEC models. Note that the results for the MBFAVEC and BFAVEC are consistent with 

theory, since the number of factors (3) equals the number of common trends (= number of variables in the 

(M)BFAVEC less the number of cointegrating vectors). These results are available upon request from the authors.  
18

 We also estimated in prior versions of this paper AR, VEC, FAAR, FAVAR, and FAVEC models. These models 

exhibited much worse performance than those reported it the text. Results are available from the authors. 



 23 

ahead forecasts. We implement this iterative estimation and the forecast procedure for 219 

months, with the first forecast beginning in 1990:1. This produced a total of 219 one-, 219 two-, 

…, and 219 twelve-month-ahead forecasts. We calculate the root mean squared errors (RMSE)
19

 

for the 219 one-, two-, …, and twelve-month-ahead forecasts for the eight employment series 

across all of the different specifications. We then examine the average of the RMSE statistic for 

one-, two-, …, and twelve-month-ahead forecasts over 1990:1 to 2009:3. We select the model 

that produces the lowest average RMSE values as the „best‟ specification for a specific 

employment sector. 

Tables 1 to 8 report the ratio of the one-, two-, …, and twelve-month-ahead RMSEs as 

well as the average across the 12 monthly RMSEs relative to the RMSE of the benchmark 

random-walk (RW) with drift model across the eight employment series, respectively. Thus, the 

0.2250 average entry for the BFAVEC model in Table 1 means that the BFAVEC model 

experiences an average forecast RMSE across the 12-month horizon of only 22.50 percent of the 

forecast RMSE for the RW model (i.e., the average RMSE of the RW model equals 1.2287). 

First, we consider the best performing model, ignoring the combination forecast, based on the 

average RMSE across the one-, two-, …, and twelve-month-ahead forecasts. Three different 

specifications prove the best of our models across the eight employment series. One, the 

BFAVEC models with w=0.1782 and d=2 prove best for mining and logging; manufacturing; 

financial activities; leisure and hospitality; and other service employment. Two, the LBVAR 

models with w=0.0230 and d=2 prove best for construction; and professional and business 

services, and come in a close second to the BFAAR models with w= 0.4672 and d=2, which 

                                                 

19
 Note that if t nA   denotes the actual value of a specific variable in period t + n and t t nF   equals the forecast made 

in period t for t + n, the RMSE statistic equals the following:  
2

1

N

t t n t n
t

F A N 


   
 where N equals the number 

of forecasts.  
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proves best for forecasting trade, transportation, and utilities employment. Also, note that in 

general, large-scale models outperform the medium-scale models, thus vindicating our decision 

to use 143 predictors in forecasting sectoral employment. These results appear as the bold 

numbers in the Average column in Tables 1 to 8.  

The forecasting results for the one-, two-, …, and twelve-month-ahead forecasts 

generally follow a similar pattern. The best performing individual models in forecasting the 

average across the 12-month horizon also produces the best performance for each individual 

month‟s forecast for five employment series – mining and logging; manufacturing; professional 

and business services; leisure and hospitality; and other services. For the remaining employment 

series, construction sees one additional individual model and in trade, transportation and utilities 

and financial activities see two additional individual models show the best performance on a 

month-by-month basis along with the model that proves best at forecasting the average across the 

entire 12-month forecasting horizon.
20

 

Tables 1 to 8 report in their last row the findings for the combination forecasts. The 

average forecast performs the best for five employment sectors – mining and logging, 

manufacturing, financial activities, professional and business services, and leisure and 

                                                 
20

 As a robustness check, we estimate the BFAAR, BFAVAR, and LBVAR models using the first-differenced 

employment series (which, in our case, amounts to forecasting growth rates of employment, since the employment 

series are in logarithms). We then recover the (log-)level forecasts of the data using the actual observation of the 

period before the starting point of the recursive out-of-sample forecast period. We observe that the forecast 

performance of the BFAAR model (for the log-level of employment) improves in seven out of the eight cases (the 

manufacturing forecasts worsen). For the BFAVAR model, forecast performances improve for construction; trade, 

transportation, and utilities; and professional and business services. For the LBVAR model, the improvements only 

occur for professional and business services; and leisure and hospitality. As with the Bayesian models for forecasting 

the levels of employment, we forecast the first-differences (growth rates) of employment with the tightness of the 

prior based on an in-sample fit of 50 percent. Importantly, however, our general conclusions do not change. In other 

words, the improved performances of these models do not make them the preferred models for cases where they 

were non-optimal. One exception does occur. To wit, now the BFAAR model does the best at the margin for 

construction employment instead of the LBVAR model. This result highlights the importance of modeling the long-

run relationships over and above differencing the data (which is also done for the BFAVECM before recovering the 

log-level forecasts) to provide more robust results in the presence of structural breaks (Carriero et al., 2011). The 

details of these results are available upon request from the authors. 
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hospitality. When the combination forecast performs the best in forecasting the average across 

the 12-monthly forecasting horizons, it also performs the best in every month, except for 

manufacturing employment. 

Table 9 also tests whether the difference in forecasting performance proves significant 

relative to the RW forecasts, using the Giacomini and White (2006) statistic. As indicated by 

Carriero et al., (2009), this test of equal forecasting accuracy can handle forecasts based on both 

nested and non-nested models, and also irrespective of the estimation procedures (classical or 

Bayesian) used for the derivation of the forecasts. The combination forecasts provide 

significantly better forecasts at the 1-percent level at all monthly horizon as well as the average 

for five employment series – mining and logging; construction; financial activities; professional 

and business services; and leisure and hospitality. The BFAAR and BFAVEC models provide 

significantly better forecasts than the combination forecasts for trade, transportation, and 

utilities; and other services employment. Finally, the combination forecast provides better 

forecasts than the BFAVEC for manufacturing employment except at months 9 and 10 where 

there is no significant difference.  

In sum, a few different specifications yield the best forecast performance based on 

RMSEs for different employment series and at different forecast horizons. One common pattern 

does emerge, nevertheless. No matter the forecast horizon, models that include additional 

information, generally the set of 143 additional variables, perform the best. 

5.2.2 Comparing One- to Twelve-Month-Ahead Ex-Ante Forecasts with the Actual Series 

Figure 1 plots the ex-ante out-of-sample forecasts and actual values from April 2009 through 

March 2010, using the best forecasting model for each employment series (see Table 9 for 
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models). We used the average RMSEs reported in Tables 1 to 8 to select the best models.
21

 Note 

that since the BFAVEC performs the best in five of the eight employment series, we plot the ex-

ante forecasts from this model, even for the cases where the LBVAR and BFAAR models prove 

best. In addition, we also plot the combination forecasts obtained based on the average forecasts 

from the 14 different (including the RW) models estimated.  

The forecast period captures the preliminary turn around in employment for all series 

except financial activities in our sample. The worst forecast performance occurs in mining and 

logging employment, where the actual employment series bottomed in October 2009 while the 

forecast series (BFAVEC and Combination) continue on a downward trends throughout the 

forecast period. Note that the Combination forecast lies everywhere above the BFAVEC forecast 

series and the Combination forecast tracks the actual series well until the actual series begins its 

recovery. 

The best forecast performance occurs for construction and professional and business 

services employment, where the actual and forecast series (BFAVEC and Combination) track 

each other closely. Note that the BVAR forecasts for construction and professional and business 

services employment perform poorly, where the forecast errors increase at an increasing rate as 

time goes forward. The forecast series for manufacturing, financial activities, and leisure and 

hospitality employment each show a turnaround in employment or slowdown in its decline over 

this period. But the forecast values for the BFAVEC models recover too rapidly as compared to 

the actual series. The Combination forecasts do a much better job of tracking the actual series. 

The forecasts for trade, transportation, and utilities show a good performance for the BFAVEC 

                                                 
21

 In addition to the ex-ante out-of-sample forecasting exercise over 2009:4 to 2010:3, we also analyze the in-sample 

(1972:1-1989:12) and ex-post out-of-sample (1990:1-2009:3) forecasts obtained from the best models for each of the 

eight employment series. The differences between the actual data and the predicted data for the in-sample are 

virtually inseparable, while the ex-post out-of-sample forecasts from the best models tend to predict the turning 

points quite well. We suppress these results to save space, but are available upon request from the authors.  
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model, while the combination forecast does poorly, trending down and away from the actual 

series. The BFAAR forecasts perform better than the combination forecasts. For the remaining 

series – other services employment, the actual series show a more rapid turnaround over this 

period than the forecast values. Note that the Combination forecast series performs the worst in 

this case when compared across all eight employment categories. 

6. Conclusion 

We forecast employment in eight sectors, using the AR, VAR, VEC, and their Bayesian 

counterparts, both with and without the information content of 20 or 143 additional monthly 

economic series. We examine two approaches for incorporating information from a large number 

of data series – extracting common factors (principal components) in a FAVAR, FAVEC, and 

their Bayesian counterparts or Bayesian shrinkage in MBVAR and LBVAR models. Finally, we 

consider combination forecasts that take the simple average of the forecasts from the individual 

models. 

Using the period of 1972:1 to 1989:12 as the in-sample period and 1990:1 to 2009:3 as 

the ex-post out-of-sample horizon, we first compare the forecast performance of the alternative 

individual models and second combination forecasts for one- to twelve-month-ahead forecasts. 

Based on the average root mean squared error (RMSE) for the one-, two-, …, and twelve–month-

ahead forecasts, we find that the factor-augmented models generally outperform the small- and 

large-scale VAR models for the eight employment series examined. LBVAR models only 

provide the best forecasting performance for two employment series – construction employment 

and professional and business services employment. In addition, amongst the factor augmented 

models, the BFAVEC models generally perform the best, highlighting the importance of 

modeling the long-run equilibrium relationship over and above the short-run dynamics. We note, 
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however, the well-known sensitivity of the results of Bayesian models to the choice of the 

hyperparameters of the priors. Thus, we need to devise an “optimal” way of choosing the values 

of the hyperparameters to obtain appropriate shrinkage. Given this, we follow Banbura, 

Giannone, and Reichlin (2010) and set the hyperparameter that defines overall shrinkage to 

obtain a desired average fit for the eight employment variables of interest in the in-sample period 

for the models that incorporate more than just the employment series. Finally, when we compare 

the combination forecasts with the individual forecasts, the combination forecasts perform the 

best, except for manufacturing; trade, transportation, and utilities; and other services 

employment. 

We also compare the ex-ante out-of-sample forecast and actual values of the employment 

series over April 2009 through March 2010 when all employment series, save one, show 

preliminary evidence of bottoming and starting to increase. The Combination forecasts generally 

perform the best. The LBVAR forecasts perform the worst. The BFAVEC models perform well 

in some cases and poorly in others. The worst performing model forecasts mining and logging 

employment while the best performing model forecasts construction; trade, transportation, and 

utilities; and professional and business services employment. 

In sum, the utilization of a large dataset of economic variables, as well as long-run 

relationship with the short-run dynamics, improve the forecasting performance over models that 

do not use this data. In other words, macroeconomic fundamentals do matter when forecasting 

the eight employment series. 
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Table 1:  One- to twelve-months-ahead forecast for Mining & Logging Employment (1990:1-2009:3) 
  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.2637 0.4537 0.6375 0.8158 0.9890 1.1574 1.3211 1.4846 1.6516 1.8209 1.9892 2.1596 1.2287 

  VAR 3.7004 4.0382 3.9870 4.1106 4.1408 4.2559 4.3870 4.5101 4.6408 4.8198 4.9835 5.1304 4.3920 

w=0.5710, d=2 MBFAAR 2.1718 2.1865 2.1941 2.2017 2.1829 2.1850 2.1908 2.2054 2.2189 2.2340 2.2464 2.2567 2.2062 

w=0.2015, d=2 MBFAVAR 4.1099 4.5596 4.6427 4.7188 4.7073 4.7703 4.8822 4.9955 5.1010 5.2089 5.2952 5.3789 4.8642 

w=0.2138, d=2 MBFAVEC 2.9057 2.7896 2.7131 2.6514 2.5932 2.5464 2.5050 2.4731 2.4492 2.4309 2.4130 2.3971 2.5723 

w=0.0681, d=2 MBVAR 1.0768 1.2034 1.2622 1.4904 1.8771 2.0345 2.6463 3.5414 4.8303 6.7084 9.4408 13.2408 4.1127 

w=1.8250, d=2 BAR 0.9732 0.9879 0.9902 0.9883 0.9726 0.9692 0.9723 0.9806 0.9892 0.9979 1.0038 1.0071 0.9860 

w=0.2336, d=2 BVAR 1.3440 1.4630 1.5297 1.5742 1.6090 1.6385 1.6677 1.6931 1.7141 1.7350 1.7550 1.7744 1.6248 

w=0.4672, d=2 BFAAR 0.9722 0.9378 0.9110 0.8708 0.8534 0.8448 0.8360 0.8273 0.8188 0.8106 0.8045 0.8017 0.8574 

w=0.1699, d=2 BFAVAR 1.3228 1.4151 1.4749 1.5265 1.5713 1.6022 1.6336 1.6593 1.6795 1.6996 1.7192 1.7390 1.5869 

w=0.4755, d=2 BVEC 1.5758 1.7180 1.7898 1.8152 1.8213 1.8214 1.8169 1.8099 1.8003 1.7910 1.7831 1.7753 1.7765 

w=0.1782, d=2 BFAVEC 0.1852 0.1865 0.1921 0.2034 0.2193 0.2360 0.2523 0.2699 0.2538 0.2417 0.2330 0.2272 0.2250 

w=0.0230, d=2 LBVAR 0.8531 0.8323 0.8547 0.8804 0.9249 0.9852 1.0304 1.0720 1.1013 1.1197 1.1232 1.1314 0.9924 

  Combination 0.1606 0.1610 0.1626 0.1661 0.1716 0.1772 0.1836 0.1913 0.1873 0.1858 0.1861 0.1890 0.1769 

Note: RW, AR, VAR, FAAR, FAVAR, VEC, and FAVEC refer to random walk, autoregressive, vector autoregressive, factor-augmented vector autoregressive, factor-augmented vector 
autoregressive, vector error-correction, and factor-augmented error-correction models. BAR, BVAR, BFAAR, BFAVAR, BVEC, and BFAVEC refer to Bayesian AR, VAR, FAAR, 

FAVAR, VEC, and FAVEC models. MBFAAR, MBFAVAR, MBFAVEC, and MBVAR refer to medium-scale BFAAR, BFAVAR, BFAVEC, and BVAR models. Finally, LBVAR 

refers to a large-scale VAR model. The text identifies various priors and parameterizations. RMSE means root mean square error, which is reported in the RW row. For the other rows, 

the entries measure the average RMSE across all forecasts at each horizon – one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual 

forecasts relative to the RMSE of the benchmark RW model. Bold numbers represent the minimum value in each column for the individual models only. The bold and italic numbers 

refer to the minimum value in each column, including the combination forecast. 
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Table 2: One-to Twelve-months-ahead forecast for Construction Employment (1990:1-2009:3) 

  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.2806 0.4826 0.6856 0.8811 1.0762 1.2610 1.4420 1.6193 1.7944 1.9654 2.1309 2.2935 1.3260 

  VAR 1.2265 1.1850 1.2043 1.2825 1.3994 1.5316 1.6489 1.7582 1.8682 1.9590 2.0251 2.0771 1.5972 

w=0.5710, d=2 MBFAAR 1.9245 1.8388 1.8234 1.8307 1.8559 1.8758 1.8955 1.9151 1.9369 1.9568 1.9748 1.9942 1.9018 

w=0.2015, d=2 MBFAVAR 2.2845 2.2715 2.2821 2.3426 2.4349 2.5420 2.6366 2.7277 2.8265 2.9132 2.9780 3.0336 2.6061 

w=0.2138, d=2 MBFAVEC 2.1310 2.1783 2.2359 2.2293 2.2142 2.2000 2.1829 2.1641 2.1495 2.1364 2.1188 2.1027 2.1702 

w=0.0681, d=2 MBVAR 0.7559 0.7274 0.7852 0.9051 1.1437 0.8409 0.9101 1.0298 1.1997 1.4500 1.7925 1.7035 1.1037 

w=1.8250, d=2 BAR 0.7533 0.6596 0.6389 0.6409 0.6600 0.6766 0.6947 0.7130 0.7331 0.7523 0.7708 0.7901 0.7069 

w=0.2336, d=2 BVAR 0.7461 0.6591 0.6420 0.6506 0.6773 0.7056 0.7349 0.7622 0.7891 0.8182 0.8442 0.8669 0.7413 

w=0.4672, d=2 BFAAR 0.7320 0.6352 0.6115 0.6139 0.6312 0.6458 0.6696 0.6903 0.7134 0.7353 0.7536 0.7688 0.6834 

w=0.1699, d=2 BFAVAR 0.7333 0.6427 0.6223 0.6328 0.6624 0.6912 0.7225 0.7498 0.7767 0.8054 0.8313 0.8541 0.7270 

w=0.4755, d=2 BVEC 0.9354 0.9406 1.0019 1.0487 1.0871 1.1045 1.1099 1.1063 1.1039 1.0996 1.0894 1.0817 1.0591 

w=0.1782, d=2 BFAVEC 0.5821 0.6190 0.6034 0.5818 0.6056 0.6289 0.6501 0.6689 0.6874 0.7026 0.7145 0.7227 0.6473 

w=0.0230, d=2 LBVAR 0.6843 0.5665 0.5361 0.5375 0.5630 0.5933 0.6214 0.6531 0.6841 0.7116 0.7328 0.7610 0.6371 

  Combination 0.1119 0.1070 0.1056 0.1057 0.1068 0.1081 0.1094 0.1109 0.1129 0.1148 0.1174 0.1234 0.1111 

Note: See Table 1. RMSE means root mean square error, which is reported in the RW row. For the other rows, the entries measure the average RMSE across all forecasts at each horizon – 

one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts relative to the RMSE of the benchmark RW model.. Bold numbers 

represent the minimum value in each column for the individual models only. The bold and italic numbers refer to the minimum value in each column, including the combination 

forecast. 
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Table 3: One-to Twelve-months-ahead forecast for Manufacturing Employment (1990:1-2009:3) 

  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.1451 0.2680 0.3906 0.5027 0.6091 0.7116 0.8084 0.9028 0.9942 1.0831 1.1714 1.2590 0.7372 

  VAR 1.0242 1.1526 1.3530 1.5924 1.8180 2.0323 2.2204 2.3976 2.5559 2.6869 2.7974 2.8891 2.0433 

w=0.5710, d=2 MBFAAR 1.7659 1.7286 1.7644 1.8185 1.8749 1.9317 1.9761 2.0185 2.0548 2.0845 2.1144 2.1465 1.9399 

w=0.2015, d=2 MBFAVAR 1.9282 1.9997 2.1225 2.2754 2.4242 2.5571 2.6700 2.7708 2.8565 2.9294 3.0009 3.0734 2.5506 

w=0.2138, d=2 MBFAVEC 1.8267 1.8965 1.9899 2.0335 2.0542 2.0635 2.0631 2.0609 2.0584 2.0562 2.0515 2.0477 2.0168 

w=0.0681, d=2 MBVAR 0.5956 0.5445 0.5902 0.7251 0.9624 0.6842 0.7444 0.8145 0.8965 1.0294 1.2555 1.5189 0.8634 

w=1.8250, d=2 BAR 0.6859 0.6579 0.7035 0.7706 0.8381 0.9048 0.9583 1.0087 1.0519 1.0872 1.1207 1.1555 0.9119 

w=0.2336, d=2 BVAR 0.6164 0.5616 0.5815 0.6259 0.6764 0.7223 0.7587 0.7932 0.8226 0.8481 0.8717 0.8941 0.7310 

w=0.4672, d=2 BFAAR 0.6373 0.5791 0.5942 0.6274 0.6564 0.6947 0.7386 0.7803 0.8194 0.8527 0.8774 0.8991 0.7297 

w=0.1699, d=2 BFAVAR 0.5984 0.5417 0.5613 0.6026 0.6489 0.6891 0.7298 0.7652 0.7958 0.8218 0.8458 0.8680 0.7057 

w=0.4755, d=2 BVEC 0.7173 0.7894 0.8829 0.9230 0.9477 0.9595 0.9591 0.9603 0.9581 0.9525 0.9445 0.9383 0.9110 

w=0.1782, d=2 BFAVEC 0.3033 0.3070 0.2788 0.2662 0.2581 0.2505 0.2463 0.2437 0.2420 0.2404 0.2415 0.2427 0.2600 

w=0.0230, d=2 LBVAR 0.4883 0.4076 0.4000 0.4396 0.4903 0.5372 0.5711 0.5957 0.6171 0.6204 0.6137 0.6187 0.5333 

  Combination 0.2428 0.2447 0.2300 0.2251 0.2264 0.2313 0.2424 0.2640 0.2980 0.3584 0.4423 0.5588 0.2970 

Note: See Table 1. RMSE means root mean square error, which is reported in the RW row. For the other rows, the entries measure the average RMSE across all forecasts at each horizon – 

one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts relative to the RMSE of the benchmark RW model.. Bold numbers 

represent the minimum value in each column for the individual models only. The bold and italic numbers refer to the minimum value in each column, including the combination 

forecast. 

 



 36 

 

Table 4: One-to Twelve-months-ahead forecast for Trade, Transport. & Utilities Employment (1990:1-2009:3) 

  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.0964 0.1720 0.2488 0.3248 0.3983 0.4683 0.5368 0.6029 0.6682 0.7324 0.7954 0.8566 0.4917 

  VAR 1.0339 0.9817 0.9906 1.0421 1.1235 1.2288 1.3329 1.4258 1.5168 1.5983 1.6587 1.7066 1.3033 

w=0.5710, d=2 MBFAAR 1.8586 1.7689 1.7612 1.7775 1.8005 1.8172 1.8346 1.8475 1.8645 1.8815 1.8990 1.9158 1.8355 

w=0.2015, d=2 MBFAVAR 2.0514 1.9921 1.9925 2.0244 2.0775 2.1461 2.2179 2.2775 2.3382 2.3929 2.4396 2.4825 2.2027 

w=0.2138, d=2 MBFAVEC 1.9979 2.0404 2.1019 2.1462 2.1737 2.1933 2.2090 2.2212 2.2306 2.2369 2.2406 2.2417 2.1694 

w=0.0681, d=2 MBVAR 0.6998 0.6776 0.7218 0.8273 0.9922 0.8105 0.8530 0.9616 1.1170 1.3431 1.6079 1.2205 0.9860 

w=1.8250, d=2 BAR 0.7119 0.6198 0.6109 0.6268 0.6487 0.6655 0.6834 0.6967 0.7139 0.7313 0.7489 0.7650 0.6852 

w=0.2336, d=2 BVAR 0.7010 0.6212 0.6158 0.6334 0.6562 0.6791 0.7033 0.7239 0.7468 0.7699 0.7908 0.8090 0.7042 

w=0.4672, d=2 BFAAR 0.6598 0.5545 0.5386 0.5566 0.5739 0.5889 0.6161 0.6373 0.6624 0.6849 0.7034 0.7197 0.6247 

w=0.1699, d=2 BFAVAR 0.6840 0.5950 0.5809 0.5995 0.6248 0.6476 0.6763 0.7003 0.7274 0.7542 0.7781 0.7992 0.6806 

w=0.4755, d=2 BVEC 0.8110 0.8225 0.8948 0.9458 0.9761 1.0011 1.0205 1.0324 1.0425 1.0485 1.0494 1.0473 0.9743 

w=0.1782, d=2 BFAVEC 0.6755 0.7334 0.7304 0.7222 0.7080 0.6945 0.6849 0.6791 0.6716 0.6651 0.6610 0.6590 0.6904 

w=0.0230, d=2 LBVAR 0.6522 0.5533 0.5343 0.5397 0.5633 0.5884 0.6153 0.6386 0.6690 0.6957 0.7175 0.7427 0.6258 

  Combination 1.4551 1.2362 1.2045 1.2474 1.2873 1.3296 1.3978 1.4458 1.5116 1.5695 1.6287 1.6705 1.4153 

Note: See Table 1. RMSE means root mean square error, which is reported in the RW row. For the other rows, the entries measure the average RMSE across all forecasts at each horizon – 

one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts relative to the RMSE of the benchmark RW model.. Bold numbers 

represent the minimum value in each column for the individual models only. The bold and italic numbers refer to the minimum value in each column, including the combination 

forecast. 
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Table 5: One- to Twelve-months-ahead forecast for Financial Activities Employment (1990:1-2009:3) 

  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.0863 0.1625 0.2367 0.3086 0.3795 0.4483 0.5148 0.5793 0.6428 0.7047 0.7651 0.8241 0.4711 

  VAR 0.7615 0.7362 0.7624 0.8210 0.8830 0.9627 1.0351 1.1120 1.1940 1.2782 1.3578 1.4410 1.0288 

w=0.5710, d=2 MBFAAR 1.7268 1.6912 1.6976 1.7278 1.7604 1.7980 1.8314 1.8609 1.8886 1.9151 1.9377 1.9583 1.8162 

w=0.2015, d=2 MBFAVAR 1.8452 1.8279 1.8584 1.9144 1.9704 2.0392 2.1042 2.1764 2.2550 2.3372 2.4171 2.5001 2.1038 

w=0.2138, d=2 MBFAVEC 1.8229 1.8773 1.9488 1.9857 2.0014 2.0085 2.0077 2.0048 2.0017 1.9981 1.9945 1.9910 1.9702 

w=0.0681, d=2 MBVAR 0.6762 0.6783 0.7182 0.7746 0.8586 0.9092 1.0146 1.1552 1.3627 1.6765 2.1426 2.8492 1.2347 

w=1.8250, d=2 BAR 0.5950 0.5560 0.5609 0.5862 0.6162 0.6492 0.6777 0.7017 0.7247 0.7449 0.7612 0.7752 0.6624 

w=0.2336, d=2 BVAR 0.6352 0.6169 0.6429 0.6905 0.7430 0.7989 0.8533 0.9056 0.9587 1.0106 1.0598 1.1064 0.8351 

w=0.4672, d=2 BFAAR 0.6025 0.5636 0.5679 0.5892 0.6153 0.6460 0.6737 0.6960 0.7199 0.7423 0.7610 0.7761 0.6628 

w=0.1699, d=2 BFAVAR 0.6353 0.6161 0.6416 0.6880 0.7394 0.7945 0.8486 0.9001 0.9527 1.0043 1.0532 1.0995 0.8311 

w=0.4755, d=2 BVEC 0.6633 0.7249 0.8144 0.8583 0.8820 0.8946 0.8997 0.9009 0.9018 0.9015 0.9003 0.8995 0.8534 

w=0.1782, d=2 BFAVEC 0.6495 0.6197 0.6245 0.6214 0.6291 0.6353 0.6332 0.6312 0.6322 0.6317 0.6300 0.6270 0.6304 

w=0.0230, d=2 LBVAR 0.6424 0.6308 0.6515 0.6821 0.7218 0.7682 0.8146 0.8534 0.8871 0.9193 0.9517 0.9889 0.7927 

  Combination 0.1502 0.1465 0.1455 0.1417 0.1392 0.1357 0.1345 0.1329 0.1366 0.1419 0.1494 0.1650 0.1433 

Note: See Table 1. RMSE means root mean square error, which is reported in the RW row. For the other rows, the entries measure the average RMSE across all forecasts at each horizon – 

one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts relative to the RMSE of the benchmark RW model.. Bold numbers 

represent the minimum value in each column for the individual models only. The bold and italic numbers refer to the minimum value in each column, including the combination 

forecast. 
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Table 6: One-to Twelve-months-ahead forecast for Profession & Business Services Employment (1990:1-2009:3) 

  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.1505 0.2769 0.4011 0.5244 0.6458 0.7657 0.8844 1.0012 1.1167 1.2313 1.3439 1.4554 0.8164 

  VAR 0.7868 0.7398 0.7656 0.8175 0.8657 0.9266 0.9902 1.0477 1.0982 1.1398 1.1696 1.1877 0.9613 

w=0.5710, d=2 MBFAAR 1.7274 1.6638 1.6548 1.6631 1.6742 1.6936 1.7150 1.7317 1.7486 1.7658 1.7800 1.7937 1.7176 

w=0.2015, d=2 MBFAVAR 1.8122 1.7570 1.7622 1.7902 1.8190 1.8568 1.8975 1.9357 1.9705 1.9989 2.0200 2.0355 1.8880 

w=0.2138, d=2 MBFAVEC 1.9212 1.9257 1.9662 1.9904 2.0029 2.0103 2.0148 2.0159 2.0179 2.0184 2.0175 2.0151 1.9930 

w=0.0681, d=2 MBVAR 0.6046 0.5853 0.6130 0.6641 0.7556 0.6667 0.7200 0.8205 0.9702 1.1928 1.4964 1.7014 0.8992 

w=1.8250, d=2 BAR 0.6503 0.5886 0.5811 0.5924 0.6071 0.6308 0.6560 0.6758 0.6957 0.7156 0.7324 0.7482 0.6562 

w=0.2336, d=2 BVAR 0.6613 0.6104 0.6100 0.6280 0.6490 0.6757 0.7023 0.7246 0.7468 0.7685 0.7883 0.8060 0.6976 

w=0.4672, d=2 BFAAR 0.6413 0.5739 0.5652 0.5784 0.5913 0.6111 0.6355 0.6556 0.6771 0.6974 0.7129 0.7264 0.6388 

w=0.1699, d=2 BFAVAR 0.6586 0.6038 0.6020 0.6208 0.6422 0.6686 0.6964 0.7191 0.7419 0.7640 0.7840 0.8022 0.6920 

w=0.4755, d=2 BVEC 0.7551 0.7579 0.8014 0.8313 0.8525 0.8705 0.8840 0.8922 0.8974 0.9007 0.9011 0.9000 0.8537 

w=0.1782, d=2 BFAVEC 0.6755 0.7334 0.7304 0.7222 0.7080 0.6945 0.6849 0.6791 0.6715 0.6651 0.6610 0.6590 0.6904 

w=0.0230, d=2 LBVAR 0.5409 0.4670 0.4528 0.4544 0.4665 0.4919 0.5178 0.5389 0.5634 0.5850 0.6072 0.6306 0.5264 

 Combination 0.1766 0.1638 0.1614 0.1617 0.1639 0.1684 0.173 0.1767 0.18 0.1823 0.1842 0.1845 0.1730 

Note: See Table 1. RMSE means root mean square error, which is reported in the RW row. For the other rows, the entries measure the average RMSE across all forecasts at each horizon – 

one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts relative to the RMSE of the benchmark RW model.. Bold numbers 

represent the minimum value in each column for the individual models only. The bold and italic numbers refer to the minimum value in each column, including the combination 
forecast. 
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Table 7: One- to Twelve-months-ahead forecast for Leisure & Hospitality Employment (1990;1-2009:3) 

  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.1115 0.1763 0.2357 0.2954 0.3535 0.4048 0.4531 0.4994 0.5450 0.5892 0.6295 0.6698 0.4136 

  VAR 1.5839 1.7317 1.7335 1.6661 1.6182 1.6311 1.6621 1.7261 1.7963 1.8488 1.8845 1.9015 1.7320 

w=0.5710, d=2 MBFAAR 2.1043 2.0302 1.9789 1.9556 1.9335 1.9073 1.8726 1.8383 1.8099 1.7910 1.7762 1.7627 1.8967 

w=0.2015, d=2 MBFAVAR 2.4146 2.4549 2.4028 2.3121 2.2369 2.1922 2.1541 2.1349 2.1240 2.1158 2.1102 2.1073 2.2300 

w=0.2138, d=2 MBFAVEC 2.2764 2.1699 2.1689 2.1735 2.1805 2.1904 2.2024 2.2086 2.2146 2.2166 2.2237 2.2233 2.2041 

w=0.0681, d=2 MBVAR 0.8287 0.7995 0.8180 0.8601 0.9592 0.7645 0.8000 0.9404 1.1668 1.5000 1.9407 2.1555 1.1278 

w=1.8250, d=2 BAR 0.9499 0.9237 0.9086 0.9162 0.9329 0.9429 0.9457 0.9448 0.9447 0.9453 0.9464 0.9478 0.9374 

w=0.2336, d=2 BVAR 0.9331 0.8938 0.8681 0.8508 0.8408 0.8388 0.8423 0.8447 0.8586 0.8704 0.8881 0.9020 0.8693 

w=0.4672, d=2 BFAAR 0.9163 0.8665 0.8310 0.8178 0.8156 0.8107 0.8140 0.8137 0.8225 0.8350 0.8426 0.8471 0.8361 

w=0.1699, d=2 BFAVAR 0.9381 0.8988 0.8704 0.8516 0.8411 0.8356 0.8378 0.8383 0.8515 0.8638 0.8814 0.8950 0.8669 

w=0.4755, d=2 BVEC 1.1082 1.0674 1.0986 1.0925 1.1020 1.1235 1.1408 1.1479 1.1551 1.1590 1.1675 1.1671 1.1275 

w=0.1782, d=2 BFAVEC 0.1827 0.1950 0.2052 0.2244 0.2094 0.2013 0.1982 0.1982 0.2017 0.2074 0.2141 0.2180 0.2046 

w=0.0230, d=2 LBVAR 0.8288 0.7583 0.7171 0.7036 0.7027 0.6904 0.6847 0.6839 0.6891 0.6987 0.7036 0.7119 0.7144 

  Combination 0.1510 0.1556 0.1593 0.1666 0.1611 0.1587 0.1574 0.1598 0.1651 0.1760 0.1906 0.2066 0.1673 

Note: See Table 1. RMSE means root mean square error, which is reported in the RW row. For the other rows, the entries measure the average RMSE across all forecasts at each horizon – 

one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts relative to the RMSE of the benchmark RW model.. Bold numbers 

represent the minimum value in each column for the individual models only. The bold and italic numbers refer to the minimum value in each column, including the combination 

forecast. 
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Table 8: One-to Twelve-months-ahead forecast for Other Services Employment (1990:1-2009:3)  

  Models 1 2 3 4 5 6 7 8 9 10 11 12 Average  

  RW 0.0869 0.1561 0.2236 0.2907 0.3544 0.4150 0.4761 0.5364 0.5956 0.6544 0.7115 0.7671 0.4390 

  VAR 1.1039 1.0204 1.0366 1.1111 1.1882 1.2731 1.3637 1.4380 1.5027 1.5643 1.6178 1.6517 1.3226 

w=0.5710, d=2 MBFAAR 1.8733 1.8294 1.8298 1.8535 1.8729 1.8876 1.9064 1.9216 1.9359 1.9530 1.9676 1.9783 1.9008 

w=0.2015, d=2 MBFAVAR 2.0686 2.0196 2.0250 2.0788 2.1306 2.1840 2.2432 2.2899 2.3325 2.3760 2.4153 2.4435 2.2173 

w=0.2138, d=2 MBFAVEC 2.1388 2.1711 2.2227 2.2646 2.2956 2.3205 2.3428 2.3629 2.3833 2.4031 2.4195 2.4335 2.3132 

w=0.0681, d=2 MBVAR 0.8042 0.8313 0.8547 0.9135 1.0111 1.0305 1.1945 1.4416 1.8039 2.3444 3.1238 4.1857 1.6283 

w=1.8250, d=2 BAR 0.7704 0.7310 0.7296 0.7502 0.7680 0.7793 0.7961 0.8113 0.8257 0.8425 0.8558 0.8653 0.7938 

w=0.2336, d=2 BVAR 0.7803 0.7484 0.7508 0.7673 0.7851 0.7996 0.8175 0.8321 0.8446 0.8582 0.8706 0.8796 0.8112 

w=0.4672, d=2 BFAAR 0.7897 0.7533 0.7527 0.7682 0.7765 0.7779 0.7945 0.8096 0.8258 0.8428 0.8554 0.8636 0.8008 

w=0.1699, d=2 BFAVAR 0.7841 0.7500 0.7510 0.7668 0.7828 0.7938 0.8114 0.8253 0.8379 0.8513 0.8631 0.8714 0.8074 

w=0.4755, d=2 BVEC 0.9262 0.9530 1.0124 1.0653 1.1114 1.1572 1.2000 1.2370 1.2711 1.3008 1.3244 1.3425 1.1584 

w=0.1782, d=2 BFAVEC 0.3675 0.3531 0.3390 0.3298 0.3226 0.3306 0.3382 0.3451 0.3523 0.3587 0.3649 0.3698 0.3476 

w=0.0230, d=2 LBVAR 0.7414 0.7237 0.7380 0.7541 0.7877 0.8130 0.8480 0.8822 0.9176 0.9533 0.9824 1.0070 0.8457 

  Combination 0.7871 0.7758 0.7647 0.7737 0.7909 0.8445 0.9011 0.9374 0.9728 0.9982 1.0419 1.0387 0.8856 

Note: See Table 1. RMSE means root mean square error, which is reported in the RW row. For the other rows, the entries measure the average RMSE across all forecasts at each horizon – 

one-, two-, …, and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts relative to the RMSE of the benchmark RW model.. Bold numbers 

represent the minimum value in each column for the individual models only. The bold and italic numbers refer to the minimum value in each column, including the combination 

forecast. 
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Table 9: Giacomini and White (2006) Test of Differences between Best, Combination, and Random-Walk Models 
  Models 1 2 3 4 5 6 7 8 9 10 11 12 

Mining & 

Logging  

BFAVEC vs RW -81.48* -81.35* -80.79* -79.66* -78.07* -76.40* -74.77* -73.01* -74.62* -75.83* -76.70* -77.28* 

Combination vs RW -92.25* -92.21* -92.05* -91.70* -91.15* -90.59* -89.95* -89.18* -89.58* -89.73* -89.70* -89.41* 

Combination vs BFAVEC -58.16* -58.21* -58.59* -59.22* -59.66* -60.11* -60.15* -59.90* -58.95* -57.52* -55.80* -53.37* 

Construction 

LBVAR vs RW -31.57
+
 -43.35** -46.39** -46.25** -43.70** -40.67** -37.86** -34.69

+
 -31.59

+
 -28.84

+
 -26.72

+
 -23.90

+
 

Combination vs RW -97.12* -97.61* -97.75* -97.74* -97.63* -97.50* -97.37* -97.22* -97.02* -96.83* -96.57* -95.97* 

Combination vs LBVAR -95.79* -95.79* -95.80* -95.80* -95.79* -95.78* -95.78* -95.74* -95.65* -95.54* -95.31* -94.71* 

Manufact-

uring  

BFAVEC vs RW -69.67* -69.30* -72.12* -73.38* -74.19* -74.95* -75.37* -75.63* -75.80* -75.96* -75.85* -75.73* 

Combination vs RW -84.03* -83.84* -85.31* -85.80* -85.67* -85.18* -84.07* -81.91* -78.51* -72.47* -64.08* -52.43* 

Combination vs BFAVEC -47.35** -47.34** -47.30** -46.64** -44.48** -40.83** -35.34** -25.76
+
 -11.16 14.53 48.76** 96.04* 

Trade, 

Transport. & 

Utilities  

BFAAR vs RW -34.02
+
 -44.55** -46.14** -44.34** -42.61** -41.11** -38.39** -36.27** -33.76

+
 -31.51

+
 -29.66

+
 -28.03

+
 

Combination vs RW 37.20** 15.31 12.14 16.43 20.42
+
 24.65

+
 31.47

+
 36.27** 42.85** 48.64** 54.56* 58.74* 

Combination vs BFAAR 107.94* 107.94* 108.20* 109.18* 109.83* 111.68* 113.40* 113.84* 115.66* 117.02* 119.72* 120.56* 

Financial 

Activities  

BFAVEC vs RW -35.05** -38.03** -37.55** -37.86** -37.09** -36.47** -36.68** -36.88** -36.78** -36.83** -37.00** -37.30** 

Combination vs RW -93.29* -93.66* -93.76* -94.14* -94.39* -94.74* -94.86* -95.02* -94.65* -94.12* -93.37* -91.81* 

Combination vs BFAVEC -89.67* -89.77* -90.01* -90.58* -91.08* -91.72* -91.88* -92.11* -91.53* -90.70* -89.47* -86.93* 

Professional 

& Business 

Services  

LBVAR vs RW -45.91** -53.30* -54.72* -54.56* -53.35* -50.81* -48.22** -46.12** -43.66** -41.50** -39.28** -36.94** 

Combination vs RW -90.65* -91.93* -92.17* -92.14* -91.92* -91.47* -91.01* -90.64* -90.31* -90.08* -89.89* -89.86* 

Combination vs LBVAR -82.71* -82.72* -82.71* -82.71* -82.69* -82.67* -82.64* -82.63* -82.81* -83.05* -83.35* -83.91* 

 Leisure & 

Hospitality  

BFAVEC vs RW -81.73* -80.50* -79.48* -77.56* -79.06* -79.87* -80.18* -80.18* -79.83* -79.26* -78.59* -78.20* 

Combination vs RW -93.21* -92.75* -92.38* -91.65* -92.20* -92.44* -92.57* -92.33* -91.80* -90.71* -89.25* -87.65* 

Combination vs BFAVEC -62.85* -62.83* -62.87* -62.82* -62.75* -62.42* -62.50* -61.33* -59.31* -55.22* -49.80* -43.35** 

Other 

Services  

BFAVEC vs RW -63.25* -64.69* -66.10* -67.02* -67.74* -66.94* -66.18* -65.49* -64.77* -64.13* -63.51* -63.02* 

Combination vs RW -29.60
+
 -30.73

+
 -31.84

+
 -30.94

+
 -29.22

+
 -23.86

+
 -18.20 -14.57 -11.03 -8.49 -4.12 -4.44 

Combination vs BFAVEC 91.58* 96.21* 101.05* 109.37* 119.43* 130.29* 141.84* 147.57* 152.52** 155.08* 162.75* 158.39* 

Note: The Giacomini and White (2006) statistic tests the difference in RMSEs between the best model relative to the random-walk model, the forecast combination method relative to the random-

walk model, and the forecast combination model relative to the best model. Negative signs mean that the best model or the forecast combination method forecasts better than the random-
walk model, as well as that the forecast combination method outperforms the best model. 

* means significant at the 1-percent level. 

** means significant at the 5-percent level. 
† means significant at the 10-percent level. 
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Figure 1: Actual and Ex-Ante Forecast Values of Eight Employment Series
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Figure 1: Actual and Ex-Ante Forecast Values of Eight Employment Series (continued) 

 



Appendix A: 

Table A1: Variables 

Data Code Variable Name Format 

a0m052 PERSONAL INCOME (AR, BILL. CHAIN 2000 $) 5 

A0M051 PERSONAL INCOME LESS TRANSFER PAYMENTS (AR, BILL. CHAIN 2000 $) 5 

A0M224_R REAL CONSUMPTION (AC) A0M224/GMDC 5 

A0M057 MANUFACTURING AND TRADE SALES (MIL. CHAIN 1996 $) 5 

A0M059 SALES OF RETAIL STORES (MIL. CHAIN 2000 $) 5 

IPS10 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX 5 

IPS11 INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 5 

IPS299 INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5 

IPS12 INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5 

IPS13 INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5 

IPS18 INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5 

IPS25 INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5 

IPS32 INDUSTRIAL PRODUCTION INDEX - MATERIALS 5 

IPS34 INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5 

IPS38 INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5 

IPS43 INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5 

IPS307 INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5 

IPS306 INDUSTRIAL PRODUCTION INDEX - FUELS 5 

IPDM INDUSTRIAL PRODUCTION: DURABLE MANUFACTURING (NAICS) 5 

IPNDM INDUSTRIAL PRODUCTION: NONDURABLE MANUFACTURING (NAICS) 5 

IPM INDUSTRIAL PRODUCTION: MINING 5 

IPGEU INDUSTRIAL PRODUCTION: ELECTRIC AND GAS UTILITIES 5 

PMP NAPM PRODUCTION INDEX (PERCENT) 1 

A0m082 CAPACITY UTILIZATION (MFG) 2 

LHEL INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2 

LHELX EMPLOYMENT: RATIO; HELP-WANTED ADS: NO. UNEMPLOYED CLF 2 

LHEM CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5 

LHNAG CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5 

LHUR UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) 2 

LHU680 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2 

LHU5  UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5 

LHU14 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5 

LHU15 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS., SA) 5 

LHU26 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5 

LHU27 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS, SA) 5 

A0M005 AVERAGE WEEKLY INITIAL CLAIMS, UNEMPLOYMENT INSURANCE (THOUS.) 5 

CES002 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 5 

CES003 EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 5 

CES006 EMPLOYEES ON NONFARM PAYROLLS - MINING 5 

CES017 EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS 5 

CES033 EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS 5 

CES046 EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING 5 

CES049 EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE 5 

CES053 EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE 5 

CES140 EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT 5 

CESNRM ALL EMPLOYEES: NATURAL RESOURCES & MINING 5 

CEML MINING & LOGGING EMPLOYMENT 5 

CEC CONSTRUCTION EMPLOYMENT 5 

CEM MANUFACTURING EMPLOYMENT 5 

CETTU TRADE, TRANS. & UTIL. EMPLOYMENT 5 

CEFA FINANCIAL ACTIVITIES EMPLOYMENT 5 

CEPBS PROF & BUS. SERV. EMPLOYMENT 5 
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Data Code Variable Name Format 

CELH LEISURE & HOSPITALITY EMPLOYMENT 5 

CEOS OTHER SERVICES EMPLOYMENT 5 

CES151 AVERAGE WEEKLY HOURS: MANUFACTURING 1 

CES155 AVERAGE WEEKLY HOURS: OVERTIME: MANUFACTURING 2 

PMEMP NAPM EMPLOYMENT INDEX (PERCENT) 1 

HSFR HOUSING STARTS:TOTAL (THOUS.U)S.A. 4 

HSNE HOUSING STARTS: NORTHEAST (THOUS.U.)S.A. 4 

HSMW HOUSING STARTS: MIDWEST (THOUS.U.)S.A. 4 

HSSOU HOUSING STARTS: SOUTH (THOUS.U.)S.A. 4 

HSWST HOUSING STARTS: WEST (THOUS.U.)S.A. 4 

HSBR HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4 

HSBNE HOUSES AUTHORIZED BY BUILD. PERMITS: NORTHEAST (THOU.U.)S.A 4 

HSBMW HOUSES AUTHORIZED BY BUILD. PERMITS: MIDWEST (THOU.U.)S.A. 4 

HSBSOU HOUSES AUTHORIZED BY BUILD. PERMITS: SOUTH (THOU.U.)S.A. 4 

HSBWST HOUSES AUTHORIZED BY BUILD. PERMITS: WEST (THOU.U.)S.A. 4 

HPNE REAL HOUSE PRICE NORTHEAST 6 

HPMW REAL HOUSE PRICE MIDWEST 6 

HPS REAL HOUSE PRICE SOUTH 6 

HPW REAL HOUSE PRICE WEST 6 

HPUS REAL HOUSE PRICE US 6 

SNE HOME SALES NORTHEAST 6 

SMW HOME SALES MIDWEST 6 

SS HOME SALES SOUTH 6 

SW HOME SALES WEST 6 

SUS HOME SALES US 6 

HMOB MOBILE HOMES: MANUFACTURERS' SHIPMENTS (THOUS.OF UNITS,SAAR) 4 

PMI PURCHASING MANAGERS' INDEX (SA) 1 

PMNO NAPM NEW ORDERS INDEX (PERCENT) 1 

PMDEL NAPM VENDOR DELIVERIES INDEX (PERCENT) 1 

PMNV NAPM INVENTORIES INDEX (PERCENT) 1 

A0M008 MFRS' NEW ORDERS, CONSUMER GOODS AND MATERIALS (BILL. CHAIN 1982 $) 5 

A0M007 MFRS' NEW ORDERS, DURABLE GOODS INDUSTRIES (BILL. CHAIN 2000 $) 5 

A0M027 MFRS' NEW ORDERS, NONDEFENSE CAPITAL GOODS (MIL. CHAIN 1982 $) 5 

A1M092 MFRS' UNFILLED ORDERS, DURABLE GOODS INDUS. (BILL. CHAIN 2000 $) 5 

A0M070 MANUFACTURING AND TRADE INVENTORIES (BILL. CHAIN 2000 $) 5 

A0M077 RATIO, MFG. AND TRADE INVENTORIES TO SALES (BASED ON CHAIN 2000 $) 2 

FM1 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA) 6 

FM2 MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$, 6 

FM3 MONEY STOCK: MZM(BIL$,SA) 6 

FM2DQ  MONEY SUPPLY - M2 IN 2005 DOLLARS (BCI) 5 

FMFBA MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6 

FMRRA DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6 

FMRNBA DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6 

FCLNQ COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) 6 

FCLBMC NET CHANGE IN BUSINESS LOANS 1 

CCINRV CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6 

A0M095 RATIO, CONSUMER INSTALLMENT CREDIT TO PERSONAL INCOME (PCT.) 2 

FSPCOM S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5 

FSPIN S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5 

FSDXP S&P'S COMPOSITE COMMON STOCK: PRICE-DIVIDEND RATIO (%NSA) 5 

FSPXE S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 5 

FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) 2 

CP90 COMMERCIAL PAPER RATE (AC) 2 

FYGM3 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2 

FYGM6 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2 

FYGT1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2 

FYGT5 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2 

FYGT10 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2 
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Data Code Variable Name Format 

FYAAAC BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM) 2 

FYBAAC BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM) 2 

scp90 CP90-FYFF 1 

sfygm3 FYGM3-FYFF 1 

sFYGM6 FYGM6-FYFF 1 

sFYGT1 FYGT1-FYFF 1 

sFYGT5 FYGT5-FYFF 1 

sFYGT10 FYGT10-FYFF 1 

sFYAAAC FYAAAC-FYFF 1 

sFYBAAC FYBAAC-FYFF 1 

EXRUS UNITED STATES; EFFECTIVE EXCHANGE RATE (MERM) (INDEX NO.) 5 

EXRSW FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5 

EXRJAN FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5 

EXRUK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5 

EXRCAN FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5 

PWFSA PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6 

PWFCSA PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6 

PWIMSA PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6 

PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6 

PSCCOM SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 6 

NFS NON-FERROUS SCRAP (1982=100) 6 

PMCP NAPM COMMODITY PRICES INDEX (PERCENT) 1 

PUNEW CPI-U: ALL ITEMS (82-84=100,SA) 6 

PU83 CPI-U: APPAREL & UPKEEP (82-84=100,SA) 6 

PU84 CPI-U: TRANSPORTATION (82-84=100,SA) 6 

PU85 CPI-U: MEDICAL CARE (82-84=100,SA) 6 

PUC CPI-U: COMMODITIES (82-84=100,SA) 6 

PUCD CPI-U: DURABLES (82-84=100,SA) 6 

PUS CPI-U: SERVICES (82-84=100,SA) 6 

PUXF CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) 6 

PUXHS  CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) 6 

PUXM CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) 6 

PUE CPI-U: ALL ITEMS LESS ENERGY (82-84=100,SA) 6 

GMDC PCE, IMPL PR DEFL:PCE (1987=100) 6 

GMDCD PCE, IMPL PR DEFL:PCE; DURABLES (1987=100) 6 

GMDCN PCE, IMPL PR DEFL:PCE; NONDURABLES (1996=100) 6 

GMDCS PCE, IMPL PR DEFL:PCE; SERVICES (1987=100) 6 

CES275 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS  ON 

PRIVATE NO 

6 

CES277 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS  ON 
PRIVATE NO 

6 

CES278 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS ON 

PRIVATE NO 

6 

HHSNTN U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2 

Note:  For BVAR models: 1, 2 = No transformation; 4, 5 and 6 = Log(data)   100; For FAVAR models: 1 = No transformation; 2 = 

First-difference of data; 4 = Log(data)   100; 5. 6: Growth rate of data in percentage. Variables in italics correspond to those 

included in the medium-scale models. 


