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WIENER INDEX OF TREES OF GIVEN ORDER AND
DIAMETER AT MOST 6
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Abstract

The long-standing open problem of finding an upper bound for the Wiener index of a graph in terms of its
order and diameter is addressed. Sharp upper bounds are presented for the Wiener index, and the related
degree distance and Gutman index, for trees of order n and diameter at most 6.
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1. Introduction

Let G be a graph with vertex set V(G) and order n. We denote the distance between two
vertices u, v in G by dG(u, v) (or simply d(u, v)); the diameter of G will be denoted by
d(G) (or d), the eccentricity of a vertex v will be denoted by ec(v) and the degree of v
will be denoted by deg(v). Let NG

i (v) (or simply Ni(v)) be the set of vertices at distance
i from v in G. Let u, v be two adjacent (nonadjacent) vertices of a graph G. Then
G′ = G − uv (G′ = G + uv) is obtained by removing the edge uv from G (by adding the
edge uv to G).

The Wiener index is the oldest topological index. It has been investigated in the
mathematical, chemical and computer science literature since the 1940s. The Wiener
index W(G) of a connected graph G is defined as the sum of the distances between all
unordered pairs of vertices. The minimum value of the Wiener index of a graph (of a
tree) of given order is attained by the complete graph (by the star), and the maximum
value is attained by the path.

The degree distance, a variant of the Wiener index, is defined as

D′(G) =
∑

{u,v}⊆V(G)

(deg(u) + deg(v)) d(u, v),
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and the Gutman index is defined as

Gut(G) =
∑

{u,v}⊆V(G)

deg(u)deg(v) d(u, v).

The smallest value of the degree distance and Gutman index of graphs of order n
is attained by stars (see [1, 11]). Turning to upper bounds on the degree distance,
in 1999 Tomescu [11] conjectured the asymptotic upper bound D′(G) ≤ (1/27)n4 +

O(n3). Nine years later, Bucicovschi and Cioabǎ [2] commented that Tomescu’s
conjecture ‘seems difficult at present time’. In the following year Dankelmann et al. [3]
considered this problem and though they came close to proving the conjecture, their
proof was inadequate to meet the O(n3) error term. Recently, Morgan et al., in a
submitted paper (‘On a conjecture by Tomescu’), salvaged enough from the proof
given in [3] and solved Tomescu’s conjecture completely. There one can also find
upper bounds on the degree distance of graphs of given order and diameter. Upper
bounds on the Gutman index of a graph of given order and diameter were studied
in [4, 9]. In [9] it was proved, that Gut(G) ≤ (1/16)d(n − d)4 + O(n4) and consequently
Gut(G) ≤ (24/55)n5 + O(n4).

In this paper we study the indices mentioned above for trees of given order and
diameter. Since Klein et al. [7] showed that for every tree T of order n,

D′(T ) = 4W(T ) − n(n − 1), (1.1)

and in [6] Gutman proved that

Gut(T ) = 4W(T ) − (2n − 1)(n − 1), (1.2)

any result on W(T ) yields a similar result on D′(T ) and Gut(T ). It is not difficult to
show that the extremal tree, which has the minimum Wiener index among trees of
order n and diameter d, is the path of length d (containing d + 1 vertices) with the
central vertex joined to the other n − d − 1 vertices; see [12].

The problem of finding an upper bound on the Wiener index of a tree (or graph)
in terms of order and diameter is quite challenging; it was addressed by Plesník [10]
in 1975, and restated by DeLaViña and Waller [5], but still remains unresolved to this
date. In this paper, we give a starting point to solving this long-standing problem. We
present upper bounds on the Wiener index of trees of order n and diameter at most
6, and we show that our bounds are best possible. As a corollary we obtain upper
bounds on the degree distance and Gutman index of trees of given order and diameter
at most 6. Let us mention that there are indices which were introduced much later than
the Wiener index, however upper bounds on these indices for trees of given order and
diameter are known. For example, a sharp upper bound on the eccentric connectivity
index of trees of given order and diameter was given in [8]. To find a sharp upper
bound on the Wiener index for trees of given order and large diameter seems to be a
very complicated problem.
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2. Preliminary results

First we give a few results which will be used in proofs of our main theorems. Note
that

W(T ) =
∑

{u,v}⊆V(T )

d(u, v) =
1
2

∑
u∈V(T )

∑
v∈V(T )

d(u, v) =
1
2

∑
u∈V(T )

d∑
i=1

i|NT
i (u)|.

L 2.1. Let T be a tree of diameter 2r (r ≥ 2) with the central vertex v, and let
deg(u) = 2 for every vertex u ∈ Ni(v) where i = 1, 2, . . . , r − 2. If T has the maximum
Wiener index among trees of given order and diameter 2r, then the degrees of any two
vertices in Nr−1(v) differ by at most one.

P. Let u1, u2 be any two vertices in NT
r−1(v), and let ni be the number of leaves

adjacent to ui in T , i = 1, 2. We prove the result by contradiction. Suppose that
n1 ≥ n2 + 2. We show that T does not have the maximum Wiener index among trees
of given order and diameter 2r. Let w be any leaf adjacent to u1 in T , and let T ′ =
T − u1w + u2w. We have V(T ′) = V(T ), d(T ′) = d(T ) = 2r, dT (w1, w2) = dT ′(w1, w2)
for any two vertices w1, w2 different from w, and |NT

i (w)| , |NT ′
i (w)| only if i = 2 or 2r.

Since |NT
2 (w)| = n1, |NT ′

2 (w)| = n2 + 1 and |NT ′
2r (w)| − |NT

2r(w)| = (n1 − 1) − n2,

W(T ′) −W(T ) = 2r(|NT ′
2r (w)| − |NT

2r(w)|) + 2(|NT ′
2 (w)| − |NT

2 (w)|)

= 2(r − 1)(n1 − n2 − 1) > 0,

which is a contradiction. �

C 2.2. Let T1 be a join of a tree T (which is defined in the previous lemma)
and any tree T2, where T1 is constructed in such a way that we unify the central vertex
of T with any vertex of T2. If T1 has the maximum Wiener index among trees of given
order and diameter, then the degrees of any two vertices in Nr−1(v) which are in T
differ by at most one.

L 2.3. Let T be a tree of diameter 2r (r ≥ 2) with the central vertex v, and let
deg(u) = 2 for every vertex u ∈ Ni(v) where i = 1, 2, . . . , r − 2. Let |N(v)| = k and
|Nr(v)| = nk. If T has the maximum Wiener index among trees of given order and
diameter 2r, then ∑

{y,x}⊆Nr(v)

d(y, x) ≤ nk

(
rnk + (1 − r)

nk

k
− 1

)
,

and we have the equality only if the degrees of all vertices in Nr−1(v) are equal.

P. Let T be a tree with deg(u) = 2 for every vertex u ∈ Ni(v) where i =

1, 2, . . . , r − 2 and let |N(v)| = k. Then |Ni(v)| = k for any i = 2, 3, . . . , r − 1. Let
Nr−1(v) = {v1, v2, . . . , vk}. By Lemma 2.1, if T has the maximum Wiener index, then v j

( j = 1, 2, . . . , k) has either s − 1 or s neighbours in Nr(v) for some s ≥ 1. Without loss
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of generality, we can assume that the number of vertices in Nr(v) which are adjacent
to vi (i = 1, 2, . . . , p, 1 ≤ p ≤ k) is s − 1, and the number of vertices in Nr(v) which are
adjacent to v j ( j = p + 1, p + 2, . . . , k) is s. We have nk = p(s − 1) + (k − p)s = ks − p.
Then any two vertices in Nr(v) are of distance 2 if they have a common neighbour in
Nr−1(v), otherwise they are of distance 2r. Hence, for w, w′ ∈ Nr(v),∑

x∈Nr(v)

d(w, x) = 2(s − 2) + 2r(ks − p − s + 1) if w ∈ N(vi), i = 1, 2, . . . , p,∑
x∈Nr(v)

d(w′, x) = 2(s − 1) + 2r(ks − p − s) if w′ ∈ N(v j), j = p + 1, p + 2, . . . , k,

which yields

2
∑

{y,x}⊆Nr(v)

d(y, x) =
∑

y∈Nr(v)

∑
x∈Nr(v)

d(y, x)

= p(s − 1)
∑

x∈Nr(v)

d(w, x) + (k − p)s
∑

x∈Nr(v)

d(w′, x)

= (ks − p)(2r(ks − p) + 2(1 − r)s − 2) + 2p(s − 1)(r − 1).

Since p/k ≤ 1, we have s − 1 ≤ s − p/k, and consequently

2p(s − 1)(r − 1) ≤ 2p
(
s −

p
k

)
(r − 1) =

2p
k

(ks − p)(r − 1).

Hence ∑
{y,x}⊆Nr(v)

d(y, x) ≤
ks − p

2

(
2r(ks − p) + 2(1 − r)s +

2p
k

(r − 1) − 2
)

= nk

(
rnk + (1 − r)

nk

k
− 1

)
.

Clearly we have equality above only if p/k = 1, which means that every vertex in
Nr−1(v) is adjacent to s − 1 vertices in Nr(v). �

C 2.4. Let T1 be a join of a tree T (defined as in Lemma 2.3) and a new tree
T2, where T1 is constructed in such a way that we unify the central vertex of T with
any vertex of T2. Then the distances between vertices in T do not change, and if T1

has the maximum Wiener index among trees of given order and diameter, then∑
{y,x}⊆NT

r (v)

d(y, x) ≤ nk

(
rnk + (1 − r)

nk

k
− 1

)
,

and we have equality only if the degrees of all vertices in NT
r−1(v) are equal.

L 2.5. Let u1, u2, . . . , uk be any set of vertices of a tree T which have a common
neighbour, and let all the other neighbours of ui be leaves, i = 1, 2, . . . , k. If T has the
maximum Wiener index among trees of order n and diameter d ≥ 5, then:
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(i) if k ≥ 2 and ec(ui) < d, then |N(ui)| + |N(u j)| >
√

2n − 1 for any i, j ∈
{1, 2, . . . , k}, i , j;

(ii) |N(ui)| <
√

2n + 1 for any i ∈ {1, 2, . . . , k}.

P. Let u be a neighbour of all ui, i = 1, 2, . . . , k, and let Ui = N(ui) \ {u}. We prove
by contradiction that |Ui| <

√
2n and if k ≥ 2 and ec(ui) < d, then |Ui| + |U j| >

√
2n − 3

for any i, j ∈ {1, 2, . . . , k}, i , j.
(i) Suppose that there are 2 vertices ui, u j such that |Ui| + |U j| ≤

√
2n − 3. Let

T ′ = T −
⋃

w∈U j

u jw − uu j +
⋃

w∈U j

uiw + uiu j.

Note that if we do not assume that ec(ui) < d(T ), then ui can be the end vertex of a
diametral path in T , which implies d(T ) < d(T ′). We also know that (since d(T ) ≥ 5)
there is a vertex, say y, such that dT (v, y) = dT ′(v, y) ≥ 3, and hence d(T ′) cannot be less
than 5. It follows that d(T ) = d(T ′) and dT (w1, w2) = dT ′(w1, w2) for any two vertices
w1, w2 except for the cases when w1 ∈ Ui ∪ {ui} and w2 ∈ U j, or when w1 = u j. We
have

dT ′(w1, w2) = dT (w1, w2) − 2 if w1 ∈ Ui ∪ {ui}, w2 ∈ U j,

dT ′(u j, w) = dT (u j, w) − 1 if w ∈ Ui ∪ {ui},

dT ′(u j, w) = dT (u j, w) + 1 if w ∈ V(T ) \ (Ui ∪ {ui, u j}).

Hence
W(T ′) −W(T ) =

∑
w1∈Ui∪{ui}

∑
w2∈U j

(dT ′(w1, w2) − dT (w1, w2))

+
∑

w∈V(T )

(dT ′(u j, w) − dT (u j, w))

= −2(|Ui| + 1)|U j| − (|Ui| + 1) + (n − |Ui| − 2)

= n − 2|Ui||U j| − 2|Ui| − 2|U j| − 3.

(2.1)

Since |Ui||U j| ≤ ((|Ui| + |U j|)/2)2,

W(T ′) −W(T ) ≥ n − 2
(√2n − 3

2

)2

− 2(
√

2n − 3) − 3 =
√

2n −
3
2
> 0.

Hence T is not a graph with the maximum Wiener index.
(ii) Suppose that |Ui| ≥

√
2n for some i ∈ {1, 2, . . . , k}. Let x ∈ Ui, and let X and Y be

two disjoint subsets of Ui such that |X| and |Y | differ by at most 1, and Ui = X ∪ Y ∪ {x}.
Then |X|, |Y | ≥

√
n/2 − 1. Let

T ′ = T −
⋃
w∈X

uiw − uix + ux +
⋃
w∈X

xw.
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Then dT (w1, w2) , dT ′(w1, w2) only in the following cases:

dT ′(w1, w2) = dT (w1, w2) + 2 if w1 ∈ Y ∪ {ui}, w2 ∈ X,

dT ′(x, w) = dT (x, w) + 1 if w ∈ Y ∪ {ui},

dT ′(x, w) = dT (x, w) − 1 if w ∈ V(T ) \ (Y ∪ {ui, x}).

Hence

W(T ) −W(T ′) =
∑

w1∈Y∪{ui}

∑
w2∈X

(dT (w1, w2) − dT ′(w1, w2)) +
∑

w∈V(T )

(dT (x, w) − dT ′(x, w))

= −2(|Y | + 1)|X| − (|Y | + 1) + (n − |Y | − 2)

= n − 2|X||Y | − 2|X| − 2|Y | − 3

= n − 2|X||Y | − 2|Ui| − 1

≤ n − 2
(√n

2
− 1

)2

− 2
√

2n − 1 = −3,

which is a contradiction. �

3. Main results

We present results on the Wiener index of trees of given order and diameter at
most 6. The only tree of order n and diameter 2 is the star S n having n − 1 leaves.
Since any two leaves of the star are at distance 2, and the distance between the central
vertex and any leaf is 1, the Wiener index of S n is 2

(
n−1

2

)
+ (n − 1) = n2 − 2n + 1.

Then from (1.1) and (1.2) it follows that the degree distance of the star is D′(S n) =

3n2 − 7n + 4 and the Gutman index is Gut(S n) = 2n2 − 5n + 3.
Now we bound the Wiener index for diameter d where 3 ≤ d ≤ 6.

T 3.1. Let T be a tree of order n and diameter 3. Then the Wiener index of T is

W(T ) ≤
5n2

4
− 3n + 3

and this bound is best possible.

P. Let T be any tree of order n and diameter 3. We denote the central vertices of
T by v and u. The set of leaves adjacent to v (to u) will be denoted by K (by L). Let
|K| = k. Then |L| = n − k − 2. It can be checked that∑
{y,x}⊆K

d(y, x) = 2
(
k
2

)
,

∑
{y,x}⊆L

d(y, x) = 2
(
n − k − 2

2

)
,

∑
y∈K

∑
x∈L

d(y, x) = 3k(n − k − 2),∑
x∈V(T )

d(v, x) = (k + 1) + 2(n − k − 2) and
∑

x∈V(T )

d(u, x) = (n − k − 1) + 2k,
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which yield

W(T ) =
∑
{y,x}⊆K

d(y, x) +
∑
{y,x}⊆L

d(y, x) +
∑
y∈K

∑
x∈L

d(y, x) +
∑

x∈V(T )

d(v, x) +
∑

x∈V(T )

d(u, x)

= n2 − 2n + kn − k2 − 2k + 2 = f (k).

Then from the derivative f ′(k) = 0 we obtain k = n/2 − 1, which yields the maximum
of f (k). Hence

W(T ) ≤ f
(n
2
− 1

)
=

5n2

4
− 3n + 3.

This value is attained by the Wiener index of a tree which has both central vertices of
degree n/2. Therefore our bound is best possible. �

T 3.2. Let T be a tree of order n and diameter 4. Then

W(T ) ≤ 2n2 − 2n
√

n − 1 − 3n + 2
√

n − 1 + 1

and the bound is best possible.

P. Let T be a tree with the maximal Wiener index among all trees of order n and
diameter 4. We denote the central vertex of T by v. Let |N(v)| = k and |N2(v)| = nk.
Clearly |V(T )| = n = 1 + k + nk. By Lemma 2.3,∑

{y,x}⊆N2(v)

d(y, x) ≤ nk

(
2nk −

nk

k
− 1

)
. (3.1)

It is easy to check that∑
{y,x}⊆N(v)

d(y, x) = 2
(
k
2

)
,

∑
y∈N2(v)

∑
x∈N(v)

d(y, x) = nk(1 + 3(k − 1))

and ∑
x∈V(T )

d(v, x) = k + 2nk.

Consequently,

W(T ) =
∑

{y,x}⊆N2(v)

d(y, x) +
∑

{y,x}⊆N(v)

d(y, x) +
∑

y∈N2(v)

∑
x∈N(v)

d(y, x) +
∑

x∈V(T )

d(v, x)

≤ 2n2
k −

n2
k

k
+ (3k − 1)nk + k2

= 2n2 −
(n − 1)2

k
− kn − 3n + k + 1 = f (k).

Then the derivative f ′(k) = 0 yields the value k =
√

n − 1, which gives us the maximum
of f (k). It follows that

W(T ) ≤ 2n2 − 2n
√

n − 1 − 3n + 2
√

n − 1 + 1. (3.2)
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Note that our bound is best possible. If every vertex in N[v] is of degree√
n − 1, where n − 1 is a square, then by Lemma 2.3 we have equality in (3.1), and

consequently equality in (3.2) as well. �

T 3.3. Let T be a tree of order n and diameter 5. Then the Wiener index

W(T ) ≤
9n2

4
− 2n3/2 + O(n)

and the bound is best possible.

P. Let T be a tree with the maximal Wiener index among all trees of order n
and diameter 5. We denote the central vertices of T by v and u. Let K1 = N(v) \ {u},
L1 = N(u) \ {v}, and let K2 (L2) contain every leaf which has a neighbour in K1 (in
L1). Clearly V(T ) = {v, u} ∪ K1 ∪ L1 ∪ K2 ∪ L2. Let |K1| = k, |L1| = l, |K3| = nk and
|L3| = nl.

Claim 1. We show that

W(T ) ≤ 2(nk + nl)2 + nknl −
n2

k

k
−

n2
l

l
+ 3(k + l)(nk + nl)

+ lnk + knl + k2 + l2 + 3kl + 2k + 2l + 1.

From Corollary 2.4 it follows that∑
{x,y}⊆K2

d(x, y) ≤ nk

(
2nk −

nk

k
− 1

)
and

∑
{x,y}⊆L2

d(x, y) ≤ nl

(
2nl −

nl

l
− 1

)
.

It can be checked that∑
x∈K2

∑
y∈K1∪L1∪{v,u}

d(x, y) = nk(1 + 2 + 3k + 4l),∑
x∈L2

∑
y∈K1∪L1∪{v,u}

d(x, y) = nl(1 + 2 + 3l + 4k),∑
x∈K2

∑
y∈L2

d(x, y) = 5nknl,
∑
x∈K1

∑
y∈L1

d(x, y) = 3kl,

∑
{x,y}⊆K1

d(x, y) = 2
(
k
2

)
= k(k − 1),

∑
{x,y}⊆L1

d(x, y) = 2
(
l
2

)
= l(l − 1),∑

x∈K1∪L1

d(v, x) = k + 2l,
∑

x∈K1∪L1

d(u, x) = l + 2k and d(u, v) = 1.

Hence

W(T ) ≤ 2(nk + nl)2 + nknl −
n2

k

k
−

n2
l

l
+ 3(k + l)(nk + nl)

+ lnk + knl + k2 + l2 + 3kl + 2k + 2l + 1.
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By Lemma 2.5(i), if k ≥ 2 (if l ≥ 2), then |N(x)| + |N(y)| >
√

2n − 1 for any two
vertices x, y in K1 (in L1). Since by Corollary 2.2 |N(x)| and |N(y)| differ by
at most 1, both |N(x)| and |N(y)| are greater than

√
n/2 − 1. By Lemma 2.5(ii),

|N(x)|, |N(y)| <
√

2n + 1. Hence if k ≥ 2 (if l ≥ 2) then we can assume that every vertex
in K1 (in L1) is adjacent to c1

√
n + O(1) vertices in K2, where

√
2/2 ≤ c1 ≤

√
2 (to

c2
√

n + O(1) vertices in L2,
√

2/2 ≤ c2 ≤
√

2). It follows that nk = k(c1
√

n + O(1)) and
nl = l(c2

√
n + O(1)), and consequently k ≤

√
n/c1 + O(1) and l ≤

√
n/c2 + O(1) (since

nk and nl cannot exceed n).

Claim 2. We have nk = nl + O(n1/2).
Suppose to the contrary that nk > nl + O(n1/2). Let w be any vertex in K2, let

v1 be the neighbour of w in T (v1 ∈ K1), and let u1 be any vertex in L1. Let
T ′ = T − v1w + u1w. We have d(T ′) = d(T ) = 5,∑

w′∈V(T )

d(w, w′) = 1 + 2(c1
√

n + O(1)) + 3k + 4(nk − c1
√

n − O(1)) + 4l + 5nl

= 4nk + 5nl + O(n1/2)

and ∑
w′∈V(T ′)

d(w, w′) = 4nl + 5nk + O(n1/2).

Then

0 ≤W(T ) −W(T ′) =
∑

w′∈V(T )

d(w, w′) −
∑

w′∈V(T ′)

d(w, w′) = nl − nk + O(n1/2),

which is a contradiction.
Analogously it can be shown that nl cannot be greater than nk + O(n1/2).

Since n = nk + nl + k + l + 2 = nk + nl + O(n1/2), we have nk = nl = n/2 + O(n1/2).
We can write nk = n/2 + c′1

√
n + O(1) and nl = n/2 + c′2

√
n + O(1), where c′1 and c′2 are

real numbers.
We also know that nk = k(c1

√
n + O(1)) which implies that k =

√
n/2c1 + O(1).

Similarly we obtain l =
√

n/2c2 + O(1).
By Claim 1,

W(T ) ≤ 2(nk + nl)2 + nknl −
n2

k

k
−

n2
l

l
+ 3(k + l)(nk + nl) + lnk + knl + O(n),

and from the previous part of the proof it follows that

(nk + nl)2 = (n − k − l − 2)2 = n2 − 2kn − 2ln + O(n),
n2

k

k
=

(n
2

+ c′1
√

n + O(1)
)2/

k =
n2

4k
+ O(n),

n2
l

l
=

n2

4l
+ O(n),

(k + l)(nk + nl) = (k + l)n + O(n), knl + lnk = (k + l)
n
2

+ O(n).
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Since

n = nk + nl + k + l + 2 =

(n
2

+ c′1
√

n
)

+

(n
2

+ c′2
√

n
)

+ k + l + O(1),

we obtain (c′1 + c′2)
√

n = −k − l + O(1). Consequently,

nknl =
n2

4
+ (c′1 + c′2)

√
n

n
2

+ O(n) =
n2

4
− (k + l)

n
2

+ O(n).

It follows that

W(T ) ≤
9n2

4
− (k + l)n −

n2

4

(1
k

+
1
l

)
+ O(n) = f (k, l).

Then the partial derivatives fk(k, l) = 0 and fl(k, l) = 0 show that f (k, l) is maximised
for k = l =

√
n/2. Hence

W(T ) ≤
9n2

4
− 2n3/2 + O(n).

It can be checked that if |K1| = |L1| =
√

n − 2/2 and every vertex in K1 and L1 is
adjacent to

√
n − 2 − 1 leaves, where n − 2 is a power of 4, then W(T ) = 9n2/4 −

2n3/2 + O(n). The proof is complete. �

T 3.4. Let T be a tree of order n and diameter 6. Then

W(T ) ≤ 3n2 − 2
√

6n3/2 − 2n + O(n1/2)

and the bound is best possible.

P. Let T be a tree with the maximal Wiener index among all trees of order n and
diameter 6. We denote the central vertex of T by v.

Note that instead of Claims 1 and 2 one could prove a more general claim saying
that all leaves of T must be at distance 3 from v. However, we do not need such a
result to prove our theorem.

Claim 1. There is no leaf joined to v.
Suppose to the contrary that x is a leaf joined to v. Since v is the central vertex of a

tree of diameter 6, there must be at least two other vertices u1, u2 adjacent to v in T . Let
Ui be the set which contains all vertices u that satisfy the inequality dT (u, ui) < dT (u, v),
i = 1, 2. Then U1 ∩ U2 = ∅. Since |U1| + |U2| ≤ n − 2, at least one set Ui contains at
most n/2 − 1 vertices. Without loss of generality, we can suppose that |U1| ≤ n/2 − 1.
Let T ′ = T − vx + u1x. Then d(T ′) = d(T ) = 6 and

W(T ′) −W(T ) =
∑

u∈V(T )

(dT ′(x, u) − dT (x, u)).

Since dT ′(x, u) = dT (x, u) − 1 for any u ∈ U1, and dT ′(x, u′) = dT (x, u′) + 1 for any
u′ ∈ V(T ) \ (U1 ∪ {x}), we get W(T ′) > W(T ).
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Claim 2. The vertex v does not have a neighbour of degree two which is adjacent to a
leaf.

Suppose that v has a neighbour x1 of degree two which is adjacent to a leaf, say x2.
As in the previous claim, one can show that there must be a neighbour of v, say
u1, such that dT (u1, u) < dT (v, u) for at most (n − 3)/2 vertices u of T . Then for
T ′ = T − vx1 + u1x1 we get dT ′(xi, u) = dT (x1, u) − 1 for at most (n − 3)/2 vertices u,
and dT ′(xi, u′) = dT (xi, u′) + 1 for at least (n − 1)/2 vertices u′ (i = 1, 2). Consequently,

W(T ′) −W(T ) = 2
∑

u∈V(T )

(dT ′(x1, u) − dT (x1, u)) ≥ 2.

Claim 3. Each neighbour of v has degree at most three.
Suppose to the contrary that v1 is a neighbour of v, which is adjacent to at least three

other vertices v2, v′2 and v′′2 . Let V3 (V ′3, V ′′3 ) be the set of leaves adjacent to v2 (v′2, v′′2 ).
Without loss of generality, we can assume that |V3| ≥ |V ′′3 | ≥ |V

′
3| ≥ 0. Let

T ′ = T −
⋃
w∈V ′3

wv′2 − v1v′2 +
⋃
w∈V ′3

v2w + v2v′2.

Analogous steps as the ones in the proof of Lemma 2.5(i) yield

W(T ′) −W(T ) = n − 2|V3||V
′
3| − 2|V ′3| − 2|V ′3| − 3,

(see (2.1)). Note that if |V3| = |V ′3| = 0, then W(T ′) −W(T ) > 0, so we can assume that
there is a vertex, say v3 ∈ V3.

Let T ′′ = T − v1v2 + vv3. Then dT (w1, w2) , dT ′′(w1, w2) in the following cases:

dT ′′(w1, w2) = dT (w1, w2) + 2 if w1 ∈ V3 ∪ {v2} \ {v3}, w2 ∈ V ′3 ∪ V ′′3 ∪ {v1, v′2, v′′2 }

dT ′′(v3, w) = dT (v3, w) − 2 if w ∈ V(T ) \ (V3 ∪ V ′3 ∪ V ′′3 ∪ {v1, v2, v′2, v′′2 }).

Consequently,

W(T ) −W(T ′′) = −2|V3|(|V ′3| + |V
′′
3 | + 3) + 2(n − |V3| − |V

′
3| − |V

′′
3 | − 4)

= 2(n − |V3||V
′
3| − |V3||V

′′
3 | − 4|V3| − |V

′
3| − |V

′′
3 | − 4).

Since T has the maximum Wiener index among all graphs of order n and diameter d,
we have W(T ′) −W(T ) ≤ 0 ≤ (W(T ) −W(T ′′))/2 which yields

0 ≤ |V3||V
′
3| − |V3||V

′′
3 | − 2|V3| + |V

′
3| − |V

′′
3 | − 1

= (|V3| + 1)(|V ′3| − |V
′′
3 |) − 2|V3| − 1.

Since |V ′3| ≤ |V
′′
3 | and |V3| ≥ 1, we get a contradiction.

Let K1 (L1) be the set of neighbours of v which are of degree two (of degree three),
and let Ki (Li) be the set of vertices at distance i from v, such that every vertex in Ki

(in Li) has a neighbour in Ki−1 (in Li−1), i = 2, 3. Let |K1| = k, |L1| = l, |K3| = nk and
|L3| = nl. Clearly n = 1 + 2k + 3l + nk + nl.
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Claim 4. For any two vertices v2 and v′2 in K2, where V3 (V ′3) is the set of neighbours
of v2 (of v′2) in K3, we have |V3| + |V ′3| >

√
3n − 5.

Let v1 (v′1) be the vertex in K1 adjacent to v2 (to v′2), and let V3 (V ′3) be the set of
leaves adjacent to v2 (to v′2). Let

T ′ = T −
⋃
w∈V ′3

wv′2 − vv′1 − v′1v′2 +
⋃
w∈V ′3

v2w + v2v′1 + v2v′2.

We mention all cases when dT (w1, w2) , dT ′′(w1, w2). We have

dT ′(w1, w2) = dT (w1, w2) − 4 if w1 ∈ V3 ∪ {v2}, w2 ∈ V ′3,

dT ′(v′2, w) = dT (v′2, w) − 3 if w ∈ V3 ∪ {v2},

dT ′(v′1, w) = dT (v′1, w) − 2 if w ∈ V3 ∪ {v2},

dT ′(v1, w) = dT (v1, w) − 2 if w ∈ V ′3,

dT ′(v1, v′2) = dT (v1, v′2) − 1,

dT ′(v′2, w) = dT (v′2, w) + 1 if w ∈ V(G) \ (V3 ∪ {v1, v2, v′2})

dT ′(v′1, w) = dT (v′1, w) + 2 if w ∈ V(G) \ (V3 ∪ V ′3 ∪ {v1, v′1, v2, v′2}).

Then

W(T ′) −W(T ) = 2(n − |V3| − |V
′
3| − 4) + (n − |V3| − 3)

− 1 − 2(|V3| + |V
′
3| + 1) − 3(|V3| + 1) − 4(|V3| + 1)|V ′3|

= 3n − 4|V3||V
′
3| − 8|V3| − 8|V ′3| − 17

= 3n − 4
( |V3| + |V ′3|

2

)2

− 8(|V3| + |V
′
3|) − 17.

If |V3| + |V ′3| ≤
√

3n − 5, then we get W(T ′) −W(T ) ≥ 2(
√

3n − 1) > 0. It can be
checked that d(T ′) ≤ d(T ). If d(T ′) < d(T ), it is easy to transform T ′ to T ′′ such
that V(T ′′) = V(T ), d(T ′′) = d(T ) and W(T ′′) > W(T ′) > W(T ). So W(T ) is not the
maximum Wiener index of trees of order n and diameter 6.

Claim 5. We have l <
√

n/2 and k <
√

3n.
By Claim 4, for the sets of neighbours V3 and V ′3 of any two vertices v2 and v′2

in K2 we have |V3| + |V ′3| >
√

3n − 5. If k is even, then nk > (k/2)(
√

3n − 5). From
Corollary 2.2 we know that |V3| and |V ′3| differ by at most 1, so the number of leaves
joined to any vertex in K2 is greater than

√
3n/2 − 3. Hence, if k is odd,

nk >
k − 1

2
(
√

3n − 5) +

√
3n
2
− 3 =

k
2

(
√

3n − 5) −
1
2
.

Then n > 1 + 2k + (k/2)(
√

3n − 5) − 1/2 which implies that k < (2n − 1)/(
√

3n − 1) <
(2 + ε)n/

√
3n for some small ε > 0. For us it suffices to use ε = 1.
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By Lemma 2.5(i), if v2 and v′2 are any two vertices in L2 which have a common
neighbour, where V3 (V ′3) is the set of neighbours of v2 (of v′2) in L3, then |V3| +

|V ′3| >
√

2n − 3. We get nl > (
√

2n − 3)l which yields n > 1 + 3l + (
√

2n − 3)l, and
consequently l <

√
n/2.

Claim 6. Let v1, u1 ∈ L1 and let V3 (U3) be a subset of L3 containing vertices which
are at distance 2 from v1 (u1). Then |V3| and |U3| differ by at most 1.

Suppose that |V3| ≥ |U3| + 2. Let v′2, v′′2 (u′2, u′′2 ) be two vertices in L2 adjacent to
v1 (u1), and let V ′3 (V ′′3 , U′3, U′′3 ) be the set of neighbours of v′2 (v′′2 , u′2, u′′2 ) in L3.
Since |V ′3| + |V

′′
3 | ≥ |U

′
3| + |U

′′
3 | + 2, without loss of generality we can assume that |V ′3| ≥

|U′3| + 1. Let w be any vertex in V ′3 and let T ′=T −v′2w+u′2w. Since |NT
2 (v1)∩L3|≥2,

we have |NT ′
2 (v1) ∩ L3| ≥ 1, which implies that there must be two vertices at distance

6 in T ′. Hence d(T ) = d(T ′). It can be checked that dT (w1, w2) = dT ′(w1, w2) for any
two vertices w1, w2 different from w, and |NT

i (w)| = |NT ′
i (w)| if i = 1, 3, 5. We have

|NT ′
2 (w)| − |NT

2 (w)| = (|U′3| + 1) − |V ′3|,

|NT ′
4 (w)| − |NT

4 (w)| = (|U′′3 | + 1) − (|V ′′3 | + 1),

|NT ′
6 (w)| − |NT

6 (w)| = (|V3| − 1) − |U3|.

Then

W(T ′) −W(T ) =

6∑
i=1

i(|NT ′
i (w)| − |NT

i (w)|)

= 6(|V3| − |U3|) − 4(|V ′′3 | − |U
′′
3 |) − 2(|V ′3| − |U

′
3|) − 4

= 2(|V3| − |U3| − 2) + 2(|V ′3| − |U
′
3|) ≥ 2(|V ′3| − |U

′
3|) > 0,

which is a contradiction.

Claim 7. We have ∑
{x,y}⊆L3

d(x, y) ≤ nl

(
3nl −

3nl

2l
− 1

)
.

Let L1 = {v1, v2, . . . , vl} and let v, ui, wi be the neighbours of vi, i = 1, 2, . . . , l.
By Claim 6, the number of vertices in L3 which are at distance 2 from vi is either
2s or 2s + ε, where s is an integer, and ε = 1 or −1. Without loss of generality,
we can assume that the number of vertices in L3 which are at distance 2 from v j

( j = 1, 2, . . . , p, 0 ≤ p ≤ l) is 2s + ε, and the number of vertices in L3 which are at
distance 2 from v j ( j = p + 1, p + 2, . . . , l) is 2s. Then by Corollary 2.2 we can assume
that ui (i = 1, 2, . . . , l) and w j ( j = p + 1, p + 2, . . . , l) are adjacent to s vertices in L3,
and w j ( j = 1, 2, . . . , p) are adjacent to s + ε vertices in L3. It follows that

|L3| = nl = (2l − p)s + p(s + ε) = 2ls + εp.
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Then, for the vertices w, w′, w′′ in L3,∑
v′∈L3

d(w, v′) = 2(s − 1) + 4s + 6(2ls + εp − 2s)

if w ∈ N(u j) ∪ N(w j), j = p + 1, p + 2, . . . , l,∑
v′∈L3

d(w′, v′) = 2(s − 1) + 4(s + ε) + 6(2ls + εp − 2s − ε)

if w′ ∈ N(ui), i = 1, 2, . . . , p,∑
v′∈L3

d(w′′, v′) = 2(s + ε − 1) + 4s + 6(2ls + εp − 2s − ε)

if w′′ ∈ N(wi), i = 1, 2, . . . , p,

which yield

2
∑

{v′′,v′}⊆L3

d(v′′, v′) =
∑

v′′∈L3

∑
v′∈L3

d(v′′, v′)

= 2(l − p)s
∑
v′∈L3

d(w, v′) + ps
∑
v′∈L3

d(w′, v′)

+ p(s + ε)
∑
v′∈L3

d(w′′, v′)

= (2ls + εp)(6(2ls + εp) − 6s − 2) − p(6εs + 4).

Since p/l ≤ 1, we have −p(6εs + 4) ≤ −p(6εs + 3p/l) = −(3εp/l)(2ls + εp). Conse-
quently,∑

{w,u}⊆L3

d(w, u) ≤
2ls + εp

2

(
6(2ls + εp) − 6s −

3εp
l
− 2

)
=

nl

2

(
6nl −

3nl

l
− 2

)
.

Claim 8. We have

W(T ) ≤ 3(nk + nl)2 + (9k + 14l)(nk + nl) −
2n2

k

k
−

3n2
l

2l
− 4nk − 6nl + 6k2 + 15l2 + 19kl − 2k − 6l.

It can be checked that∑
u∈K3

∑
w∈L3

d(u, w) = 6nknl,∑
u∈K3

∑
w∈V(G)\(K3∪L3)

d(u, w) = nk(1 + 2 + 3 + 4(k − 1) + 4l + 5(k − 1) + 5 · 2l)

= nk(9k + 14l − 3),
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u∈L3

∑
w∈V(G)\(K3∪L3)

d(u, w) = nl(1 + 2 + 3 · 2 + 4k + 4(l − 1) + 5k + 5 · 2(l − 1))

= nl(9k + 14l − 5),∑
{u,w}⊆K2

d(u, w) = 4
(
k
2

)
= 2k(k − 1),∑

{u,w}⊆L2

d(u, w) = l(8l − 6) since for any u ∈ L2,∑
w∈L2

d(u, w) = 2 + 4 · 2(l − 1),∑
u∈K2

∑
w∈K1∪L1∪L2∪{v}

d(u, w) = k(1 + 2 + 3(k − 1) + 3l + 4 · 2l) = k(3k + 11l),∑
u∈L2

∑
w∈K1∪L1∪{v}

d(u, w) = 2l(1 + 2 + 3k + 3(l − 1)) = 6l(l + k).

Finally, ∑
{u,w}⊆K1

d(u, w) = 2
(
k
2

)
= k(k − 1),

∑
{u,w}⊆L1

d(u, w) = 2
(
l
2

)
= l(l − 1),∑

u∈K1

∑
w∈L1

d(u, w) = 2kl,
∑

w∈K1∪L1

d(v, w) = k + l.

By Claim 7, ∑
{x,y}⊆L3

d(x, y) ≤ nl

(
3nl −

3nl

2l
− 1

)
and from Corollary 2.4 it follows that∑

{x,y}⊆K3

d(x, y) ≤ nk

(
3nk −

2nk

k
− 1

)
.

Hence,

W(T ) ≤ 3(nk + nl)2 + (9k + 14l)(nk + nl) −
2n2

k

k
−

3n2
l

2l
− 4nk − 6nl + 6k2 + 15l2 + 19kl − 2k − 6l.

Now we complete the proof of Theorem 3.4. Let

f (nk, nl) = 3(nk + nl)2 + (9k + 14l)(nk + nl) −
2n2

k

k
−

3n2
l

2l
− 4nk − 6nl + 6k2 + 15l2 + 19kl − 2k − 6l.

We find the maximum of f (nk, nl) subject to the constraint

nk + nl = n − 2k − 3l − 1 = a.
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Let F(nk, nl, λ) = f (nk, nl) − λ(nk + nl − a). Then using Fnk (nk, nl, λ) = Fnl (nk, nl, λ)
we get 4nk/k = 3nl/l − 2. Substituting nl = a − nk yields nk = k(3a − 2l)/(3k + 4l), and
then we obtain nl = 2l(2a + k)/(3k + 4l). It is easy to check that these values of nk and
nl give the maximum of F(nk, nl, λ). Hence W(T ) is at most

3a2 + (9k + 14l)a −
2k(3a − 2l)2

(3k + 4l)2
−

6l(2a + k)2

(3k + 4l)2
−

4k(3a − 2l)
3k + 4l

−
12l(2a + k)

3k + 4l

+ 6k2 + 15l2 + 19kl − 2k − 6l.

Consequently,
2k(3a − 2l)2

(3k + 4l)2
+

6l(2a + k)2

(3k + 4l)2
=

6a2 + 2kl
3k + 4l

and
4k(3a − 2l)

3k + 4l
+

12l(2a + k)
3k + 4l

=
12a(k + 2l) + 4kl

3k + 4l
,

and, using a = n − 2k − 3l − 1,

W(T ) ≤ 3n2 − (3k + 4l)n − 6n + k − 2l + 3

−
6(n2 − 2kn − 2ln − 2n − 3l2 − kl + 2k + 2l + 1)

3k + 4l
.

Since by Claim 5, k and l are at most O(n1/2),

W(T ) ≤ 3n2 − (3k + 4l)n − 6n −
6n(n − 2k − 2l − 2)

3k + 4l
+ O(n1/2)

= 3n2 − (3k + 4l)n − 6n −
6n(n − 2)
3k + 4l

+ 3n
(
1 +

k
3k + 4l

)
+ O(n1/2).

Let b = 3k + 4l such that the expression above is maximal. Then

3n2 − bn − 6n −
6n(n − 2)

b
+ 3n

(
1 +

k
b

)
is maximised for b = 3k (and l = 0). Now we need to find b such that

f (n, b) = 3n2 − (b + 2)n −
6n(n − 2)

b

is maximal. The partial derivative fb(n, b) = 0 yields the value b =
√

6(n − 2), which
gives us the maximum of f (n, b), that is,

3n2 − 2
√

6(n − 2)n − 2n ≤ 3n2 − 2
(√

6n −
12
√

6n

)
n − 2n

= 3n2 − 2
√

6n3/2 − 2n + O(n1/2).

Clearly W(T ) ≤ f (n, b) + O(n1/2).
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It remains to prove that the upper bound is best possible. We show that there is an
infinite family of trees T1 such that

W(T1) = 3n2 − 2
√

6n3/2 − 2n + O(n1/2).

Let n = (3/2)k2 + 1 where k is even. Let T1 be a tree of order n, diameter 6, with
the central vertex v, where the degree of v is k, any vertex in N(v) has one neighbour
in N2(v), and any vertex in N2(v) is adjacent to n = (3/2)k − 2 = (1/2)

√
6(n − 1) − 2

vertices in N3(v). Then |N(v)| = |N2(v)| = k = (1/3)
√

6(n − 1) and

|N3(v)| = nk = k
(3
2

k − 2
)

= n −
2
3

√
6(n − 1) − 1.

We have ∑
{y,x}⊆N3(v)

d(y, x) = nk

(
3nk −

2nk

k
− 1

)
,

which is the upper bound in Lemma 2.3 if the diameter is 6. Consequently we get
equality in Claim 8 (where in our case l = 0 and nl = 0). It follows that

W(T1) = 3n2
k + 9knk −

2n2
k

k
− 4nk + 6k2 − 2k.

Since nk = k(3k/2 − 2), we obtain W(T1) = (27/4)k4 − 9k3 + 6k2 − 2k or equivalently

W(T1) = 3n2 − 2n
√

6(n − 1) − 2n + 4
3

√
6(n − 1) − 1 = 3n2 − 2

√
6n3/2 − 2n + O(n1/2).

The proof is complete. �

Since by (1.1) and (1.2), D′(T ) = 4W(T ) − n(n − 1) and Gut(T ) = 4W(T ) − (2n −
1)(n − 1), we obtain the following corollaries.

C 3.5. Let T be a tree of order n and diameter d. Then the degree distance
D′(T ) is at most:

(i) 4n2 − 11n + 12 if d = 3;
(ii) 7n2 − 8n

√
n − 1 − 11n + 8

√
n − 1 + 4 if d = 4;

(iii) 8n2 − 8n3/2 + O(n) if d = 5;
(iv) 11n2 − 8

√
6n3/2 − 7n + O(n1/2) if d = 6.

C 3.6. Let T be a tree of order n and diameter d. Then the Gutman index
Gut(T ) is at most:

(i) 3n2 − 9n + 11 if d = 3;
(ii) 6n2 − 8n

√
n − 1 − 9n + 8

√
n − 1 + 3 if d = 4;

(iii) 7n2 − 8n3/2 + O(n) if d = 5;
(iv) 10n2 − 8

√
6n3/2 − 5n + O(n1/2) if d = 6.
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